2 ™ processes MBPY

Article

Production Process Optimization of Metal Mines
Considering Economic Benefit and Resource
Efficiency Using an NSGA-II Model

Xunhong Wang !, Xiaowei Gu *, Zaobao Liu "**{, Qing Wang !, Xiaochuan Xu ! and
Minggui Zheng 3

1 School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China;

wangxunhong@stumail.neu.edu.cn (X.W.); wangging@mail.neu.edu.cn (Q.W.);
xuxiaochuan@mail.neu.edu.cn (X.X.)
Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University,
Shenyang 110819, China
Research Center of Mining Trade and Investment, Jiangxi University of Science and Technology,
Ganzhou 341000, China; mingguiz@jxust.edu.cn
*  Correspondence: guxiaowei@mail.neu.edu.cn (X.G.); liuzaobao@mail.neu.edu.cn (Z.L.);

Tel.: +86-24-83690090 (X.G.); Tel.: +86-24-83689332 (Z.L.)

Received: 30 September 2018; Accepted: 13 November 2018; Published: 19 November 2018 ﬁr:,e(fgtz)sr

Abstract: The optimization of the production process of metal mines has been traditionally driven
only by economic benefits while ignoring resource efficiency. However, it has become increasingly
aware of the importance of resource efficiency since mineral resource reserves continue to decrease
while the demand continues to grow. To better utilize the mineral resources for sustainable
development, this paper proposes a multi-objective optimization model of the production process
of metal mines considering both economic benefits and resource efficiency. Specifically, the goals
of the proposed model are to maximize the profit and resource utilization rate. Then, the fast and
elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is used to optimize the multi-objective
optimization model. The proposed model has been applied to the optimization of the production
process of a stage in the Huogeqi Copper Mine. The optimization results provide a set of
Pareto-optimal solutions that can meet varying needs of decision makers. Moreover, compared
with those of the current production indicators, the profit and resource utilization rate of some
points in the optimization results can increase respectively by 2.99% and 2.64%. Additionally, the
effects of the decision variables (geological cut-off grade, minimum industrial grade and loss ratio)
on objective functions (profit and resource utilization rate) were discussed using variance analysis.
The sensitivities of the Pareto-optimal solutions to the unit copper concentrate price were studied.
The results show that the Pareto-optimal solutions at higher profits (with lower resource utilization
rates) are more sensitive to the unit copper concentrate prices than those obtained in regions with
lower profits.

Keywords: multi-objective optimization; resource efficiency; metal mines; production process;
NSGA-II

1. Introduction

As an important natural resource, mineral resource provides the raw material for industrial
development and is an indispensable resource for economic development. With the continuous
mining of mineral resources, the reserves of mineral resources have gradually decreased worldwide.
However, the global increase in demand for minerals will continue [1]. Therefore, it is an urgent
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realistic problem to optimize the production process of metal mines for mining mineral resources
with the greatest economic benefits and resource efficiency to better utilize the mineral resources for
sustainable development [2].

The production process of metal mines is a complex industrial process, consisting of three unit
processes in series, i.e., the exploration process, the mining process and the beneficiation process.
The input of the latter unit process is the output of the previous one [3,4]. The optimization of the
production process of metal mines is to determine the best production technology indicators that
have a significant impact on economic benefits and resource efficiency [5,6]. Technical production
indicators include the recoverable reserves, average ore grade, geological cut-off grade, minimum
industrial grade, loss ratio, dilution ratio, raw ore grade and volume, concentrate grade and volume,
and concentration ratio. As the market changes and production technology advances, it is necessary
to adjust and optimize these indicators in time to achieve the best results. The optimization of the
metal mines production process is an effective way to raise the economic benefits of enterprises and
contribute to the sustainable development of resources.

In recent years, researchers have studied the optimization of the production process of metal
mines in terms of three major aspects. The first is the optimization of metal mine production in the
beneficiation process [7-11]. Obviously, the local optimization of a unit process does not guarantee the
global optimization of the process. Therefore, technical indicators of all units should be optimized
jointly to achieve the global optimization of the production process [12-14]. The second is the
optimization of the production process of metal mines, in which the objective is to maximize economic
benefits while ignoring the resource efficiency [15-19]. These works emphasized the optimization
targeting at maximizing economic benefits. The third aspect is the optimization of the production
process of metal mines considering economic benefit and resource efficiency with either constraint or
weight methods [4,20-23]. These methods convert multiple objectives into a single objective, thus the
optimization results depend largely on subjective assignment of the constraint or weight value [8].

The above-mentioned works have progressed the optimization method of the production process
of metal mines and some have attempted to use these methods for application. However, the previous
work can only figure out a single optimization results since they treated the optimization process
as a single-objective optimization problem. The production process optimization of metal mines is
a multi-objective problem when considering both the resource efficiency and the economic benefits.
The single objective optimization is usually not sufficient for mines where multiple objectives must be
considered for the decision makers.

Therefore, it is mandatory to develop multi-objective optimization methods for the production
process of metal mines considering multiple objectives, such as the resource efficiency and economic
benefits. It has been concluded that it is difficult to approach multi-objective optimization problems
with traditional methods [24,25]. To overcome these difficulties, a variety of computational
intelligence methods have been incorporated to approach multi-objective prediction and optimization
problems [26-30], such as the fast and elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) [31],
the Multi-Objective Particle Swarm Optimization (MOPSO) [32] and the Multi-Objective Differential
Evolution (MODEs) [33]. In these multi-objective evolutionary methods, the optimal distribution
of the Pareto-optimal frontier can be obtained for decision makers according to their varying
objectives [24]. Due to its advantages of good robustness, high computational efficiency and
diversity, the NSGA-II method has been introduced to approach multi-objective optimization
problems, such as the redundancy allocation [34], hydrogen gas production [35] and process
planning [36]. Those contributions examined the possibility of the mathematical algorithms for
multi-objective optimization.

