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Abstract: Nitrogen is an essential element to plants, animals, human beings and all the other living
things on earth. Nitrogen fixation, which converts inert atmospheric nitrogen into ammonia or other
valuable substances, is a very important part of the nitrogen cycle. The Haber-Bosch process plays the
dominant role in the chemical nitrogen fixation as it produces a large amount of ammonia to meet the
demand from the agriculture and chemical industries. However, due to the high energy consumption
and related environmental concerns, increasing attention is being given to alternative (greener)
nitrogen fixation processes. Among different approaches, plasma-assisted nitrogen fixation is one of
the most promising methods since it has many advantages over others. These include operating at
mild operation conditions, a green environmental profile and suitability for decentralized production.
This review covers the research progress in the field of plasma-assisted nitrogen fixation achieved
in the past five years. Both the production of NOx and the synthesis of ammonia are included,
and discussion on plasma reactors, operation parameters and plasma-catalysts are given. In addition,
outlooks and suggestions for future research are also given.
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1. Introduction

Nitrogen was discovered in the late 18th century by Daniel Rutherford, and it was called noxious
air or azote, which means “no life” due to the asphyxiate property. However, nitrogen is a necessary
component of many biomolecules, including amino acid, chlorophyll DNA, RNA and ATP. Nitrogen
makes an indispensable contribution to protein synthesis, photosynthesis, determination of genetic
characters and all the other important processes of life [1–3]. It is also essential to the production of
many chemicals such as fertilizers, drugs, explosives or colourants, and it exists in various forms,
including both organic and inorganic forms (such as ammonia, nitrate, amino acid, nuclear acid, etc.)
that can be found in soils, rocks, oceans and living matters [4]. More than 99% of the global nitrogen is
in the form of atmospheric N2, which takes 78% of air [5]. However, N2 is chemically inert and thus
inaccessible for most of the organisms. Therefore, it has to be first converted into a reactive form (like
ammonia or nitrates) in a process named nitrogen fixation. This process consists in breaking the strong
triple bond of the N2 and bonds the N atom to any other element like oxygen, hydrogen or carbon.
This process completes the earth nitrogen cycle [4,6].

The estimated amount of global nitrogen fixation is around 413 Tg/y, which comes from
both natural and anthropogenic ways [7,8]. The Biological nitrogen fixation (BNF) is the major
source. However, the process is rather slow, thus not able to provide the fertilizing requirements to
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support the growing population. The most widely used industrial nitrogen fixation process is the
Haber-Bosch (H-B), which synthesizes ammonia via chemical reaction (of hydrogen and nitrogen)
under high-temperature and high-pressure conditions with heterogeneous catalysts. Until 2010,
more than 120 TonN/yr are fixed through this process [9], of which approximately 80% is subsequently
used as fertilizer and the other 20% is used as feedstock for the synthesis of other N-containing
chemicals [10,11]. The development of industrial nitrogen fixation has resulted in an exponential
increase in global food production, able to meet the demand of the rapidly increasing population,
as shown in Figure 1. According to the research done by Smil et al. and Erisman et al. [9,12,13],
around 40% of the world population was making use of fertilizers by the end of the 20th century.
This number increased to 48% by 2008, which indicates the enormous contribution made by the
industrial nitrogen fixation. Furthermore, it has been predicted that the world’s population will reach
8.6 billion in 2030 and further to 9.8 billion in 2050 [14]. Under this scenario, it becomes obvious that
there will be an increasing demand for fertilizers, and thus further developments in industrial nitrogen
fixation processes is of great importance.Processes 2018, 6, x FOR PEER REVIEW  3 of 25 
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Figure 1. Human population growth with the increase of nitrogen usage from 1900 to 2008. Reprinted
by permission from Springer Nature, Nature Geoscience, “How a century of ammonia synthesis
changed the world”, Jan Willem Erisman et al. [9], [COPYRIGHT] (2018).

In history, many attempts have been made in order to artificially fix the nitrogen, including
the Frank-Carlo process [15–17], the Birkland-Eyde (B-E) process [15,18–20] and the Haber-Bosch
(H-B) process. Among them, the one invented by Fritz Haber and commercialized by Carl Bosch
(the H-B process) has been widely recognized as one of the most important inventions of the 20th
century [12]. Ammonia is synthesized by reacting N2 and H2 at high temperature (450–600 ◦C) and
pressure (150–350 bar) in the presence of catalysts. Over the last 100 years, the H-B process has
been fully optimized, with further developments in catalysts, replacing coal with natural gas as
the feedstock, better heat integration, etc. As a result, energy consumption has been decreased to
0.48 MJ/mol ammonia produced [21,22]. Although the H-B process plays the dominating role in
industrial nitrogen fixation, the process is highly energy intensive and associated with environmental
concerns. In fact, about 1-2% of the total energy worldwide and 2% of the total natural gas are consumed
by this process, which in turn is responsible for 300 million metric tons of CO2 emissions [21,23,24].
Considering the fast-growing population and depletion of natural resources, it will be greatly
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beneficial, both economically and environmentally, if the energy efficiency for nitrogen fixation can be
improved. Therefore, continuous developments on sustainable methods for nitrogen fixation have
been reported in the open literature, including efforts to improve the catalysts for the H-B process,
the development of plasma-assisted nitrogen fixation processes, the study of biological nitrogen fixation
and metallocomplex homogeneous catalysts. Reviews of the aforementioned green nitrogen fixation
approaches along with a comparison between them have been given by Cherkasov and co-authors [22].

At its current state, the H-B process is very close to its theoretical limits of energy efficiency, and the
most energy consuming part of the process is the generation of hydrogen. Therefore, the improvement
of catalysts will not significantly increase the energy efficiency [25]. Water splitting using electricity
has been suggested as a replacement of natural gas as the hydrogen source. However, this strategy is
only of interest if renewable electricity is used, as the overall energy consumption will largely increase
to circa 1.5 MJ/mol (three times higher than the H-B process [22]). This is associated with higher
energy consumptions in hydrogen generation (360–480 kJ/mol [26]) compared to state of the art steam
methane reforming.

