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Abstract: The market for the small-scale micro gas turbine is expected to grow rapidly in the coming
years. Especially, utilization of commercial off-the-shelf components is rapidly reducing the cost of
ownership and maintenance, which is paving the way for vast adoption of such units. However,
to meet the high-reliability requirements of power generators, there is an acute need of a real-time
monitoring system that will be able to detect faults and performance degradation, and thus allow
preventive maintenance of these units to decrease downtime. In this paper, a micro gas turbine
based combined heat and power system is modelled and used for development of physics-based
diagnostic approaches. Different diagnostic schemes for performance monitoring of micro gas
turbines are investigated.
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1. Introduction

According to multiple sources, the global market for micro gas turbine (MGT) will experience an
expeditious growth in the coming years [1–3].The power generation segment of its product portfolio is
expected to contribute to a bulk portion of this growth. In particular, the combined heat and power
(CHP) configuration of this energy generator are grabbing much attention from both the industry and
the policy makers [4,5]. Especially in the context of European Unions’(EU) initiatives against climate
change, these micro-CHP units could play a vital role in achieving both short- and long-term emission
reduction targets.

MGTs are gas turbines combined with high speed generators whose electrical output can range
between few kilowatts and few hundreds kilowatts. They offer a number of benefits compared to
other technologies for distributed heat and power generation, including compact size, lightweight,
fewer moving parts, lower maintenance needs, lower noise and vibration, high reliability, higher fuel
flexibility, lower emission levels, potential for low cost mass production, and potential for integration
with others decentralised energy generators [6–9]. On the other hand, the main drawbacks of MGTs
are low electrical efficiency, high research and development cost, and high ownership cost at the
moment [5,7]. However, numerous development activities are under-way by academia, industry,
and policy makers to overcome the aforementioned challenges.

To bring the cost of ownership down, multiple vendors are offering micro-CHP units that are being
developed by utilizing commercial off-the-shelf (COTS) components from automotive turbocharger
industry. The inclusion of mature turbocharger technology offers not only cost reduction, but also high
reliability and robustness that the industry achieved through decades of continuous improvement.
On the contrary, turbochargers are not optimised for MGT operation due to the trade-off between

Processes 2018, 6, 216; doi:10.3390/pr6110216 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0003-3610-4680
https://orcid.org/0000-0002-8466-356X
http://dx.doi.org/10.3390/pr6110216
http://www.mdpi.com/journal/processes
http://www.mdpi.com/2227-9717/6/11/216?type=check_update&version=3


Processes 2018, 6, 216 2 of 20

design point efficiency and cost of manufacturing. For this reason, the MGT market is still considered
to be a niche market, and the cost for development of turbo-machinery optimised for MGT operation
can only be justified with mass production. Hence, modification of automotive turbocharger is often
preferred to improve design point efficiency.

In the context of a power sector with high share of intermittent energy sources, MGTs should
offer high reliability and availability to ensure the security of supply. Subsequently, an on-line
condition-based monitoring and fault detection system is necessary. MGT runtime can be extended by
early detection of faults and performance degradation. Thus, it will be possible to plan maintenance
activity long before a breakdown occurs. Eventually, this will improve the availability and lower the
maintenance cost. Another important aspect of future MGT market that emphasises the need of a
condition-based monitoring and fault detection system is the ownership structure. Traditionally, gas
turbines are owned by utilities and large companies. However, MGT-based CHP units could also be
owned by private persons and small and medium enterprises (SME). Hence, a service-oriented
approach is vital, where the service provider (i.e., technology provider or system installer or
independent service provider) might need to manage a large fleet of MGT units. This is where
the concept of fleet level monitoring and diagnostics can play an important role. The service provider
will be responsible for monitoring the MGT fleet and planning maintenance based on the engine health
conditions and severity of deterioration. Hence, an integrated approach for MGT fleet monitoring
and diagnostics is necessary to foster the adoption of this promising technology. Since the MGT
technology is still in the early stage of commercialization phase, sufficient data on degraded and faulty
operations are lacking, which rules out the use of data-driven diagnostics approaches for the moment.
Moreover, data-driven approaches perform worse for cases that fall outside of the training dataset,
which could be a limitation considering the wide operating flexibility that is expected from MGT
units. Therefore, physics-based modelling for MGT diagnostics appears necessary to overcome the
aforementioned challenges.

Realizing its potential, the exploitation of a physics-based model for MGT fleet monitoring and
diagnostics is investigated in this paper. A diagnostic-oriented model for an MGT based CHP unit is
developed. An in-house Fortran-based gas turbine modelling tool named EnVironmental Assessment
(EVA) is used for model development [10,11]. Model adaptation techniques for individual MGT
units in a fleet are also discussed in detail. Subsequently, a multi-level fault detection and isolation
methods are presented along with a detailed fault diagnostics scheme that can identify the location
and magnitude of different component faults. Finally, several simulation trials are performed to test
the presented fault diagnostics scheme.