The objective of the present paper is to establish a multi-objective model optimized by the NSGA-II
method to optimize the production process of metal mines considering both the economic benefits and
the resource efficiency. The results provide a set of Pareto-optimal solutions that can provide multiple
options for mine decision makers according to their customized demands. The rest of this paper is
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organized as follows. Section 2 defines the production process of metal mines. Section 3 establishes the
multi-objective model optimized by the NSGA-II method with consideration of the economic benefit
and resource efficiency. Section 4 applies the optimized multi-objective model for optimization of the
production process of the Huogeqi Copper Mine. Section 5 provides the discussion. Section 6 draws
the conclusions.

2. Production Process of Metal Mines

The production process of metal mines includes three sub-processes, i.e., the exploration process,
the mining process and the beneficiation process (see Figure 1). Due to the fact that the grade of most
Chinese mineral deposit is low [37], the international “single grade,” i.e., the cut-off grade, is not
sufficient for Chinese miners or engineers to make decisions in mine resources exploration. Most
mines in China use the “two-grade” system, i.e., geological cut-off grade and minimum industrial
grade [38]. The geological cut-off grade is used to distinguish ore and rock. The minimum industrial
grade refers to the lowest ore grade of mineral currently available for mining.

The exploration process is to identify the geological conditions, classification, spatial distribution
of the ore body, and estimate the recoverable reserves and average ore grade. The recoverable reserves
are those mineral resources that are economically and technically practicable to extract or harvest.
The average ore grade is the average grade of recoverable ore deposit.

The mining process is the mining of valuable minerals from the deposit. The loss ratio is the ratio
of the loss recoverable reserves during the mining process to the total recoverable reserves. The dilution
ratio is the reducing degree of the ore grade during the mining process due to involvement of the rocks
in the mined ores.

The beneficiation process is the process of separating commercially valuable minerals from their
raw ores. The concentration ratio is the ratio of the raw ore volume to the concentration volume.

Geological Cut-off grade ( p,, %)

Fxploralion Drocess Minimum industrial grade ( p, , %)
P P Recoverable reserves (Q,, t)

Average ore grade ( p,, %)

Loss ratio (¢,, %)

Production v B ( y

process of =| Mining process 1lution ratio (c,, %)
metal ' Raw ore grade ( p,, %)
mines Raw ore volume (Q,, t)

v Concentrate grade ( p, , %)
—>| Beneficiation process — Concentrate volume (0, , 1)
Concentration ratio (c,)

Figure 1. Production process of metal mines.
2.1. Exploration Process

The exploration process includes four production indicators, i.e., the recoverable reserve, average
ore grade, geological cut-off grade and minimum industrial grade. The recoverable reserves and
average ore grade are generally dependent on the geological cut-off grade and the minimum industrial
grade. Since the MOEAs to optimize problems need to calculate thousands of schemes, it is a very
large amount of work to estimate the average grade and geological reserves by mining software
(e.g., 3DMine and SURPAC) after delineating the ore body. By summarizing relevant research, a set of
mathematical statistical methods [39,40] have been proposed to estimate the recoverable reserves and
the average ore grade after a long-term exploration of many years.
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The recoverable reserves can be determined from the geological cut-off grade and minimum
industrial grade, given the integral functions in Equation (1), i.e.,

Joz 9(0)g(x)f(x)dx + [ g(x)f (x)dx

— _ P1
Q= AP ) = Q0 e+ [ s f o) ™
o0 =C=)"  (h<x<p) @

where p, is the initial value of the geological cut-off grade for statistical calculation, which can be
randomly specified; pj is the initial value of the minimum industrial grade; Qp is the value of the
recoverable reserve corresponding to initial values of the p, and pj, respectively; the value of Qy is
estimated by 3DMine; ¢(x) is the mining probability of ore grade with grade between the geological
cut-off grade and the minimum industrial grade; g(x) is the ore weight function of sample grade;
f(x) is probability density function of the ore grade distribution; m is a constant depending on the
geological conditions of the mines.

The average ore grade is the average value of the grades of the ores. It can be determined
from the geological cut-off grade and minimum industrial grade with the given integral functions in
Equation (3), i.e.,

— f( - 2 xg(x)g(x) f(x)dx + [ xg(x)f (x)dx
ps = J2(p1, P2 pplz (P(x)g(x)f<x)dx+f;:g(x)f(x)dx .

®)

2.2. Mining Process

The mining process mainly includes four production indicators, i.e., the loss ratio, dilution ratio,
raw ore grade and raw ore volume. In general, the dilution ratio and loss ratio depend on the mining
method and ore body lithology, but they may have a certain correlation when the mining method is
the same and the ore body lithology is similar. In addition, this correlation is established through
production data.