Plasma-assisted nitrogen fixation is one of the earliest attempts of industrial nitrogen fixation.
The Birkland-Eyde (B-E) process uses an electrical arc discharge to generate thermal plasma at
high temperature for the synthesis of nitric oxide [27,28]. Considering the environmental profile,
plasma processes have a great advantage by directly using abundant material like air and water,
without relying on expensive H2, and could be powered by electricity generated from renewable
resources such as wind or solar energy. In addition, there are no greenhouse gas emissions and
waste production, making the process environmentally friendly. On the other hand, the energy
efficiency of thermal plasma cannot compete with the H-B process, as already reported in the literature,
where it has been shown that the theoretical energy consumption of thermal plasma is 0.86 MJ/mol of
NO, which can be achieved under hypothetical conditions of 20–30 bars, 3000–3500 K and 107 K/s
cooling rate [29]. However, the use of non-thermal plasma has a theoretical limitation of energy
consumption ~0.2 MJ/mol (for NOx synthesis) [29,30], lower than the limits of H-B process, as shown
in Figure 2. Besides, the non-thermal plasma process has many other technical advantages such as
one-step synthesis, a fast reaction, instant control, and suitability for small-scale and decentralized
production [31]. The development of plasma technology in the past decades greatly inspired the
researches of nitrogen fixation and, as a result, an increasing number of research findings have
been reported.Processes 2018, 6, x FOR PEER REVIEW  4 of 25 

 

 

Figure 2. Energy consumption of different nitrogen fixation processes. Reprinted from Chemical 

Engineering and Processing, 90, N. Cherkasov et al., “A review of the existing and alternative 

methods for greener nitrogen fixation” [22,24–33], Copyright (2018) with permission from Elsevier 

B.V. 

2. Brief Overview of Plasma Conversion Processes 

Plasma processes are among the oldest on earth (lightning) and are generated by the ionization 

of gases occurring when enough heat is supplied to the gas. Plasmas can be generated artificially by 

driving an electrical current through a gas, and it finds multiple applications. Plasma technology 

surrounds us, as it is widely used in surface cleaning and modification [32], cutting [32], coating [32] 

or in ozone generation. These applications are mature and commercialized. Besides, it has been 

proven that plasma technology has great potential in medical application [32], and “plasma 

medicine” may turn to large application and commercialization in near future. 

However, nowadays there is an increased trend in finding new applications for plasma 

technology, in particular in the chemical sector for the conversion of different feedstocks into more 

valuable products. Production of NOx from air, and direct conversion of N2 and H2 into NH3 are 

among the most investigated processes using plasma reactors. However, other processes are also of 

interest and are here highlighted. Among the different processes, the reforming of CH4 into syngas, 

and CO2 decomposition are the ones with the highest interest nowadays. The effect of the operating 

conditions and reactor design in CO2 conversion into CO has been recently reported by Mei et al. [33], 

indicating that developments in the design of a plasma reactor can result in important improvements 

in the overall energy efficiency. Other authors have recently reviewed the possibilities and challenges 

of the CO2 conversion using plasma technology [34,35]. In this case, the conversion of CO2 is not just 

limited to CO, but it can also be extended to CO2 hydrogenation to syngas or CH4, and also to dry 

reforming for H2 production. The use of methane as feedstock is another research line of high interest, 

in which a plasma reactor can convert CH4 into valuable products like syngas, H2, methanol or 

acetylene in small-scale units [36], where the conventional technologies are not economically feasible. 

In this respect, many works have been recently published in the literature, with special emphasis on 

the reactor design and operating conditions in order to maximize the energy efficiency for the system 

[37–40]. In the different research topics, also the use of catalysts has been widely investigated [41,42], 

leading to the as known as plasma catalysis, which is currently another trend in the understanding 

of the reaction mechanism and all synergetic effects. A very detailed review on this topic has been 

recently published by Neyts and co-authors [43]. The research for the best reactor configuration, the 

type of plasma, operating conditions and integration of a catalyst are topics widely explored in the 

literature for several plasma conversions. In this review, all these topics are covered concerning 

plasma fixation as it will be presented in the coming sections. 

3. NOx Production  

Figure 2. Energy consumption of different nitrogen fixation processes. Reprinted from Chemical
Engineering and Processing, 90, N. Cherkasov et al., “A review of the existing and alternative methods
for greener nitrogen fixation” [22,24–33], Copyright (2018) with permission from Elsevier B.V.



Processes 2018, 6, 248 4 of 25

2. Brief Overview of Plasma Conversion Processes

Plasma processes are among the oldest on earth (lightning) and are generated by the ionization
of gases occurring when enough heat is supplied to the gas. Plasmas can be generated artificially
by driving an electrical current through a gas, and it finds multiple applications. Plasma technology
surrounds us, as it is widely used in surface cleaning and modification [32], cutting [32], coating [32] or
in ozone generation. These applications are mature and commercialized. Besides, it has been proven
that plasma technology has great potential in medical application [32], and “plasma medicine” may
turn to large application and commercialization in near future.