2. Review on Performance Based Gas Path Diagnostics

The performance of gas turbines deteriorates over time, leading to reduced output capacity and
thermal efficiency that in turn result in reduced profitability and increased emissions [12]. Generally,
any performance deterioration in a gas turbine can be linked with performance deterioration of
one or more gas path components. The performance of these components deteriorate over time
due to various degradation mechanisms such as fouling, erosion, corrosion, internal liner surface
cracking, increase in tip and seal clearance, foreign object damage, plugging of the injector and the
cooling holes, etc. [13–15]. The rate at which these deterioration mechanisms take place could be
different depending on the manufacturing tolerance, engine operating conditions, operating regime,
i.e., part or full load, start-stop cycles, and fuel type and quality. Deterioration generally causes
deviations in the component performance parameters, i.e., efficiency, pressure ratio, flow capacity, and
others, which in turn lead to deviations in the gas path measurable parameters such as temperatures,
pressures, speed, and flow rates. Using the gas path measurable parameters to detect the change in
component health parameters forms the foundation for performance-based gas path analysis (GPA)
methods for gas turbine diagnostics. Two of the well-known variants of this method are physics-based
and data-driven GPA. Numerous comprehensive review articles explore existing GPA approaches
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(both physics-based and data-driven) and their relative performance [16–20]. In these articles, the
comparative pros and cons of different approaches are examined based on attributes such as reliability,
accuracy, model complexity, computational efficiency, the ability to cope with noise and bias, and
number of measurements required for diagnostics. The findings of these reviews can be summarized
by stating that there is no single approach that outperforms the others in all the attributes; rather
they are complementary and each has its own benefits and drawbacks. Hence, hybrid schemes that
combine both physics-based and data-driven approaches should be preferred. As a starting point for
MGT diagnostics and in light of the limitations previously discussed, the focus of this study is limited
to a physics-based approach.

Physics-based GPA approaches for gas turbines diagnostics have been widely studied by the
research community over the years. As the name suggests, these approaches explicitly rely on the
physics-based models of gas turbines. The models are based on mathematical and thermodynamic
equations that principally correlate gas path measurable parameters with component performance
parameters. The has approach developed much since Urban pioneered it in 1967 [21]. Urban [22,23]
and others [24–26] further investigated the approach, which is widely referred to as linear GPA in the
literature. In linear GPA, unknown variations in components performance parameters are computed
from known variations in measurable parameters by using a set of linear equations. The equations are
derived by linearising the non-linear equations that link components performance parameters with
measurable parameters, around a specific steady-state operating point. Being conceptually simple and
computationally light, linear GPA offers numerous benefits such as fault isolation and quantification
and multiple faults diagnostics. On the other hand, the method has multiple limitations. It requires
many relevant measurements for fault diagnostics, which can be quite rare in commercial units. Due to
the assumption of linearity, the method shows instability and large inaccuracy under higher level of
deteriorations. Moreover, it is unable to deal with sensor noise and bias.

To cope with the non-linear behaviour of the gas turbines and improve the accuracy of GPA,
non-linear GPA was introduced by House [27] and Esher [28]. The method was further improved by
many others. Unlike linear GPA, in non-linear GPA, the full equations are treated directly without
any linearisation. To deal with the engine to engine variations, an adaptive approach of non-linear
GPA was examined by Stamatis et al. [29]. The author introduced modification factors to the health
parameters to take care of the individual engine variation that are computed through an optimisation
procedure. Li [30] developed a two step approach for linear and non-linear adaptive GPA that can
detect both single and simultaneously occurring multiple faults. Not long ago, Larsson [31] presented
a systematic design procedure to construct a fault detection and isolation system by using complex
non-linear models. In a more recent work, Liu [32] proposed a dynamic tracking filter incorporating
state observer to detect the variation of six performance parameters of three gas path components by
using four measurement parameters. However, the usage of linear state observer resulted in reduced
accuracy in fault detection capability of this approach; hence, a non-linear state observer is required.
In another work, Kang [33] suggested a compressor map adaptation technique to enhance the accuracy
of performance based diagnostics of a heavy-duty gas turbine. Comparison of different diagnostics
approaches are studied in Koskoletos et al. [34]. The authors performed a comparative analysis among:
(1) probabilistic neural network (PNN); (2) k-nearest neighbours; (3) optimization; (4) combinatorial;
(5) adaptive 2X2; and (6) combination of PNN and adaptive 2X2 method. They concluded that Methods
3–6 can be used for component fault magnitude estimation and prognostic purpose.

Previous research efforts have made valuable contributions in improving performance-based gas
path diagnostics methods. However, most of this work is focused on large scale industrial gas turbines;
only a few studies are focused on micro gas turbine [35–38]. Performance-based diagnostics of MGT
by employing GPA poses numerous challenges. To keep the cost of ownership down, MGTs include
only few measurements of gas path parameters. Moreover, some of these measurements are used for
control purpose, meaning that they cannot be utilized for diagnostics. Due to the high manufacturing
tolerances, engine components show wide variations in performance, which could lead to deviations
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in measured parameters that are comparable to fault conditions. Hence, model tuning is essential for
individual engines before employing any fault diagnostics approach.

3. Methodology

To develop a model-based diagnostics scheme for an MGT fleet, a diagnostics-oriented model
of a nominal MGT unit is developed and presented in this article. The developed model is validated
against the measurements from the performance test of a commercial MGT unit. Sequentially, a scheme
for model tuning is employed to account for engine to engine variations. Finally, a diagnostics scheme
is proposed and tested with the help of simulation studies.