¢ = f3(c1). 4)

The dilution ratio is defined as the extent to which the ore grade is reduced during the mining
process. It is formulated by

¢2 = (p3s — pa)/ps. ©)
The raw ore grade is calculated by
pa=p3(1—c2). (6)
Considering the mass conservation of the metallic elements during mining process, one has
Q2 X ps=Q1x(1—c1) X ps. @)

Thus, the raw ore volume can be obtained by

. 1*C1
Qz—Q11_C2- 8

2.3. Beneficiation Process

The concentration ratio and the concentrate grade are related to the beneficiation method adopted,
the beneficiation plant size and plant design. However, the concentration ratio could have a correlation
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with the raw ore grade when the beneficiation method, the beneficiation plant size and the plant design
are similar. Hence, for a specific mine, one might establish the correlation through production data.
The concentration ratio is

c3 = fa(pa). )

The concentrate grade is related to the raw ore grade and concentration ratio, whose relationship
is complex and nonlinear. This relationship is difficult to be described by a nonlinear or
multi-regression function. Therefore, this study uses the artificial neural networks [41] model to
establish this relationship

ps = f5(pa c3) (10)

where f5 is an artificial neural network model.
The concentration ratio is defined as the ratio of the raw ore volume to the concentration volume,
so the concentration volume is

Q3 = Q2/cs. (11)

It should be noted that the relationship among the variables might vary when the data of the
target mine are different. The correlation functions f3, f4, and f5 depend largely on many factors, such
as the rock lithology, mining method, beneficiation method and plant design, in the production process.

3. Multi-Objective Optimization Model Considering Economic Profit and Resource Efficiency
3.1. Decision Variables and Constraints

3.1.1. Decision Variables

As introduced above, in the geological process, the recoverable reserves (Q;) and average ore
grade (p3) are dependent mainly on the geological cut-off grade (p1) and the minimum industrial
grade (p2). In the mining process, the dilution ratio (¢ ) is related to the loss ratio (c1). The raw ore
grade (p4) is determined by the average ore grade (p3) and the dilution ratio (cz). The raw ore volume
(Q2) is determined by the loss ratio (c7), dilution ratio (c2) and recoverable reserves (Q1).

In the beneficiation process, the concentration ratio (c3) is related to the raw ore grade (p4).
The concentrate grade (ps) is related to the raw ore grade (ps) and concentration ratio (c3).
The concentrate volume (Q3) is the ratio of the raw ore volume (Q;) to the concentration ratio (c3).

In summary, the independent variables are the geological cut-off grade (p;) and minimum
industrial grade (p,) and loss ratio (c1). The decision variables are selected by their independency.
With the above correlation analysis, one can see there are only three independent variables.
The remained independent variables are the geological cut-off grade (p; ), minimum industrial grade
(p2) and loss ratio (c1). Hence, those three variables are selected as the decision variables in the
production process optimization.

3.1.2. Constraints

In the metal mines, there are limit values for the geological cut-off grade, minimum industrial
grade and loss ratio. As a result, there are upper and lower boundary values of the independent
variables, i.e.,

P1min < P1 < P1max (12)
P2min < P2 < P2max (13)
C1min < €1 < Clmax- (14)

For a mine, the geological cut-off grade is lower than the minimum industrial grade, i.e.,

p1 < p2. (15)
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The concentrate grade is higher than the minimum smelter grade ppeiter, i-€.,

ps > Pmelter- (16)

3.2. Objective Function

3.2.1. Economic Benefit Objective

Economic benefit is one of the main goals of a mine company. There are two indicators to evaluate
the economic benefits, i.e., the profit and net present value. In this study, we considered the profit to
evaluate the economic benefit of a mine. Thus, the purpose is to maximize the profit, i.e.,

maxf = Q3q — Qs3(h1 + hy) (17)

where 6 is the profit, g is the concentrate transaction price, /; is the unit mining cost, and 55 is the unit
beneficiation cost.

3.2.2. Resource Efficiency Objective

Metal ores are non-renewable resources; thus, resource efficiency should be considered in the
metal mine production process. The resource utilization rate R is a measure of resource utilization
efficiency, which can be denoted by

Q3 X ps
f1(Pimin, P2min) X f2(P1imin, P2min)

maxR = (18)
The numerator in Equation (18) is the amount of metal in the concentrate, and the denominator is
the amount of metal in the natural deposit.

3.3. Multi-Objective Optimization Model

In the production process of metal mines, both the economic benefits and resource efficiency can
be involved as the objective functions, especially for mines nowadays where sustainable development
of resources is appreciated. Thus, we need to develop a multi-objective optimization model. When one
has two objectives of economic benefits and resources efficiency in consideration, the objective function
is to simultaneously maximize the values of R and 6. The mathematical model of the multi-objective
optimization for the production process of metal mines can thus be formulated by

maximize {R, 6}
S.t. P1min < pP1 < P1max
P2min < P2 < P2max . (19)
Clmin < €1 < Clmax
p1 < p2
P5 2 Pmelter

3.4. Development of the NSGA-II Model to Solve the Established Model

The NSGA-II was first proposed by Deb et al. [31] based on the Non-Dominated Sorting Genetic
Algorithm (NSGA) [42], and it has achieved multi-objective process optimization in many previous
studies [24,43-45]. The advantage of the NSGA-II is providing fast non-dominated sorting and
crowding distance. The fast, non-dominated sorting can reduce the computational complexity from
O(MN?3) to O(MN?). The crowding distance can ensure good distribution with small computational
complexity. The fast, non-dominated sorting and crowding distance can make the parent population
and child population compete together to produce new parent populations, which both achieves
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convergence and prevents local optimality. This study used the NSGA-II to optimize the production
process of metal mines.