However, nowadays there is an increased trend in finding new applications for plasma technology,
in particular in the chemical sector for the conversion of different feedstocks into more valuable
products. Production of NOx from air, and direct conversion of N2 and H2 into NH3 are among the
most investigated processes using plasma reactors. However, other processes are also of interest and
are here highlighted. Among the different processes, the reforming of CH4 into syngas, and CO2

decomposition are the ones with the highest interest nowadays. The effect of the operating conditions
and reactor design in CO2 conversion into CO has been recently reported by Mei et al. [33], indicating
that developments in the design of a plasma reactor can result in important improvements in the
overall energy efficiency. Other authors have recently reviewed the possibilities and challenges of the
CO2 conversion using plasma technology [34,35]. In this case, the conversion of CO2 is not just limited
to CO, but it can also be extended to CO2 hydrogenation to syngas or CH4, and also to dry reforming
for H2 production. The use of methane as feedstock is another research line of high interest, in which
a plasma reactor can convert CH4 into valuable products like syngas, H2, methanol or acetylene in
small-scale units [36], where the conventional technologies are not economically feasible. In this respect,
many works have been recently published in the literature, with special emphasis on the reactor design
and operating conditions in order to maximize the energy efficiency for the system [37–40]. In the
different research topics, also the use of catalysts has been widely investigated [41,42], leading to the
as known as plasma catalysis, which is currently another trend in the understanding of the reaction
mechanism and all synergetic effects. A very detailed review on this topic has been recently published
by Neyts and co-authors [43]. The research for the best reactor configuration, the type of plasma,
operating conditions and integration of a catalyst are topics widely explored in the literature for several
plasma conversions. In this review, all these topics are covered concerning plasma fixation as it will be
presented in the coming sections.

3. NOx Production

Plasma-assisted nitrogen fixation (in the form of NOx) has many advantages, among which
the possible use of air as feedstock, and the fact that NOx can be used in many other applications.
More importantly, non-thermal plasma for NOx production has a lower limit of energy consumption
than the H-B process. Till now, a large part of research efforts was focused on NOx removal by
plasma rather than the NOx production process. However, there are still a lot of researches on
NOx synthesis reported during the last five years, including those targeting medical application and
fertilizers production.

The overall reaction for NOx production is shown below:

N2 + O2 ↔ 2NO; ∆H = 90 kJ/mol ≈ 1 eV

Generally, high temperature is favoured due to the endothermic nature and the high energy
required for the dissociation of nitrogen molecules. In the case of the plasma process, reactive species
such as atomic oxygen, vibrational excited nitrogen molecules generated from electron impact play
important roles in the formation of NO. As suggested by R. Ingels and D.B Graves, the energy barrier
for NO formation is about 20 GJ/tN if the kinetics are governed by excited states of N and O from
non-thermal electron impact [44].
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3.1. Type of Plasma and Reactors

In NOx synthesis research, different plasmas have been used, and they could be classified
into three different categories: thermal plasma, cold plasma and “warm” plasma. Most of the
early researches reported the use of thermal plasmas, like the electric arc [45–47] or the spark
discharge [48,49]. The electric arc plasma was used in the B-E process, in which 1% of nitric oxide
was achieved, and subsequently used for the production of HNO3 with an energy consumption of
3.4–4.1 MJ/mol [27,28]. In the case of thermal plasma, the limitation of theoretical energy consumption
is high (see Figure 2). According to the thermodynamic calculation, a maximum NO concentration in
an N2-O2 system in equilibrium at atmospheric pressure is 6.5% at 3500 K [50]. In order to obtain such
concentrations in thermal plasma process, rapid cooling with a rate up to million K/s is required [51].
Therefore, the use of non-thermal plasmas is preferred as they can provide higher concentrations of
NOx due to their non-equilibrium behaviour. The production of NO in thermal plasmas involves
both thermal Zeldovich mechanisms and electron-impact initiated reactions [52]. Vibrationally excited
nitrogen molecules N2

* are considered to be an important intermedia for NO production through
electron-impact reaction, and formation of NO through N2

* is an energy efficient route [53,54]. On the
other hand, NO is the dominant product in most cases of thermal plasma, while the production of
NO2 and O3 was suppressed partially due to the thermal effect.

Cold plasma refers to non-thermal plasma operated at a temperature which is close to room
temperature. This type of plasma has a lower energy density than thermal plasma, and ozone is
normally produced, which can oxidize NO to NO2 [55,56]. Till now, high energy efficiencies have not
been reported in the literature, and several researchers doubt the suitability of this strategy for NO
production [57]. However, the cold gas temperature of this type of plasma enables the delivery of
produced reactive nitrogen species to sensitive material, providing opportunities for applications such
as wound disinfection and skin treatment [58–60].

Warm plasmas, which include both thermal and non-thermal plasma conditions, have been used
for nitrogen fixation, and progress regarding energy efficiency and product selectivity has been recently
reported in the literature. Among the different reactor configurations, the gliding arc is the one that
has been considered to be the most efficient and promising discharge type for gas conversion [61–64].
In particular, the use of this reactor type has also been extended to other systems like CO2 conversion
and CH4 reforming [62,65,66]. The schematic diagram of a typical gliding arc reactor is shown in
Figure 3. The arc, initially formed at the narrowest gap between electrodes, moves along the horn-shape
electrode by the gas flowing towards the wider end of the gap until it extinguishes. After that, a new
cycle starts with the arc formation at the narrowest gap again. The production of NOx has been reported
in several previous works [67–69], and more detailed studies with special interest in energy efficiency,
yield and reaction mechanisms were done recently. Wang et al. [53] investigated the NOx synthesis in
a pulsed power gliding arc discharge through chemical kinetic modelling, and their results showed
that the vibrational excited N2 can help overcome the energy barrier of the non-thermal Zeldovich
mechanism O + N2(v)→ NO + N, providing an energy efficient way to produce NO. The gliding arc
reactor works in non-equilibrium conditions (maximum temperature of 1500 K), thus achieving much
higher yields of NO when compared with the thermal process. Patil et al. [70] used a milliscale gliding
arc reactor in their experimental study. Such milliscale configuration could reduce the volume of the
gas that bypasses the arc, thus improving the contact between reactive species and gas molecules with
a consequent increase in NOx production. The highest concentration of NO achieved in this study
is close to 1%, with an energy efficiency of 10 kWh/kg of NOx. In a follow-up study [71], the NOx

concentration was increased up to 1.4%, which is a promising concentration for container-size fertilizer
production plant.