3.1. Gas Path Modelling of the Micro Gas Turbine

The operating principle of an MGT is identical to large-scale open cycle gas turbines. Both operate
on the well-known Brayton cycle. As shown in Figure 1, a typical MGT with CHP configuration
consists of a compressor, a recuperator, combustor, a turbine, a high-speed generator, and an exhaust
recovery heat exchanger. The air is compressed in the compressor and then preheated by the exhausts
in the recuperator before being further heated by burning fuel in the combustor. The high temperature
working fluid is then expanded in the turbine that operates the compressor and the high-speed
generator. The remaining exhaust heat is recovered by water in the recovery heat exchanger.

Figure 1. Layout of the MGT in CHP configuration (MGT: Micro Gas Turbine; CHP: Combined Heat
and Power).

The MGT unit under study in this paper is the EnerTwin Micro-CHP that is marketed by Micro
Turbine Technology (MTT) B.V. It is a single-shaft, radial, recuperated gas turbine manufactured in CHP
configuration. The micro-CHP unit have a capacity of 3.2 kW of electric and 16 kW thermal output.

A modular modelling technique is employed here to develop the MGT model. All the gas path
components, i.e., compressor, recuperator, combustor and turbine including duct and rotating shaft
are modelled and integrated just like the way they are connected in reality. As mentioned previously,
the MGT model is developed by using an in-house Fortran-based gas turbine modelling tool called
EVA. It is a multidisciplinary conceptual design tool that comprises various modules incorporating
substantial detail within a wide range of disciplines, i.e., gas turbine performance, aerodynamic and
mechanical design, emissions prediction, and environmental impact. In this work, the gas turbine
performance analysis module of the tool is utilized.

The compressor and turbine models are based on their corresponding characteristic maps
provided by the manufacturer and standard mass and energy balance equations. The characteristics
maps provide correlations between pressure ratio (PR), shaft speed (N), mass flow rate (ṁ), and
isentropic efficiency (ηis), as shown in Equation (1).(

ṁ ·
√

Tin
Pin

, ηis

)
= f

(
PR,

N√
Tin

)
(1)
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where Tin and Pin refer to the inlet temperature and pressure respectively. For a known shaft speed
and pressure ratio, corresponding mass flow rate and isentropic efficiency are extracted from the
characteristic maps. The extracted values are then used in well-known thermodynamic equations to
calculate parameters related to compressor and turbine. For example, compressor outlet temperature
(T2), pressure (P2), and compression work (Wcomp.) are calculated utilizing Equations (4), (7) and (9).

Starting by assuming isentropic compression and expansion in the compressor and turbine
,respectively, the Gibbs equation takes the following form:

Sout − Sin︸ ︷︷ ︸
=0

=
∫ Tout,is.

Tin

Cp

T
· dT − Rg · ln

(
Pout

Pin

)
(2)

Here, S refers to the entropy, Cp is the specific heat capacity and Rg is the universal gas constant.
Defining entropy function as in Equation (3),

φ(T) =
∫ T

Tre f .

Cp

T
· dT (3)

Equation (4) is derived:

φ(Tout,is.) = φ(Tin) + Rg · ln
(

Pout

Pin

)
(4)

Here, φ(Tin) and φ(Tout,is) are the temperature dependent entropy functions at the inlet and outlet
of the component (i.e., compressor or turbine).

However, the isentropic assumptions are not applicable to real compression and expansion
processes which have inherent losses due to compressor and turbine inefficiencies. To account for
these losses, isentropic efficiencies for compressor (ηcomp.,is.) and turbine (ηturb.,is.) are defined as in
Equations (5) and (6).

ηcomp.,is. =
h(T2,is.)− h(T1)

h(T2)− h(T1)
(5)

ηturb.,is. =
h(T5)− h(T4)

h(T5,is.)− h(T4)
(6)

Subsequently, compressor and turbine pressure ratios are defined by Equations (7) and (8).

PRcomp. =
P2

P1
(7)

PRturb. =
P4

P5
(8)

Finally, compressor and turbine works are calculated using Equations (9) and (10),

Wcomp. = ṁ1
(
h2 − h1

)
(9)

Wturb. = ṁ4
(
h4 − h5

)
(10)

Here, φ(T1) and φ(T2) are the temperature dependent entropy functions at the inlet and outlet of
the compressor, and Rg is the universal gas constant.

The recuperator is modelled as a counter-current plate type heat exchanger. Heat exchanger’s
key performance parameters related to heat transfer and pressure drop are used for this purpose.
The thermal effectiveness (ε) is used as heat transfer performance parameter, while relative pressure
drop in the air-side (∆P23) and gas-side (∆P56) are introduced as pressure drop performance parameters.
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A heat flux-based definition of effectiveness is considered instead of a temperature-based one to include
the influence of the gas composition on the specific heat capacity, as shown in Equation (11).

ε =
Qact.

Qmax.
(11)

∆P23 =
P3 − P2

P2
(12)

∆P56 =
P6 − P5

P5
(13)

where Qact. and Qmax. refer to actual heat transfer and maximum possible heat transfer in the
recuperator. The maximum possible heat transfer is achieved when the fluid with minimum heat
capacity rate undergoes the maximum temperature difference available present in the exchanger,
which is the difference in the entering temperatures for the hot and cold fluids.