The geological cut-off grade, minimum industrial grade and loss ratio were treated as individuals
for the MOEAs. The regression models and back-propagation neural network were applied to obtain
the connections between the decision variables (geological cut-off grade, minimum industrial grade
and loss ratio) and the objective functions (profit and resource utilization rate). Finally, we used the
NSGA-II to optimize globally the geological cut-off grade, minimum industrial grade and loss ratio in
order to maximize the economic benefit and resource efficiency. The flowchart of the NSGA-II used to
optimize the production process of metal mines is shown in Figure 2. The main steps are as follows:

(@) Collect the data related to the production process of a specific metal mine, i.e., the value of each
indicator, and the price of concentrate ores.

(b) Determine the relationship between the indications, such as ¢(x), ¢(x), f(x), Q1 = fi(p1, pr2),
ps = f2(p1,p2), 2 = fa(c1), c3 = fa(pa), p5 = f5(pa, c3)-

(c) Determine the decision variables according to the dependency analysis, and the upper and lower
boundary values of the decision variables according to the production process of the mine.

(d) The NSGA-II parameters, such as the population size, maximum number of iterations r, crossover
probability, mutation probability, crossover index and mutation index, are initialized. Then, n
possible individuals are randomly generated as the initial parent population.

(e) The parent population generates a child population with n possible individuals by selection,
mutation and crossover.

(f) The parent and child populations are mixed to form a new population with 2n
possible individuals.

(g) The profit and resource utilization rate of each individual is calculated in the new population
with the input data in (a) and the relationship in (b).

(h) Based on the values of the objective functions, the mixed population is classified based on the
non-dominated level, and the crowded distance is calculated.

(i) Based on the non-dominated sorting and the crowding distance calculation results of step (h), the
top n possible individuals are retained as a new parent population.

()  Check the termination condition. If satisfied, the optimization process is terminated and output
the optimal decision variables, profit and resource utilization rate; otherwise, goes to step (e).
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/ Input data from a metal mine /

!

Analyze the relationship between the indicators, such as

p(x), gx), f(x), G =hfp,p,)

'

Determine the decision variables, and the upper and lower

boundary values of the decision variables

v

Initialize algorithm parameters and randomly
generate a parent population, N~=1
T«
v

Generate a child population

v

Combine child with parent populations

v
Calculate the profit and resource utilization rate

v

Non-dpmmgted sorting, Ng=Ng+1
crowding distance evaluation -
Elite retention, retaining good

individuals as new parent population

Check the termination
condition: Ng<N pax

Output the optimal decision variables,
profit and resource utilization rate

Figure 2. Flowchart of production process optimization of metal mines using the Non-Dominated
Sorting Genetic Algorithm (NSGA-II).

4. Multi-Objective Optimization of Process of the Huogeqi Copper Mine

4.1. Brief Introduction of the Huogeqi Copper Mine

The Huogeqi Copper Mine (subsidiary of the Western Mining Group Co., Ltd., an underground
copper mine) is located in Bayannaoer, Neimenggu, China, approximately 84 km from Bayannaoer
city (see Figure 3). The Huogeqi Copper Mine (41°16’ N, 106°40" E) has a gentle terrain and is located
in a semi-hilly area with altitudes ranging from 1900 to 2100 m and average annual rainfall of 188 mm.
The geological map of the Huogeqi Copper Mine is shown in Figure 4. Three ore bodies have been
discovered with industrial value in the Huogeqi Copper Mine. The main metallic elements in these
ores are copper, lead and zinc. However, the average ore grades of the lead and zinc are under the
minimum industrial grade and thus only the copper is the mining target. The deposit has been mined
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for about 20 years with an annual mining and beneficiation capacity of 3 million tons. It remains
approximately 50 million tons of recoverable reserves.

(b) Overview of the Huogeqi Copper Mine

Figure 3. Location and overview of Huogeqi Copper Mine.

Q yo )
\_l'/

Moudaling

S T

Psh-biotite quartz schist; PI-Chlorite schist; S-quartz sandstone; ¥,-Gabbro; 3- Diorite; r-Granite; Q- Quaternary

Figure 4. Geological map of the Huogeqi Copper Mine.
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The Huogeqi Copper Mine is a large-scale enterprise in China that involves exploration, mining
and beneficiation processes. At present, the following problems exist in the production of the Huogeqi
Copper Mine. First, its current production indicators are being determined using the mining and
beneficiation processes of the late last century. In recent years, mining and beneficiation technologies
and processes have improved, and it is thus necessary to conduct new research now. Second, to achieve
the sustainable development of mineral resources, the resource efficiency should be considered during
the production process. However, current production technical indicators have not considered resource
efficiency. Therefore, it is necessary to carry out the multi-objective optimization of the production
process in the Huogeqi Copper Mine. In the next five years, the Huogeqi Copper Mine will mainly
mine the ore bodies of the 1450-1570 stage. This paper uses the ore body of the Huogeqi Copper Mine
as a research object with which to optimize the production process.

Figure 5 shows the distribution of the geological ore body of the 1450-1570 stage. It is located
on the upper plate of the entire deposit with an average dip angle of 71°, an approximate length of
900 m and an average thickness of 25.34 m. The underground water in the 1450-1570 stage ore body
is mainly the fractured aquifer water. The upper plate surrounding rock of this part is mica quartz
schist, and the lower plate surrounding rock is phyllite and biotite quartz schist. According to the
regional geological condition, the surrounding rocks in the 1450-1570 stage ore body have a good
global stability with few local unstable blocks [46]. The back-filling mining method is used in the
mining of the 1450-1570 stage ore body.