A different strategy is to produce liquid fertilizers, where water can be used in a gliding arc
reactor and the nitrogen is fixed as NO2

− and NO3
−. This configuration was developed by Mizukoshi

et al. [72], where a stable plasma was generated in this system.
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Another type of warm plasma, the so-named transient spark discharge, was used by Janda
et al. [73] for NOx production. The transient spark discharge starts from a streamer phase, which is
considered as non-thermal plasma and is subsequently transformed into short spark current pulses
which generate thermal plasma [74,75]. Due to the self-pulsing feature, thermalization of the plasma
can be avoided. However, a high electron density (as high as 1017 cm−3) can be achieved during
the spark phase, leading to high chemical activity comparable with a nanosecond pulsed spark
discharge [76]. In their research, the energy consumption for NOx production is 8.6 MJ/mol, and the
excited nitrogen molecules N2

* were observed in both the streamer and the spark phases. In another
research conducted by Pavlovich et al. [52], a spark-glow discharge reactor was developed and the
plasma discharge generated could have spark phase (thermal plasma) and glow phase (non-thermal
plasma) in one cycle. By fine-tuning the voltage waveforms, the percentage of glow phase could be
controlled. From their research, it was concluded that an increase in the percentage of the glow phase
resulted in higher concentrations of NO2. The spark phase, which has a very high electron density and
energy, generates more NO, while the glow phase promotes the NO oxidation to NO2. It should be
noted that in the case of discharge types such as the transient spark, the plasma volume is generally
limited, as a result, the production of NOx is also limited. This could be considered for further research
on optimization or up-scaling.

Non-thermal plasma reactors were mostly used to produce reactive nitrogen species and reactive
oxygen species for biomedical application, meaning that the energy efficiency was not the main target,
but just the production of NOx in therapeutic levels. DBD (dielectric barrier discharge) reactors have
also been used in NOx synthesis, as they provide the possibility to enhance the energy efficiency and
product selectivity by combining the plasma with a catalyst. However, few investigations have been
reported with this reactor type. As one of the most explored plasma reactors for biomedical application,
plasma jet has been investigated regarding the NO production not only directly from the gas phase,
but also biological NO or intracellular NO generation following the plasma delivery [77]. Other types
of plasmas and reactors like the DC corona or microwave plasma have also been reported recently,
and an overview has been listed in Table 1.
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Table 1. Plasma/reactor types used in recently reported researches of NOx production.

Plasma/Reactor Reactants Tested Main Product Reference

Spark-like air, water NO, NO2, HNO3, N2O4 [52]

AC (alternating current) barrier
corona with Magnetic field air NO, NO2, O3 [78]

Microwave plasma N2, O2 NO, NO2 [79]

Transient spark air NO, NO2 [73]

DBD (dielectric barrier discharge) air NO, NO2, O3 [80]

DBD N2, O2, NO, H2O NO, NO2, N2O, N2O5, HNO2, HNO3 [81]

DBD N2, O2 NO, NO2 [82]

Gliding arc N2, O2 NO, NO2 [53]

Gliding arc with flow system water, air NO2−, NO3−, OH [72]

Sliding discharge air NO, NO2, O3 [83]

Milliscale gliding arc air, N2, O2 with Ar addition NO, NO2 [71]

Milliscale gliding arc N2, O2 NO, NO2 [70]

Pulsed arc discharge air, N2, O2 NO, NO2, O3

Spark discharge
Gliding arc

Transferred arc
air, water NO, NO2

− and NO3
− [84]

Pulsed discharge
DC (direct current) corona

DBD off gas
N2, O2, Ar H2O2, NO2

−, NO3
− [85]

DBD N2, O2 NO, N2O5 [86]

DBD air NO, NO2 [87]

DC plasma jet air NO, NO2, O3 [88]

Micro DBD
Microwave plasma torch air, Ar, N2 NO [89]

Spray-type jet N2, H2O NO2
−, NO3

−, NH4
− [90]

Array type DBD air N2O, O3, HNO3, and N2O5 [91]

Spark discharge air NO, NO2, O3 [92]

Plasma Jet Ar, air NO, NO2 [93]

AC corona air NO, NO2, O3 [94]

Microwave plasma torch N2, O2 NO [95]

Needle-type plasma jet Ar + 2% air NO [96]

3.2. Operation Parameters

In order to control the NOx synthesis, the operating conditions are key factors that determine the
NOx concentrations, NO2/NO ratios and overall energy efficiency. Regarding the operating conditions,
they can be divided into two different sets: (1) electrical parameters and discharge regimes, and (2)
process parameters.

Electrical parameters and discharge regimes are directly associated with the energy input and the
density of electrons produced, which have an influence on the temperature and determine the reaction
mechanism. In research carried out by Pekárek [78], who used a corona-like DBD reactor combined
with magnetic field to generated nitrogen oxides, the production of NO2 increased with an increase in
the applied voltage from 5800 V to 7400 V, while NO was not observed.

The study of transient spark discharge by Janda et al. [73] showed that the total NOx generation
is not affected by a change in frequency, although the NO2/NO ratio is actually decreased with an
increase in frequency. This is caused by the change in the discharge properties, which are directly
related to the NO2/NO synthesis mechanism in both the streamer and the spark phases of the discharge.
Han et al. [80] also investigated the effect of frequency on the NOx production in DBD plasmas in air.
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Experiments were carried out at different frequencies in the ranges of 5–10 kHz and 40–65 kHz and
the frequency was considered as the main factor affecting the concentration of NOx and the energy
yield. At a fixed power of 73 W, the concentration of NO was 1051.7 mg/m3 and 135 mg/m3 at 10 kHz
and 50 kHz respectively. The optimal frequency within the tested range was 7 kHz, and the energy
efficiency was 20.5 mg/m3·W. Patil et al. [70] investigated the electrical and process parameters of
the milli-scale gliding arc discharge for NOx production. Different frequencies, pulse widths and
amplitudes were tested in their experiments. The author stated that the increase in those parameters
resulted in an increase in the specific energy input of the plasma, so that more energetic electrons and
ions will be produced to facilitate the synthesis of NOx. Moreover, discharge regimes could be altered
when changing the frequency. At a frequency of 8 kHz, the reactor was operated in a static arc regime,
which has a lower efficiency than the gliding arc regime operated at 7 kHz and 9 kHz.