The combustor performance is given in terms of combustion efficiency (ηcomb.) and relative
pressure drop (∆P34). The combustor efficiency can be computed by Equation (14), while relative
pressure drop can be computed using an equation similar to Equation (12). Using these parameters,
fuel to air ratio (FAR) and pressure at exit of the combustor (P4) are determined. Finally, energy
balance is applied for the combustor to estimate the enthalpy at the combustor outlet that in-turn is
used to determine the temperature. For simplicity, a constant lower heating value (LHV) is used in
Equation (14).

ηcomb. =
ṁ3(h3 − h2)

ṁ f · LHV
(14)

Compressor, turbine, and generator are mounted on the same shaft; hence, the shaft mechanical
efficiency is defined as in Equation (15).

ηsha f t =
Wcomp. + Wgen.

Wturb.
(15)

Pressure losses in the ducts are also taken into account by using an equation similar to
Equation (12).

3.1.1. Matching Scheme for Gas Path Modelling

The steady state operating points of the gas turbine are obtained by matching the compressor
and turbine. This is done by superimposing turbine map on the compressor map while mass flow
and energy continuity are maintained. The serial nested loops method is used where initial guesses
are continuously updated until all the residuals error terms, corresponding to components mass and
energy balance, reach predefined accuracy. To do this, a Jacobian matrix is built where each element of
the matrix is the sensitivity ratio between each output (or target) and state (δY/δX). The Jacobian is
used to compute and minimize the residuals between model outputs and targets. In normal conditions,
the Jacobian consists of the following pairs of outputs and states in the rows and columns as shown in
Table 1.

For example, the mass continuity in the compressor needs to be satisfied, which means that
the mass flow calculated from the compressor map needs to match the compressor inlet mass flow.
The speed factor Nrel., defined as N/Ndes., is then varied until the residual between the two mass flow
values (ṁcomp.,res. ) is below a predefined defined threshold.
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Table 1. Jacobian matrix used for modelling (PWX: shaft power).

Outputs
States Nrel. ṁint.,corr.,rel. βcomp. βturb. Qhex.,air,nond. Qhex.,gas,nond. PWX ṁcorr., f ,rel.

Torqueres. 0.8978 0.0000 0.7910 0.8590 0.1371 0.0000 0.0001 0.1106
ṁcomp.,res. 2.0321 0.9998 0.9557 0.0000 0.0000 0.0000 0.0000 0.0000
ṁturb.,res. 0.4596 0.0000 0.9285 0.0951 0.1412 0.0000 0.0000 0.1102

Qhex.,air,res. 0.4589 0.0000 0.0633 0.2508 0.4263 0.0000 0.0000 0.4334
Qhex.,gas,res. 0.4589 0.0000 0.0633 0.2508 0.5737 1.0000 0.0000 0.4334

ṁnoz.,res. 7.7099 0.0000 1.6493 7.3678 0.0106 0.4625 0.0000 0.0330
Nrel,res. 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
T5,res. 0.7408 0.0000 0.6401 0.1407 0.3219 0.0000 0.0000 0.2432

3.1.2. Modified Matching Scheme for Adaptation

For model tuning and gas path diagnostics purpose, correcting factors for the component
performance parameters i.e., efficiencies, flow capacities, and effectiveness were included in the
MGT model. These factors are included as state variables along with their corresponding target
variables. Then, a new Jacobian matrix is built, and new residuals are generated between output
variables and target values (Table 2) to achieve a solution.

Table 2. Target and state pairs used in the Jacobian matrix for diagnostics (FC: flow capacity).

Targets States

Torqueres. Nrel.
ṁcomp.,res. ṁint.,corr.,rel.
ṁturb.,res. βcomp.

Qhex.,air,res. βturb.
Qhex.,gas,res. Qhex.,air,nond.

ṁnoz.,res. Qhex.,gas,nond.
Nrel,res. PWX
T5,res. ṁcorr., f ,rel.
T2,res. ∆ηcomp.
P2,res. ∆FCcomp.
P5,res. ∆ηturb.
ṁ1,res. ∆FCturb.
T3,res. ∆εrec.

In this case, the standard matching scheme is modified to fit the required state variables.
The correcting factor on the flow capacity for compressor and turbine is varied to satisfy the mass flow
continuity in these two components. Once the flow capacity is fixed, the beta lines in the compressor
and turbine maps are varied to match the desired exit pressure/temperature. The correction factor on
the compressor efficiency is varied to match the torque on the shaft, while the speed factor becomes
the variable that minimizes the residual between produced power and load demand.

3.2. Scheme for the Model Tuning

As noted previously, due to the high manufacturing tolerances, MGT components show wide
variations in performance characteristics which result in engine to engine performance deviations.
Hence, a baseline or nominal model to represent all the MGTs in a fleet may lead to inaccuracy in
diagnostics. To reduce the model plant mismatch for healthy engines, model tuning is performed by
following a tuning scheme, as shown in Figure 2. The scheme is followed to get individual models for
each of the MGTs in the fleet. It is important to note here that the model tuning need to be performed
for healthy engines operating in nominal conditions.
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Figure 2. Scheme for model tuning.

According to the tuning scheme, the MGT under consideration is operated in test conditions and
data are collected. After that, the nominal MGT model is simulated with same test conditions and
the results are compared with the measured data. The measured data are fed to the tuneable MGT
model which is used to back-calculate the performance deltas to match the measured data from the
healthy MGT. The performance deltas are the deviations in components performance parameters,
i.e., efficiency and flow capacity of the turbine and compressor, effectiveness and pressure drop of
the recuperator. These calculated performance deltas are then used to modify the nominal model to
achieve the tuned model.