[ Host rock
B58 Copper ore body

11450

T

11400

T

11300

T

11250

T

1 ! 1 1 ] ] 1 1 | 1 1 1 1 1 1 1 1 ! 1 1
87850 87900 87950 88000 88050 88100 88150 88200 88250 88300 88350 88400 88450 88500 88550 88600 88650 88700 88750 88800

Figure 5. Geological ore body distribution in the 1450-1570 stage of Huogeqi Copper Mine under the
Xian-80 coordinate system.

At present, the geological cut-off grade and minimum industrial grade is respectively 0.3% and
0.5% of Cu. The loss ratio in the Huogeqi copper mine is 8% of Cu. The recoverable reserves and
average ore grade of the 1450-1570 stage ore body are respectively approximately 9 million tons and
1.32% of Cu. The average ore weight of the 1450-1570 stage ore is 3.16 t/m3. The total cost of the
ore production is estimated of 34.76 $/t. This is the addition of the mining cost (15.8 $/t) and the
beneficiation cost (18.96 $/t) [47].

4.2. Production Indicators of the Huogeqi Copper Mine

As indicated in Sections 2 and 3, there are many production indicators involved in the production
optimization process. For a specific mine like the Huogeqi Copper Mine, one has to define the
relationship between some indicators to give a quantitative optimization of the production process.

4.2.1. Relationship between Ore Weight and Grade

Based on the 156 sets of copper ore weight and grade data collected from the Huogeqi Copper
Mine, the scatter plot of weight and grade data can be drawn in Figure 6. It is shown in Figure 6 that
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there is no apparent correlation between the ore grade and its weight. Thus, the copper ore weight

function takes the value of its average, i.e.,

g(x) = 3.16t/m?

(20)

4,
b
3.8 B4 S *
&+ * *
* +
36F 4F
R o+
34% e * *
A i F *
£ 321 *
= *
£ +4, F * *
23Ty, & iq;%*** ¥
= [ g+ ¥
LT * £ s o * *
28% *%@W Pt
ﬁ; *** **%* *
L+
26 9(x)=3.16 t/m3
24+
22 ?% L L L L L L L L I}
0 1 2 3 4 5 6 7 8 9 10

Copper ore grade (%)

Figure 6. Scatter plot of ore weight and grade.

4.2.2. Probability Density of Ore Grade Distribution

The copper ore grade and sample length data provided by the geological department of the
Huogeqi Copper Mines. The frequency histogram of the copper ore grade data is shown in Figure 7.
The kernel smoothing density function [48] was used to calculate the probability density function of
the copper ore grade in Matlab. The density function was then used to calculate the sample size of the
probability density function. The probability density function is illustrated in Figure 8. The probability
density function obtained by this method is an implicit function, thus it has no specific mathematical
expression. It is indicated in the two figures that the probability density function fits well the frequency

distribution histogram of copper ore grade.

0.2

Frequency

0 HHHHHHHHHHHHHHHHHHHHHHHHHHﬂﬂﬂﬂﬂnnnn "

I L o

0 1 2 3 4 5
Copper ore grade (%)

6 7 8 9

Figure 7. Frequency distribution histogram of the copper ore grade.
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Figure 8. Probability density of the copper ore grade distribution.
4.2.3. Relationship between Dilution Ratio and Loss Ratio

Dilution ratio and loss ratio of Cu are generally recorded once a month due to the difficulty in
measurement. We collected monthly data of the dilution and loss ratio from the Huogeqi Copper
Mine. Figure 9 shows that the dilution ratio is linearly correlated with the loss ratio of Cu after
filter processing. The calculated linear correlation coefficient between the ratios is —0.9897, and the
significance level is 1.0075 x 10750, As the significance level of 1.0075 x 1070 is far less than 0.05, the
significance test shows that the dilution ratio has a strong linear relationship with the loss ratio of Cu.
The dilution ratio of Cu can thus be obtained by

¢2 = f3(c1) = —1.0631 x c1 + 18.0268. 1)

1051 IR|=0.9897
Sig.=1.10075e-50
c,=-1.0631"c,+18.0268

Dilution ratio of Cu (%)

65 Il 1 Il 1 1 Il 1 1 I}
6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
Loss ratio of Cu (%)

Figure 9. Linear fit of dilution ratio and loss ratio of Cu.
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4.2.4. Relationship between Concentration Ratio and Raw Ore Grade

Beneficiation processing data are tested every day. We collected daily data of the minerals from
the Huogeqi Copper Mine. Figure 10 shows a clear linear relationship between the concentration ratio
and raw ore grade of Cu. The linear correlation coefficient is —0.9252 and the significance level is
1.1607E-300. As the significance level value of 1.1607E-300 is much smaller than 0.05, the significance
test shows that the concentration ratio has a strong linear relationship with the raw ore grade of Cu.
This concentration ratio of Cu is defined as

03 = fa(ps) = —1482.7903 x ps + 35.9238. (22)
24 ;t *
% |R|=0.9252
* * * Sig.=1.1607e-300

22
c,=-1482.7903"p,+35.9238

Concentration ratio of Cu
»

12 . I I .
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Raw ore grade of Cu (%)

Figure 10. Linear fit of concentration ratio and raw ore grade of Cu.