Process parameters such as gas composition, flow rate and temperature, are also of great
importance in NOx production, and in many works, their influence has been investigated. For instance,
the effect of flow rate and oxygen content on the NOx synthesis by microwave plasma was reported by
Lee et al. [79]. In particular, a decrease in the inlet flow rate from 45 slpm to 25 slpm and an increase in
O2 content from 1% to 3%, resulted in a remarkable increase in the NOx concentration from 1612 ppm
to 9380 ppm. The NO2/NO ratio also increased (from 4.3% to 14.8%) with the increase in flow rate.
Na et al. [95] used a microwave plasma torch to generate NO, and different N2 (5–30 slpm) and O2

(0–250 sccm) flow rates were tested. It was observed that lower N2 flow rates and higher oxygen
content resulted in a higher NO concentration. In the research of Hao et al. [88], the highest NO
concentrations were also achieved at the lower flow rates (maximum 1000 ppm at 0.5 slm). However,
the highest production rate (0.98 µmol/s) was achieved around 4 slpm, which is in the middle of the
tested flow rate range.

A detailed experimental investigation on the process parameters in gliding arc discharge reactors
was performed by Patil et al. [71]. In their study, oxygen contents around 35–48% were found to be
optimal for NOx production, and the NO selectivity decreased linearly with the increase in O2 content
until the O2 content reached 48%. Further increase in O2 content did not have an obvious effect on the
NO selectivity. In this work, it was also observed that the NO selectivity decreased with the increase in
the feed flow rate. In particular, it was measured that a decrease in the flow rate resulted in an increase
in the specific energy input and residence time of the reactant, thus leading to a higher conversion of
NO to NO2. Moreover, the highest NOx concentration of 1.4% was achieved at the lowest flow rate
of 0.5 L/min.

The temperature also has an influence on the NOx production as reported by Malik et al. [83],
who studied the temperature effect on NOx production by pulsed sliding discharge. In their
experiments, the electrode/dielectric surface in contact with the plasma was heated from 20 ◦C
to 420 ◦C, and it was observed that the production of ozone and NO2 were diminished while NO
production became dominant at higher temperatures. It was also observed that the energy per pulse
under the same peak voltage was increased. Ozone could be destroyed at high temperatures, and the
conversion of NO to NO2 was suppressed. At 420 ◦C, the NO2/NO ratio was decreased to 0.25 and
NO was produced with an energy consumption of 24–67 MJ/mol. An opposite tendency was claimed
by Li et al. [94], who observed that the NO2/NO ratio slight increased from 0.67 at 273 K to 0.80 at
373 K in their study using a corona discharge. It should be noted that the gas temperature varies
largely for different types of plasma, reactors and operation parameters, so the temperature effect
should be considered along with other factors but not separately. Also, extra heating or cooling will
increase the energy cost of NOx production and capital costs of the process.

3.3. Plasma-Catalysis for NOx Production

Although plasma-catalysis has been intensively investigated in recent years, very few works have
been reported in the field of NOx production. Among these works, Cavadias and Amouroux used
WO3 as catalysts, and the nitrogen fixation rate achieved was 19%, which is much higher than using
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plasma alone under low pressure (8%) [97]. Their research was carried out at atmospheric conditions
using a fluidized bed reactor with WO3/Al2O3 catalyst [98]. Mutel et al. used MoO3 as catalysts
in their experiments and the energy consumption achieved was 28 MJ/kg of NO, which was 78%
higher compared with a plasma jet arc generator [99]. Sun et al. investigated the catalytic activity of
Cu-ZSM-5 and Na-ZSM-5 in a pellet filled DBD reactor. Significantly higher NOx yields were observed
in the case of Cu-ZSM-5 over Na-ZSM-5 at 350 ◦C [100].

A recent study by Patil et al. investigated the effect of support materials on the synthesis of NOx in
a DBD reactor [82]. Among all the tested supports (γ-Al2O3, α-Al2O3, MgO, TiO2, BaTiO3 and quartz
wool), γ-Al2O3, with the smallest particle size, showed the best performance on NOx concentration
and energy consumption. The authors believe that the formation of filamentary discharges is highly
related to the NOx production. It is also suggested that a good catalyst support should have a high
surface area. Several metal oxides were loaded on the support and tested in the plasma-assisted NOx

synthesis. In particular, the 5% WO3/γ-Al2O3 gave the highest concentration of NOx, which is 10%
higher than with γ-Al2O3 solely. Although there was an increase in NOx concentration, the selectivity
towards NO decreased, and this was associated to oxidation reactions on the catalyst surface with the
oxygen species.

4. Ammonia Synthesis

Ammonia is the second largest chemical synthesis in the world today, and 90% of this chemical is
produced by the H-B process [101]. The research on ammonia synthesis is always of great importance,
not only because of the wide application of ammonia, but also the great scientific value. Started in the
1970s, the interest in ammonia synthesis using plasma technology has been increased [102–105] and,
in particular, great efforts have been made in terms of plasma reactor design, catalysts development
and the study of the reaction mechanism.

4.1. Reactants and Composition

4.1.1. Direct Synthesis of Ammonia from N2 and H2

Till now, most of the reported research used N2 and H2 to directly synthesize ammonia.
Those researches are mainly focused on the plasma reactions without considering the source of
hydrogen. In general, the reaction (1) is favored at low temperatures due to its exothermic nature,
however, high energy input is required for the N2 dissociation.

N2(g) + 3H2(g)↔ 2NH3(g); ∆H = −92.44 kJ/mol (1)

The main reaction mechanism in the plasma-assisted process has been shown in reactions (2)–(8).
Initially, N2 and H2 are dissociated, the dissociation of N2 is normally considered as the rate-limiting
step due to its high dissociation energy (9.8 eV) [106,107].