3.3. Scheme for the Diagnostics

Typically, diagnostics schemes for gas turbines are based on a multi-level approach that includes
data pre-processing, threshold monitoring, sensor fault detection, engine fault detection and isolation,
and fault identification [39–41]. However, here the focus will be only on fault identification, meaning
assessment of fault location and magnitude. The proposed scheme for the diagnostics of individual
MGT unit is presented in Figure 3.

The fault diagnostics scheme that is carried out here is based on a modification of the matching
scheme previously discussed, where the Jacobian matrix includes additional states (the performance
modification deltas) and additional targets (gas path measurements). In addition, a further step
founded upon a signature-based algorithm is used to isolate and quantify the detected faults.
A nominal model of representative average engine is used to create fault signatures by simulating
different component faults that stored in a signature database. The faults are simulated by assuming
associated performance deltas and using these deltas in the MGT model for fault simulation.
An inventory of faults that are used to build an example signature database is listed in Table 3.
The signature database also includes multiple faults that assumed to be occurred at the same time.
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Figure 3. Scheme for fault identification (ISA: International Standard Atmosphere).

Table 3. Considered fault inventory.

Component Name Fault Description

Compressor • 1% drop in isentropic efficiency (∆ηcomp.)
• 1% drop in flow capacity (∆FCcomp.)

Turbine • 1% drop in isentropic efficiency (∆ηturb.)
• 1% drop in flow capacity (∆FCturb.)

Recuperator • 1% drop in effectiveness (∆εrec.)

Duct • 1% flow leakage from compressor outlet duct

Shaft/Bearings • 1% drop in shaft efficiency due to increased bearing loss

The creation of fault database is something that is performed off-line, whereas the rest of
the scheme is performed close to real-time. The first step of the real-time diagnostics scheme is
based on a modification of the Jacobian matrix and is called analysis by synthesis (AnSyn). During
this step, the measurements from an engine under operation are used to calculate any deviation
in performance deltas by simulating the adaptive tuned model of the engine in actual operating
conditions. The detected deltas can provide a good indication of the fault location and magnitude
for single or multiple faults in compressor, turbine and recuperator as listed in Table 3. However,
this step cannot detect other faults such as flow leakages, shaft loss, etc. Hence, the signature-based
algorithm is also applied here. In the next step, the computed performance deltas are used as inputs
in the adapted tuned model at ISA (International Standard Atmosphere) reference conditions, and
exchange rates are calculated. The exchange rates are measurement deviations that are converted
to ISA reference conditions. Subsequently, a correlation function, as shown in Equation (9), is used
to find the correlations between engine exchange rates and the signatures from the database. The
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correlation function calculates the Pearson Product-Moment Correlation Coefficient (PPMCC) for two
sets of values, in this case signatures from measurements and database.

Corr(x, y) =

k

∑
i=1

(xn,i − x̄n)(y− ȳi)√√√√ k

∑
i=1

(xn,i − x̄n)
2

√√√√ k

∑
i=1

(y− ȳi)
2

(16)

Here, Corr(x, y) is referred as the correlation coefficient. In the correlation function, subscript i is
used to denote the series of sensor measurements where k is the total number of available measurements
from the engine. xn refers to the signature resulted by the fault in nth component and y refers to the
exchange rates at a given operating point.

The maximum correlations give the location of the fault. To get the magnitude of the faults,
Equation (17) is solved in an iterative way to determine the coefficient estimates cm that give the
magnitude of the corresponding faults.

Y(x) =
l

∑
i=1

cmXm (17)

Here, Xm and Y are the vectors that consists of signatures and exchange rates for specific faults
which are indicated by the maximum correlation. Subscript l refers to the number of faults and
m corresponds to a specific fault. Linear regression is employed to solve the above equation and
determine the magnitude for single and multiple faults.

To prove the effectiveness of the proposed diagnostics scheme, in this work, the developed MGT
model is used to generate measurements related to different faults.

4. Results and Discussion

Here, the findings from the gas path modelling and diagnostics, and their inferences are elaborated
in detail. At first, the modelling error are presented against the performance test results of a commercial
MGT unit. Thereafter, the proposed diagnostics scheme is demonstrated by formulating different case
studies, which is complemented by sensitivity studies for different measurement uncertainties, i.e.,
sensor noise and bias.

4.1. Gas Path Modelling

In Table 4, the model outputs at nominal load are compared with the corresponding values from
performance test results of a commercial scale MGT unit. As it can be seen, the simulated model have
acceptable accuracy at the nominal load. It is important to note that the diagnostics scheme tested in
this paper is applied only at nominal load.

Table 4. Modelling error against performance test result at the nominal load.

Parameters Modelling Error (%)

PWX (W) 0.02
P2 (kPa) −0.26
T3 (K) −0.01

N (RPM) 0.00
T5 (K) 0.00

The model outputs for three other off-design points at part-load are also compared with the
performance test results. The comparison results are presented in Figure 4 as percentage error. It can
be observed that the speed (N) and the turbine outlet temperature (T5) give zero error. This is in-line
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with the matching scheme described in Section 3.1.1, where N and T5 are used as target variables.
The error in shaft power (PWX) becomes positive and then negative as the power moves from nominal
value to part-load. The shaft power was not available directly from the performance test, and it
was calculated from the electrical power output. Assumptions were made about auxiliary power
consumption, generator efficiency, and inverter efficiency, these can be contributed to the mismatch
between simulated and experimental data.