4.2.5. Concentrate Grade, Concentration Ratio and Raw Ore Grade

We built a back-propagation neural network using the concentration ratio and raw ore grade of
Cu data as the input and the concentrate grade of Cu data as the output. We have collected 711 groups
of daily mineral production data of the Huogeqi Copper Mine. The data from the 1st to 611th days
were used as training samples and the data from the 612th to 711th days were treated as test samples.

The built feed-forward back-propagation neural network contains two input nodes, one hidden
layer, and one output node. The ‘tansig’ and ‘purelin’ functions were selected as the transfer functions
of the hidden layer and the output layer, respectively; ‘traingdm’ was selected as the learning algorithm,
and the precision was set as 0.0000001 and the maximum number of iterations was set as 2500.
To choose the best-hidden nodes, two statistical parameters called the Mean Absolute Relative Error
(MARE) and the Absolute Maximum Relative Error (AMRE) were used. The statistical parameters
are calculated in terms of their concentrate grade with different hidden nodes and are presented in
Table 1. The MARE and the AMRE reveal that the results obtained using a hidden node of three are
superior to the others; thus, the hidden node was chosen to be three. The modelling accuracy of the
back-propagation neural network model in predicting the concentrate grade of Cu is demonstrated in
Figure 11. As shown in Figure 11, the artificial neural networks models can predict the concentrate
grade of Cu at a good accuracy.
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Figure 11. Concentrate grade of Cu predicted by artificial neural networks.

Table 1. Comparison of back-propagation network results obtained with different nodes.

Concentrate Grade of Cu

Hidden Nodes ™ & "V IARE (%) Test MARE (%) Train AMRE (%) Test AMRE (%)
1 0.8417 0.7491 7.3575 4.7698
2 0.3057 0.2979 1.4701 1.0916
3 0.3049 0.2963 1.4543 1.0597
4 03124 0.3019 1.6102 1.0677
5 03215 0.3025 1.8151 1.4596

4.2.6. Copper Concentrate Transaction Price

The market transaction prices of Chinese copper concentrates are mainly based on #1 copper.
The transaction prices of concentrate ores are determined by their concentrate grade. The price of the
concentrate grade of 20% of Cu is taken as the reference to determine the price of the concentrates in
the copper mines. There is a compensation price if the concentrate grade is not 20% of Cu. In addition,
if the concentrate grade is different from the #1 copper of Shanghai Transaction Institute, there will be
a price coefficient to adjust the difference in copper concentrate.

The compensation price and price coefficient are shown in Table 2, which corresponds to the grade
of copper concentrate obtained from the Huogeqi Copper Mine. The transaction price is calculated as

7= fe(ps) =q1 X ps x A+ q2 (23)

where g is the price of the #1 Shanghai Stock Exchange copper settlement; A is the pricing coefficient
and g is the compensation price.

Table 2. Compensation prices and price coefficients of different copper concentrate grades.

Grade of Cu (%) Compensation Price ($-t~1) Price Coefficient

>23 47.4 0.86
22.00~22.99 31.6 0.85
21.00~21.99 15.8 0.84
20.00~20.99 0 0.83
19.00~19.99 —-15.8 0.81
18.00~18.99 —-31.6 0.795
17.00~17.99 —47.4 0.78

16.00~16.99 —63.2 0.77
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4.3. Production Process of the Huogeqi Copper Mine Using the NSGA-II

4.3.1. Parameters of the Huogeqi Copper Mine and NSGA-II Model

Here, we used the proposed NSGA-II model to optimize the Huogeqi Copper Mine production
process over the next five years. According to the production requirements of the Huogeqi Copper
Mine, the geological cut-off grade ranges from 0.1% to 0.9% of Cu, the minimum industrial grade
ranges from 0.1% to 0.9% of Cu and the dilution ratio ranges from 6% to 12% of Cu. The parameters
used for the proposed model of the Huogeqi Copper Mine and the NSGA-II are presented in Table 3.

Table 3. Parameters of the Huogeqi Copper Mine and NSGA-II model.

Parameter of Huogeqi Copper Mine Value NSGA-II Parameter Value
. . o Number of decision
Initial value of the geological cut-off grade of Cu p, (%) 0.30 variables 3
Initial value of the minimum industrial grade of Cu py, (%) 0.50 Number Of. objective 2
functions
Recoverable reserve of the 1450-1570 stage of Cu Qy (t) 9 % 105 Population size 100

corresponding to p, and p,,

Constant m 0.66 Ma'xunu'm number of 100
iterations Nmax

Crossover index 7,

Unit mining cost /1 ($/t) 15.8 (SBX) 20
Mutation index #,
Unit beneficiation cost h; ($/t) 18.96 (polynomial 20
mutation)

Unit #1 copper price g1 ($/1) 7114.16 pfggzzcl’l‘l’szs 0.5
Lower bound of geological cut-off grade of Cu p1min (%) 0.10 prl\;lse:lig?triles 1/3
Upper bound of geological cut-off grade of Cu pimax (%) 0.90

Lower bound of minimum industrial grade of Cu pamin (%) 0.10

Upper bound of minimum industrial grade of Cu pamax (%) 0.90

Lower bound of loss ratio of Cu c1min (%) 6

Upper bound of loss ratio of Cu cypin (%) 12

Lower bound of melted grade of Cu pyejter (%) 16

4.3.2. Optimization Results Using NSGA-II

In this study, the optimization process was implemented in MATLAB2010b. Figure 12 shows
the Pareto-optimal solutions of the Huogeqi Copper Mine production process obtained by the
multi-objective optimization. The blue stars in Figure 12 are the optimized solutions in the two objective
spaces with the data collected in the Huogeqi Copper Mines optimized by the NSGA-II algorithm.