N2 + e→ 2N + e (2)

H2 + e→ 2H + e (3)

The dissociation reactions are followed by the formation of NH radicals, which are considered
as the most important intermedia [106–108]. Then NH3 can be produced through stepwise addition
reactions with H and H2.

N + H → NH (4)

NH + H → NH2 (5)

NH + H2 → NH2 + H (6)

NH2 + H → NH3 (7)
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NH2 + H2 → NH3 + H (8)

In addition to the more general reactions, Akay et al. [109] presented the reaction mechanism
including gas phase and surface reactions. The catalytic surface can adsorb N and H, forming NH and
further react with H or H2 in either gas phase or adsorbed phase on the surface.

The feed gas ratio (N2/H2) is an important factor that could influence the production of ammonia.
Gómez-Ramírez et al. [110] found that the best energy efficiency was achieved with the feed gas ratio
equal or close to the stoichiometric ratio. This conclusion is in line with many previously reported
researches [110–114]. On the other hand, other studies have shown that a higher N2/H2 is favoured
for the ammonia production [107,112,115–119]. A plausible explanation for this difference was given
by Peng et al. [120], who believes that the average electron density and temperature is higher in a high
hydrogen content environment with less intensive discharges (low voltage and frequency), promoting
the formation of NH radicals, hence resulting in high ammonia productions. In the case of more
intensive plasma discharges, which have higher electron energies, a nitrogen-rich environment is
beneficial for generating more active nitrogen species that react with hydrogen, so that more ammonia
can be produced. In their experimental study [107], plasma discharge with 7 kV and 10 kHz was
used to produce ammonia under different feed gas ratios, and values of around 0.5 g NH3/kWh were
achieved with the stoichiometric ratio, while more than 0.8 g NH3/kWh was achieved at N2/H2 = 3:1.

The residence time also plays an important role to achieve optimal results. As it was concluded in
the research carried out by Peng et al. [107], the energy efficiency was increased with an increase in the
flow rate from 0–5 L/min, and similar results were found elsewhere [121]. Gómez-Ramírez et al. [110]
also observed this trend along with a decrease in N2 conversion. The main reason was related to a
lower extent of ammonia decomposition by plasma at high flow rates due to shorter residence times.

The addition of noble gases to N2-H2 plasmas could also influence the production of ammonia.
Hong et al. [122] investigated this effect by adding argon in a pack-bed DBD reactor. More precisely,
they added 10 sccm of Ar to the feed gas stream consisting of 30 sccm of N2 and 30 sccm of H2.
They observed an increase in the discharge power, uniformity and gas temperature, and those factors
lead to higher ammonia production rates. The optical emission spectra also indicated an increase in
N+, which is possibly a result of the reaction between Ar+ and N2. The authors stated that noble gases
can be seen as an additional source of N atoms that contribute to the increase in NH3 production [123].
De Castro et al. investigated the effect of helium addition in their research with DC glow discharge
plasma [124,125]. Ammonia production was enhanced by 45% with 8% helium addition. According to
their study, surface modification of the tungsten wall caused by helium addition is the key factor which
enhanced the N–H recombination. Besides, the authors suggested that helium addition causes the
increase in electron temperature and the change of the mass spectrometry measurements, which might
also contribute to the increase of the measured value of ammonia.

4.1.2. Plasma-Assisted Ammonia Synthesis with H2O

Besides H2, H2O can also be used along with N2 for ammonia synthesis in plasma reactors.
The role of H2O is to provide hydrogen through its dissociation by the plasma. Xie et al. [115]
investigated the production of ammonia with N2 and H2O in gas phase by using a DBD reactor packed
with Ru/Al2O3 catalyst. The best energy efficiency of ammonia production was 18 mg/kWh, achieved
with 0.14% H2O content. However, a much higher energy efficiency (640 mg/kWh) was achieved
by using H2 + N2 as reactants. This was attributed to an easier dissociation of H2. In the case of
using a ternary mixture of N2, H2, and H2O, it was found that the addition of 0.14% H2O promotes
the ammonia production, especially when H2 concentration was lower than 10%. It should be noted
that the existence of gas phase H2O has an influence on the electrical characteristics and the reactive
species generated, which could further influence the ammonia production. The electron affinities of
H2O can cause a decrease in electron density in plasma, and an increase in the inception voltage for
plasma generation [126].
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H2O can also be introduced into the reactor in liquid form to produce ammonia through
plasma-liquid interaction. Despite strong hydrogen bond on the surface of water, some hydrogen
bonding is lost [127], providing hydrogen species for ammonia synthesis. Haruyama et al. [128] used
plasma in combination with (ultraviolet) UV radiation to produce ammonia in air/N2 + liquid water
environment, as shown in Figure 4. UV radiation was used to enhance the hydrogen extraction by
plasma-liquid interaction, which was considered as the rate-limiting step. The formation of ammonia
was suggested as:

Extraction of H to form NH on the surface:

Nplasma gas phase + H2Owater phase → NHwater phase + OH

Reduction of NH to NH3 in liquid phase:

NH + H2Owater phase → NH2 water phase + OH

NH2 + H2Owater phase → NH3 + OH

In a follow-up study [129], pre-exposure to UV radiation before plasma + UV treatment resulted in
a higher ammonia concentration. The authors suggested that the way to increase ammonia production
is to increase the number of activated nitrogen molecules in plasma and hydrogen atoms in the
liquid phase.
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4.1.3. Other Reactants