Figure 4. Comparison between model and performance test results for off-design operation (PWX:
shaft power).

The error in the compressor outlet pressure (P2) increases as power decreases. The compressor
and turbine maps used here are the maps supplied by the turbocharger manufacturer; hence, they are
not corrected for the modifications performed to the turbine and compressor. This might explain some
of the errors in off-design operating points including P2. Finally, the recuperator effectiveness was
assumed to be constant over entire operating range. This could potentially be responsible for error in
recuperator cold side outlet temperature (T3). Overall, the results demonstrate a sufficient agreement
between the simulation results with the performance test results for off-design operating points.

4.2. Diagnostics

To demonstrate the diagnostics scheme described in Section 3.3, two sets of case studies were
formulated: one with only single faults occurring one at a time, and the other with multiple faults
occurring concurrently. For the first set (S1 to S7), faults listed in Table 3 are considered, but the fault
magnitudes are assumed to be 1.5% instead of 1% as used for the signature database. The results from
the AnSyn step and the signature-based algorithm are presented below.

In Figure 5, the location and magnitude of all the single faults except the flow leakage and the
shaft loss can be detected in the AnSyn step. This can be explained by looking at the matching scheme
used for gas path component diagnostics as elaborated in Section 3.1.2. The modified Jacobian matrix
(Table 2) includes performance deltas and their corresponding measurement pairs for the compressor,
the turbine and the recuperator. However, there are no target-state pairs considered for the flow
leakage and the shaft loss. This necessarily means that these faults will be detected during the AnSyn
as multiple performance deviations. In these cases, in the AnSyn an equivalent fault is created by
distributing the fault effects among other performance deltas that are included in the matching scheme.
Alongside, the flow leakage and the shaft loss only affect turbine and recuperator deltas. This is
because the GPA measurements corresponding to the compressor deltas are not affected by these two
faults. However, due to the measurement uncertainties, compressor deltas are also expected to be
affected marginally in reality.



Processes 2018, 6, 216 12 of 20

Figure 5. Fault location and severity for cases with single faults detected by AnSyn (AnSyn: analysis
by synthesis).

It should be noted here that the AnSyn detects general performance deviations in all fault cases,
without identifying the cause of the deviation. In some cases, deviations in efficiency and flow capacity
can be directly related to a specific fault (e.g., compressor fouling or turbine erosion or recuperator
fouling), while other faults such as flow leakage or additional shaft loss cannot be directly linked to
the results from the AnSyn. Hence, a second step based on signature correlation is necessary. In reality,
occurring faults will always have effect on more than one delta (e.g., compressor fouling reduces
both efficiency and flow), but all the faults will correspond to deviations in the five performance
parameters here presented, making AnSyn effective for fault detection. For consequent fault isolation
and identification, without the need of increasing the number of required measurements, a second
layer of fault diagnostics is applied. This second layer is the signature-based algorithm that includes
correlation and regression analysis for fault localization and magnitude quantification respectively.
Table 5 shows the correlation coefficients between exchange rates and signatures for case studies with
single fault. It is found that, for all the cases, the maximum correlation coefficient always leads to
correct location of the fault and thus is placed diagonally in the table. One observation from this
study is that the faults corresponding to turbine isentropic efficiency loss and shaft loss have very
close correlation coefficients, as red numbers in Table 5. This is quite obvious, since for a fixed turbine
pressure ratio, both parameters highly depend on the ratio between actual isentropic enthalpy drop
across turbine. However, a better decision about the fault location can be made by merging results
from AnSyn and correlation steps.

Table 5. Correlation coefficients for cases with single fault.

Cases
Correlation between Exchange Rates and Signatures for Cases with Single Fault

−1% ∆ηcomp. −1% ∆FCcomp. −1%∆ ηturb. −1% ∆FCturb. −1% ∆εrec. 1% Leakage 1% Sha f t Loss

S1 1.000 0.693 0.783 0.496 −0.754 0.129 0.790
S2 0.694 1.000 0.863 0.505 −0.815 0.134 0.869
S3 0.784 0.863 1.000 0.247 −0.994 0.476 0.997
S4 0.497 0.506 0.248 1.000 −0.145 −0.733 0.268
S5 −0.754 −0.814 −0.994 −0.144 1.000 −0.565 −0.992
S6 0.127 0.135 0.477 −0.733 −0.566 1.000 0.459
S7 0.790 0.869 0.997 0.267 −0.992 0.457 1.000
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Once the location of the fault is known, linear regression is applied to get the magnitude of the
corresponding fault. Fault magnitudes estimated by the linear regression for the single faults cases are
listed in Table 6. It is observed that linear regression resulted in faults magnitude that is very close to
the actual simulated faults.

Table 6. Fault magnitudes for cases with single fault.

Cases Fault
Magnitude

Detected Fault Magnitude Using

AnSyn Regression

S1 −1.500 −1.500 −1.511
S2 −1.500 −1.500 −1.506
S3 −1.500 −1.500 −1.509
S4 −1.500 −1.500 −1.503
S5 −1.500 −1.500 −1.500
S6 1.500 - 1.506
S7 1.500 - 1.508

The second set of case studies (M1 to M7) that includes multiple faults are listed in Table 7.
The magnitudes of the faults are chosen between 1% and 1.5% so that the combination is different from
the signature database where all the faults are 1% in magnitude.