The Pareto-optimal solutions clearly reveal the compromises between the two objectives, i.e., the
profits and the resource utilization rate. An increase in profits will lead to a decrease in the resource
utilization rate and vice versa. This result shows that multi-objective optimization techniques are
required for the optimization of metal mines production. Since the Pareto-optimal solutions are the
optimized ones, any of them is an acceptable solution. The choice of the final solution depends on the
demands of the decision makers.

As shown in Figure 12, the maximum profit occurs at point A, where the resource utilization
rate is the smallest. Point A represents the best value for the single objective function of economic
benefit. However, it should be noted that laws forbid maximum profit under minimal resource use.
On the other hand, the maximum resource utilization rate occurs at point C, where profit is the lowest.
Point C is the optimal value for the single objective function of resource efficiency.
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In fact, the points A and C are the optimization results of a single objective model. It is clearly
shown in Figure 12 that the optimized results can describe the relationship between the two objectives.
The decision makers can choose to apply the results with their specific objectives.

Table 4 shows three typical points in the optimization results (Pareto-optimal solutions), i.e., A B
and C, as well as the current case of the Huogeqi Copper Mine. The result of the optimization at
Point B includes an increase of 2.99% in profits and of 2.64% of Cu in resource utilization rate than the
current case of the Huogeqi Copper Mine. As shown in Figure 12, the current state of the Huogeqi
Copper Mine is not on the curve of the optimized solutions. Thus, further optimization is applicable to
the mine to achieve better profit as well as a good resource utilization rate.
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Figure 12. Pareto-optimal solutions for the mine production process optimization using NSGA-II.

Table 4. Optimization results of four typical cases of production indicators.

Parameters Case A Case B Case C Current Case
Profits ($) 29317 x 108 25776 x 108 —5.49 x 107 2.503 x 108
Resource utilization rate 0.6689 0.7578 0.8416 0.7383
Geological cut-off grade of Cu (%) 0.582 0.366 0.117 0.3
Minimum industrial grade of Cu (%) 0.647 0.410 0.135 0.5
Loss ratio of Cu (%) 6.018 6.006 6 8

5. Discussion

5.1. Comparison of Different Optimization Algorithms

Two algorithms, i.e., the Multi-Objective Genetic Algorithms (MOGA) [49] and Improved Strength
Pareto Evolutionary Algorithm (SPEA2) [50] are also presented comparatively, beside the NSGA-II,
to optimize the production process of the Huogeqi copper mines. The diversity indicator [51] was
used to evaluate the performance of different algorithms.

The diversity defines the spread extent among the obtained non-dominated solutions and can be

expressed as [43]
Np—1 _
df+di+ ¥ di—d‘
d= i=1 - (24)
df +d; + (Np — 1)d




Processes 2018, 6, 228 17 of 22

where d is the diversity; d and d, are respectively the Euclidean distances between the extreme target
vectors in the real Pareto-optimal front and the boundary target vectors in the obtained objective
domain; d; is the Euclidean distances between two adjacent target vectors in the obtained objective
domain; d is the average of all distances. The small value of diversity corresponds to indicate the good
non-dominated solution.

The parameters of the NSGA-II, MOGA and SPEA2 were set as follows: The population size
Np = 100, the maximum number of iterations Nmax = 100, the crossover index was 20, the
mutation index was 20, the crossover probability was 0.5, and the mutation probability was 1/3.
The Pareto-optimal solutions obtained by the NSGA-II, MOGA and SPEA2 are shown in Figure 13.
Their diversity values are respectively 0.8661, 0.8909 and 0.9697. As indicated in Figure 14, the NSGA-II
outperforms the MOGA and SPEAZ2 in optimization of the production process of the Huogeqi copper
mines. In addition, the diversity obtained by the NSGA-II is smaller than that by the MOGA and the
SPEA2, which also indicates that the NSGA-II has better uniformity for solution distribution.

Therefore, the NSGA-II outperforms the MOGA and SPEA?2 in optimization of the production
process of the copper mines. It can provide better solution uniformity than the other methods.

3 X 108
() * T o T T T T T
Xe) @"’§% w&,@ *  NSGA-I
Y e, O MOGA
251 oty 1
. 08K s 5. SPEA2
¥ Fx
1@& "
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151
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05

05
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0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86
Resource utilization rate

Figure 13. The Pareto-optimal solutions obtained by NSGA-II, Multi-Objective Genetic Algorithms
(MOGA), Improved Strength Pareto Evolutionary Algorithm SPEA2.

5.2. Effect of Decision Variables on the Objective Function

Variance analysis is able to estimate the effect of various process parameters on the response.
This effect is expressed in terms of the F ratio or percentage contribution. The higher the F ratio is, the
more important the corresponding factor is [52-54]. Here, variance analysis was employed to analyze
the effect of the decision variables of the geological cut-off grade, minimum industrial grade and loss
ratio on the objective functions of profit and the resource utilization rate.