In the open literature, the research into ammonia synthesis in plasma reactors has been extended
with investigations using different reactants. In early years, Oumghar and Lergand et al. [130–132]
carried out experiments using CH4 as H2 source. Ammonia was produced along with other
carbon-based products including C2H2, C2H4, C2H6 and HCN. Horvath et al. [133] investigated
the plasma generated in N2 and CH4 mixture in a pack-bed DBD plasma, although very small amounts
of ammonia were observed. Bai et al. [134] also used CH4 and N2 as reactants and published their
research in 2008. By using a microgap DBD reactor without catalysts, ammonia was successfully
produced in the order of 8000 ppm, and also other products were produced such as hydrogen, with a
yield of 9.1% (v/v). CH4 is the major constituent of natural gas, thus the direct use of CH4 for
plasma-assisted ammonia synthesis could bring many benefits. Among them, the step of hydrogen
production is no longer needed, hence simplifying the process. As CH4 is a greenhouse gas which also
comes from the waste treatment industry, the utilisation of CH4 could improve the sustainability of
the industry [120,135].
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Besides direct synthesis in plasma/plasma-catalysis reactions, ammonia can also be synthesized
indirectly. Zen et al. [136] have proposed a method of such indirect synthesis by using Mg3N2 as the
solid-state ammonia carrier. In their research, MgO was exposed to DBD plasma in N2 at atmospheric
pressure to produce Mg3N2 through nitridation. Then NH3 can be produced by Mg3N2 reacting
with H2O at room temperature. After the reaction, MgO can be regenerated by heating the Mg(OH)2,
as shown in Figure 5. This indirect method does not cause the decomposition of NH3 in plasma and
does not require hydrogen as feedstock. However, only a maximum 93 mg/kWh efficiency for Mg3N2

can be reached, and extra energy is needed for the regeneration of MgO, leading to a lower efficiency
for ammonia production. Therefore, further research is needed to dramatically improve the energy
efficiency, especially for the plasma nitridation of MgO.
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4.2. Plasma/Reactor Types and Electrode Configurations

The adopted reactor configuration and the plasma characteristics can have a large influence
on the reaction mechanism, resulting in different ammonia production efficiencies. This effect was
summarized by Hong et al. [137], who gave an overview of the reported researches of ammonia
synthesis by different types of plasma and categorized them into three groups: thermal plasma,
low-pressure non-thermal plasma and atmospheric pressure non-thermal plasma. Due to the high
processing temperature, thermal plasma is not considered to be the ideal plasma type for ammonia
synthesis. Low-pressure non-thermal plasma, which has a low density of excited species and requires
vacuum condition for plasma generation, does not normally have a high ammonia production
rate. On the other hand, atmospheric non-thermal plasma is considered to have great potential
in ammonia production. The high density of neutral radicals and excited molecules can be generated
in atmospheric non-thermal plasma to facilitate the reactions on the catalysts surface, therefore high
ammonia production rates can be achieved.

Despite few studies in low-pressure glow discharge plasma [124,125,138], atmospheric DBD
plasma was used in most of the recent works. DBD is favoured over other configurations as it provides
many advantages such as high density of energetic electrons, low processing temperature, continuous
process, easy to integrate with catalysts and low cost for operation and maintenance [139–145].
The configuration of a DBD reactor normally consists of two electrodes and a dielectric material
between them. Bai et al. [113] used a micro gap DBD reactor with a discharge gap of 0.47 mm, and a
thin α-Al2O3 layer was used as the dielectric material. In that research, ammonia was produced with
a concentration of 12,500 ppm at an energy efficiency of 1.53–1.83 g/kWh. Mizushima et al. [114]
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designed a DBD reactor with the tubular membrane-like catalyst (Ru/alumina catalysts). These authors
claimed that the existence of catalysts in this design does not have an obvious influence on the discharge
current and power consumption. In recent studies, pack-bed cylindrical DBD reactors were the most
popular design, and a typical design of such reactor is shown in Figure 6. Akay and Zhang et al. [109]
used such a reactor for ammonia synthesis, where supported microporous catalysts were packed in
the discharge gap. Moreover, the authors investigated different electrode configurations in their study,
and the results showed that the energy consumption of a single dielectric barrier reactor (which covers
the stressed electrode) with and without catalysts are 81 MJ/mol and 112 MJ/mol correspondingly.
The numbers are lower than in the case of double dielectric barrier reactor (both electrodes covered by
dielectric layers), which are 143 MJ/mol without catalysts and 132 MJ/mol with catalysts.
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The addition of Ar was investigated by Aihara and Iwamoto et al. [116], who used a wool-like
copper electrode as shown in Figure 7 and obtained a maximum ammonia yield of 3.5% and a
maximum energy efficiency of 3.30 g/kWh. The catalytic effect of the electrode material has been
considered as a major reason for this result, and this effect changes with the deposition of copper on
the reactor wall. In a follow-up study [146], the authors tested twelve different electrodes and the
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Catalysts Support Promoter Shape Reference 

BaTiO3, PZT - - Pellets [110,112] 

MgO - - Pellets [122] 

Cu - - Wool-like [116] 

Au, Pt, Pd, Ag, or Cu - - Wool-like [146] 

Ru Al2O3 - Powder [115] 

Ru MgO, CNT Cs, K, Ba Powder [107] 

Ru -Al2O3 Mg, Cs, K Pellet [150] 

NDs, and DLC a-Al2O3 - Sphere [118] 

Ni SiO2 - Pellets [109] 

Ru Si-MCM-41 Cs, Ba powder [121] 

Figure 7. DBD reactor with wool-like electrode. Reprinted from “Remarkable catalysis of a
wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma”,
Aihara et al. [116], in Chemical Communications, 2016, with permission from Royal Society
of Chemistry.
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Planar DBD reactors have also been proposed for ammonia synthesis [117]. This type of reactor
provides higher flexibility for the investigation of reactor parameters such as discharge gap size.
Gómez-Ramírez et al. [112] used a planar DBD reactor packed with ferroelectric material to study the
effect of varying the discharge gap. The energy efficiencies measured in the case of the 3 mm gap and
10 mm gap were 0.45 and 0.55 g NH3/kWh respectively. However, the conversion of N2 showed a
reverse tendency (2.7% for the 3 mm gap and 1.8% for 10 mm gap). In the literature there are other
types of electrode configurations, such as the needle array DBD [142,147]. However, until now there
is not a solid conclusion on the reactor design for the plasma-assisted ammonia synthesis process,
and thus further research in combination of catalyst development and scale-up attempts is needed.