Table 7. List of case studies for multiple fault.

Case Identifier Fault Number Fault Location and Magnitude

M1 Fault-1: ∆ηcomp. = −1.5%
Fault-2: ∆FCcomp.=−1.0%

M2 Fault-1: ∆FCcomp. = −1.5%
Fault-2: ∆FCturb. = −1.0%

M3 Fault-1: ∆ηcomp. = −1.5%
Fault-2: ∆ηturb. = −1.5%

M4 Fault-1: ∆FCcomp. = −1.0%
Fault-2: ∆ηturb. = −1.5%

M5
Fault-1: ∆ηcomp. = −1.0%
Fault-2: ∆FCcomp. = −1.0%
Fault-3: ∆εrec. = −1.5%

M6 Fault-1: Flowleakage = 1.0%
Fault-2: ∆FCcomp. = −1.5%

M7 Fault-1: Sha f t loss = 1.5%
Fault-2: ∆ηcomp. = −1.5%

Results from the AnSyn for simultaneously occurring multiple faults are displayed in Figure 6.
As expected, AnSyn can identify correct fault locations and magnitudes for all cases except those
including flow leakage and shaft loss. However, when these faults are combined with compressor’s
faults, corresponding compressors deltas can be correctly identified by the AnSyn.

The correlation coefficients between exchange rates and signatures for the above cases are reported
in Table 8. For each case, this step gives maximum correlation for corresponding signatures from the
database that reveals the location of the faults correctly.



Processes 2018, 6, 216 14 of 20

Figure 6. Preliminary estimation of fault location and severity for cases with multiple faults by AnSyn.

Table 9 summarizes the estimated magnitudes of faults for different cases with multiple faults
by regression analysis and the comparison with AnSyn. As can be seen, the regression can give good
indication of faults magnitude with some level of error, but the AnSyn performs better. The accuracy
can be further improved by including more measurements in the multiple linear regression. However,
a limited number of measurements are available in reality for such analysis. Additionally, if a sensor
fault occurs and one or more measurements need to be removed from the scheme, the accuracy of the
regression can even deteriorate. Sensor faults will also reduce the fault detectability by the AnSyn,
since corresponding performance delta for the removed measurement also need to be removed from
the matching scheme, as presented in Table 2.

Overall, the results presented until now show that the proposed diagnostics scheme can be used to
detect the location and magnitude of different component faults with acceptable accuracy. Combining
results from AnSyn with the signature-based algorithm increases the confidence on the final outcome
of the proposed scheme. However, the above analysis thus far does not include any measurement
uncertainty (i.e., sensor noise and bias), which can be quite common in reality. Hence, the influence of
measurement uncertainty on the proposed fault diagnostics scheme is assessed in the following section.

First, the influence of measurement uncertainty on the AnSyn is examined by performing a
sensitivity analysis. Here, the measurements corresponding to each of the performance deltas, as listed
in Table 2, are varied within measurement uncertainty range. The measurement uncertainties used
in this paper are obtained from the literature [42,43]. It is considered here that P5 measurement is
available through a differential pressure sensor across recuperator.

Figure 7 shows sensitivity analysis of measurement uncertainties on all five performance deltas.
Here, case study ”S1” i.e., 1.5% drop in compressor isentropic efficiency is considered for this
analysis. As can be seen in Figure 7, the compressor isentropic efficiency is only affected by P2 and T2

measurements. However, there is very strong linkage between P2 and compressor flow capacity, and
P5 and recuperator effectiveness. Hence, measurement uncertainties in P2 and P5 can give misleading
indication of faults related to compressor flow capacity and recuperator effectiveness, respectively;
although their magnitudes are not as prominent as the fault. Other measurement uncertainties have
negligible influence on different performance deltas. Therefore, it can be summarized from the
sensitivity analysis that the influence of measurement uncertainties is limited and will have the effect
of a reduced accuracy in fault magnitude estimation. Moreover, the sensor data can be filtered before
using it for diagnostics purpose to decrease false alarm due to sensor noise related uncertainties.
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Table 8. Correlation coefficients for cases with multiple faults.

Cases

Correlation between Exchange Rates and Signatures for Cases with Multiple Faults

−1% ∆ηcomp. &
−1% ∆FCcomp.

−1% ∆FCcomp. &
−1% ∆FCturb.

−1% ∆ηcomp. &
−1% ∆ηturb.

−1% ∆FCcomp. &
−1% ∆ηturb.

−1% ∆ηcomp. ,
−1% ∆FCturb. &

−1% ∆εrec.

1% Leakage &
−1% ∆FCcomp.

1% Sha f t Loss &
−1% ∆ηcomp.

M1 0.997 0.658 0.946 0.871 0.877 0.437 0.971
M2 0.745 0.991 0.606 0.617 0.935 −0.093 0.629
M3 0.952 0.522 1.000 0.970 0.832 0.653 0.995
M4 0.890 0.500 0.972 0.999 0.810 0.722 0.946
M5 0.827 0.961 0.723 0.705 0.983 0.002 0.748
M6 0.562 −0.071 0.737 0.800 0.315 0.988 0.682
M7 0.972 0.553 0.995 0.944 0.846 0.595 1.000

Table 9. Fault magnitudes for cases with multiple faults.