Table 5 shows the variance analysis results obtained for profit. The tabulated F-values for the
geological cut-off grade, minimum industrial grade and loss ratio of Cu are Fy5(7,99) = 0.3053,
Fo.05(7,99) = 0.3053 and Fy ¢5(10,99) = 0.3862, respectively, at the 95% confidence interval. The variance
analysis F-values for the geological cut-off grade, minimum industrial grade and loss ratio of Cu
are 76.38, 51.2 and 2.22, respectively, which are higher than their corresponding tabulated F-values,
i.e.,, 0.3053, 0.3053 and 0.3862. As the P-values of all decision parameters are less than 0.05, the null
hypothesis does not stand. Therefore, all decision variables have significant effects on the function
of profit. Moreover, the variance analysis results indicate that the profit is mainly affected by the
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geological cut-off grade of Cu, which has a contribution of 58.84%, and the minimum industrial grade
of Cu, which has a contribution of 39.45%; in contrast, the contribution of the loss ratio of Cu (1.71%) is
very low.

Table 5 shows the variance analysis obtained for the resource utilization rate. The variance analysis
F-values for the geological cut-off grade, minimum industrial grade and loss ratio of Cu are 2543.23,
1275.61 and 874.42, respectively, which are much higher than their corresponding tabulated F-values,
ie., Fo05(7,99) = 0.3053, Fg5(7,99) = 0.3053 and F5(10,99) = 0.3862. As the p-values of all decision
parameters are less than 0.05, the null hypothesis is rejected. Therefore, for the resource utilization
rate, all decision variables are considered significant. Moreover, the variance analysis results indicate
that the geological cut-off grade of Cu is the most important decision variable, with a contribution of
54.19%; in contrast, the contributions of the minimum industrial grade and loss ratio of Cu are 27.18%
and 18.63%, respectively.

Table 5. Variance analysis for profit and resource utilization rate.

Factors Degrees of Sum of Squares Mean Squares F P Contribution (%)
Freedom
Profit
Geological cut-off grade of Cu 7 8.04912 x 1016 1.14987 x 1016 76.38 0 58.84
Minimum industrial grade of Cu 7 5.39543 x 106 7.70776 x 101 51.2 0 39.45
Loss ratio of Cu 10 3.33574 x 10%5 3.33574 x 1014 222 0.0256 1.71
Error 75 1.12915 x 10'¢ 1.50554 x 1014
Total 99 255872 x 107
Resource utilization rate
Geological cut-off grade of Cu 7 1.32481 x 10° 189,258,746.7 2543.23 0 54.19
Minimum industrial grade of Cu 7 6.64489 x 108 94,926,983.4 1275.61 0 27.18
Loss ratio of Cu 10 6.50715 x 108 65,071,498.6 874.42 0 18.63
Error 75 5.58125 x 100 74,416.7
Total 99 5.35262 x 10°

5.3. Sensitivity Analysis of Pareto-Optimal Solutions to Unit Copper Concentrate Price

Due to the large fluctuations in unit copper concentrate prices on the market, the sensitivity
analysis of the Pareto-optimal solutions to the unit copper concentrate price was conducted to
better understand the optimization problem of this study. Figure 14 shows the sensitivities of the
Pareto-optimal solutions to the unit copper concentrate price (which increase by 15% and 30%).
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Figure 14. Sensitivity of the Pareto-optimal solutions to the unit copper concentrate price.
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As can be observed from the optimization results, the Pareto-optimal solutions shift upward
towards higher profits with increasing unit copper concentrate prices. The upward movement of
the Pareto-optimal solutions is caused by the increase in unit copper concentrate prices resulting
in higher profits. Moreover, it is noticeable that with increasing unit copper concentrate prices, the
maximum resource utilization rate only changes slightly, and the minimum utilization rate becomes
larger. Therefore, in regions with higher profits (i.e., lower resource utilization rates), the variations
in Pareto-optimal solutions are more sensitive to the unit copper concentrate prices than they are in
regions with lower profits.

6. Conclusions

Conclusions can be drawn as follows:

(1) The established NSGA-II method is an effective method to approach the multi-objective
optimization of the production process of the Huogeqi Copper Mines. It outperforms the MOGA
and SPEA2 with lower diversity in solution optimization of the whole production process of metal
mines. The Pareto-optimal solutions produced by the NSGA-II method reflect the compromising
relationship between the economic benefits and the resource efficiency. The optimization results
suggest that the Huogeqi Copper Mine in its current state can be further optimized to obtain a
better economic benefit and resource efficiency for sustainable development.

(2) The contributions of decision variables on objective functions show that profit is mainly affected
by the geological cut-off grade of Cu (with a contribution of 58.84%) and the minimum industrial
grade of Cu (with a contribution of 39.45%), but barely affected by the loss ratio of Cu (with a
contribution of 1.71%). With regard to the resource utilization rate, the geological cut-off grade of
Cu is the most important decision variable (with a contribution of 54.19%).

(3) The sensitivities of the Pareto-optimal solutions to the unit copper concentrate price show that
the Pareto-optimal solutions shift upward towards higher profits with increasing unit copper
concentrate prices. The variations of the Pareto-optimal solutions are more sensitive to the unit
copper concentrate price at higher profits than those at lower profits.

The present work provides a multi-object decision procedure and method for the decision makers
of the metal mines to take into account both economic profit and resource efficiency in optimization
of the whole production process of metal mines. Nevertheless, the environmental impact is another
important aspect for metal mines. Due to the complexity in measuring the environmental impact of
groundwater pollution, the gob area and tailings, the environmental impact was not included in this
study and will be a potential subject in future work.
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