Cases Fault Number Fault Magnitude
Detected Fault Magnitude Using

AnSyn Regression

M1 Fault-1: −1.500 −1.500 −1.486
Fault-2: −1.000 −1.000 −0.973

M2 Fault-1: −1.500 −1.500 −1.262
Fault-2: −1.000 −1.000 −0.958

M3 Fault-1: −1.500 −1.500 −1.520
Fault-2: −1.500 −1.500 −1.522

M4 Fault-1: −1.000 −1.000 −0.948
Fault-2: −1.500 −1.500 −1.505

M5
Fault-1: −1.000 −1.000 −0.984
Fault-2: −1.000 −1.000 −1.002
Fault-3: −1.500 −1.500 −0.993

M6 Fault-1: 1.000 - 0.999
Fault-2: −1.500 −1.500 −1.527

M7 Fault-1: 1.500 - 1.525
Fault-2: −1.500 −1.500 −1.517
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(a) (b)

(c) (d)

(e)
Figure 7. Sensitivity of AnSyn against measurement uncertainties in: (a) P2; (b) T2; (c) ṁ1; (d) T3; and
(e) P5.

Thereafter, the effect of measurement uncertainties on the correlation step is assessed. As in the
previous section, the case study ”S1”, i.e., 1.5% drop in compressor isentropic efficiency is considered.
For each of the sensors, maximum deviation in the measurement is assumed. As can be seen in Table 10,
the measurement uncertainties has influence on the correlation coefficient. However, the influence
is negligible and still faults are identified correctly by giving maximum correlation coefficient for
corresponding fault location.

Table 10. Correlation coefficients for different measurement uncertainties.

Cases
Correlation between Exchange Rates and Signatures for Different Measurement Uncertainties

−1% ∆ηcomp. −1% ∆FCcomp. −1% ∆ηturb. −1% ∆FCturb. −1% ∆εrec.

P2–0.1% 0.996 0.692 0.776 0.447 −0.750
T2–0.2% 0.983 0.780 0.885 0.453 −0.860
ṁ1–0.2% 0.989 0.738 0.767 0.615 −0.722
T3–0.2% 0.989 0.620 0.686 0.541 −0.650
P5–0.01% 1.000 0.689 0.784 0.493 −0.754



Processes 2018, 6, 216 17 of 20

Eventually, the influence of measurement uncertainties on the fault magnitude detection by using
linear regression is examined with the help of sensitivity analysis. The sensor measurements are
varied by introducing different level of uncertainties and the corresponding fault magnitudes are
calculated for case study S1. The result of the analysis is summarized in Figure 8. The most influencing
measurement uncertainty in this case corresponds to T2 and T3. Despite the high sensitivity for some
measurements, the regression can still provide fault magnitude with acceptable accuracy.

(a) (b)

(c) (d)

(e)
Figure 8. Sensitivity of fault magnitude detection using linear regression against different measurement
uncertainties in: (a) P2; (b) T2; (c) ṁ1; (d) T3; and (e) P5.

5. Conclusions

In this article, a multi-layer approach for monitoring and diagnostics of MGT fleet is investigated.
A diagnostics-oriented model based on gas path analysis lies at the core of this approach. Subsequently,
a model tuning approach is proposed to account for engine to engine variation as a result of production
scatter. The two layers of diagnostics approach that are investigated in this paper include: (1) analysis
by synthesis (AnSyn); and (2) signature based algorithm to detect the location and magnitude of
different component faults. To perform AnSyn, performance deltas corresponding to each component
fault are introduced in the physics-based model, where each delta is associated with a measurement
of the engine. The performance deltas are then calculated by using real-time measurements from
the engine that gives both location and magnitude of the fault. Due to the lack of measurements,
not all the faults can be included in the AnSyn step. Moreover, to improve the robustness of the
diagnostics approach, a signature based algorithm is applied as the second layer. Fault signatures were
generated with the engine model and compared with the simulated faulty engine data. Correlation
function and linear regression are applied to get the location and magnitude of the faults, respectively.
Finally, results from both layers are merged together. The proposed diagnostics scheme was tested by
formulating case studies corresponding to single and multiple faults. Furthermore, sensitivity studies
were performed for different measurement uncertainties (i.e., sensor noise and bias) to evaluate the
robustness of the scheme against measurement uncertainties. The result shows that the proposed
diagnostics approach performs satisfactorily even under measurement uncertainties.

Overall, magnitude of triple faults seems hard to detect by signature based algorithm, given
that the number of measurements available for the analysis is limited to five. The accuracy can be
improved by including more measurements in the analysis. In case of sensor faults, the corresponding
measurements need to be removed from the matching scheme for AnSyn along with their associated
performance deltas. This will unavoidably reduce the detectability of the corresponding fault by AnSyn.
At the same time, the signature based algorithm might result in reduced accuracy or false alarm.
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MGT Micro Gas Turbine
COTS Commercial Of The Shelve
CHP Combined Heat and Power
EU European Union
SME Small and Medium Enterprises
EVA EnVironmental Assessment
GPA Gas Path Analysis
FAR Fuel to Air Ratio
LHV Lower Heating Value
ISA International Standard Atmosphere
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