4.3. Catalysts Selection

In a plasma-catalysts system, the catalytic surface reaction is determined by both, the reactive
species generated from the plasma and the chemical and physical properties of the catalyst.
The characteristics of the plasma can be influenced by the catalysts, while catalysts properties can also
be altered by plasma discharges. Until now, the mechanism of plasma-catalysis is not fully understood,
and the researches on plasma catalysis are mainly based on the knowledge of thermal catalyst and
the trial-and-error experiment method. The development of catalysts is equally important as the
development of reactor and plasma systems. In general, three factors need to be considered when
selecting a proper catalyst for plasma-assisted ammonia synthesis: (1) material of catalysts, (2) support
and promoter, and (3) structure and shape. In many early researches, the catalytic effect of many
materials on plasma-assisted ammonia synthesis has been reported [104,105,148,149]. Catalysts used
in recent researches are listed in Table 2. A study by Gómez-Ramírez et al. [110,112] used ferroelectric
material (BaTiO3 and Lead zirconate titanate) to enhance the performance of a DBD reactor for
ammonia synthesis. A maximum conversion of 7% was achieved in their study. They suggested
that the enhancement by the ferroelectric material is attributed to two main reasons: (1) effect on
the discharge behavior, which resulted in a higher electron density, and (2) the catalytic effect of the
ferroelectric material surface.

Table 2. Catalysts used for ammonia synthesis by plasma-assisted process. Adapted with permission
from (Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms,
and Prospects for Progress, Hong et al, ACS Sustainable Chemistry & Engineering [135]). Copyright
(2018) American Chemical Society.

Catalysts Support Promoter Shape Reference

BaTiO3, PZT - - Pellets [110,112]

MgO - - Pellets [122]

Cu - - Wool-like [116]

Au, Pt, Pd, Ag, or Cu - - Wool-like [146]

Ru Al2O3 - Powder [115]

Ru MgO, CNT Cs, K, Ba Powder [107]

Ru γ-Al2O3 Mg, Cs, K Pellet [150]

NDs, and DLC a-Al2O3 - Sphere [118]

Ni SiO2 - Pellets [109]

Ru Si-MCM-41 Cs, Ba powder [121]

Due to the good performance in conventional ammonia synthesis process, Ru based catalysts have
been selected as the reference n plasma-assisted process [101,115,121,150]. However, the ionization
energy of Ru is 7.36 eV, and it might be difficult to be ionized by atmospheric DBD plasma. Therefore,
a promoter such as Cs, which are easy to be ionized, was used to provide electrons to Ru for better
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catalytic activity [107,151,152]. Kim et al. [150] investigated the effect of promoters in their research,
and the measured yields towards ammonia follow the trend of Mg > K > Cs > no promoter. In another
research, Peng et al. [107] investigated the synergy between catalysts, supports and promoters. In their
study, experiments were performed in four cases: supported catalyst with promoter Cs-Ru/MgO,
without promoter Ru/MgO, only the support MgO, and plasma alone. A reproduction of their results
is presented in Figure 8. Similar yields were achieved in the case of MgO and Ru/MgO, but an obvious
enhancement was achieved when using a promoter. The authors suggested that the existence of MgO
may enhance the surface discharge, which dissociates N2 and H2, hence increasing the ammonia
production. This suggestion is in line with other investigations [104,117,122]. In this case, it is worth
remarking that the presence of Cs greatly promoted the catalytic effect, doubling the ammonia yield.
In this research, carbon nanotubes (CNT), active carbon (mesoporous) and MCM-41 were also used as
support material in order to compare their effect. From the results it was concluded that with CNT
the best efficiency of 2.2 g/kWh was achieved. On the other hand, when using MCM-41 as support,
an efficiency of 1.7 g/kWh was achieved [121].
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The size and structure are always key factors for selecting a proper catalyst, especially in the case
of packed-bed DBD reactors. Catalysts in powder form have been used in early researches. However,
they were not very ideal comparing with pellet form as the charging and static effect caused by the
plasma was leading to the spread of powder catalyst [120,153]. Pellet form catalysts are favoured as
they give better yields, and have higher chemical stability and mechanical resistance [154]. Parameters
such as residence time, surface area and active sites are strongly affected by the size and structure of
the catalysts.

The size and structure of the catalyst also influenced the plasma discharge characteristics [155–157].
It has been confirmed that the discharge characteristics (such as uniformity, power) can be altered
differently by packing catalysts with a different physical property [158–162]. As described in [43],
the main effect of catalysts on plasma is the enhancement of the local electric field near the catalyst
surface, causing the modification of electron energy distribution, and consequently influencing the
reactive species generated by the plasma. The enhancement of the local electric field is brought by the
curvature of catalysts, which is determined by the catalyst size and structure. Catalysts with sharp
edges produce high local electric fields, leading to the generation of energetic electrons [158], resulting
in improved conversions as reported in the literature [163,164]. The pellet size determines the void
space, which is related to the local electric field and the residence time of the reactant [165]. It should
be noted that the optimal pellet size may vary, regarding different discharge gaps. Therefore, the void



Processes 2018, 6, 248 16 of 25

fraction or discharge gap/pellet size ratio can be used as a better indicator [158]. Besides, the size effect
of packed catalysts/packing material also depends on other parameters such as input power [166] and
the dielectric constant [167].

5. Conclusion and Outlook

Nitrogen fixation is one of the most important processes to all life forms on earth. Today, industrial
nitrogen fixation is dominated by the Haber-Bosch process, which consumes 1% of the world’s total
energy production and is associated with environmental concerns such as CO2 emissions. During the
past decade, research has been focused on the development of alternative methods for green nitrogen
fixation. Non-thermal plasma has been considered as one of the most promising alternatives to the
conventional H-B process, and the development of plasma technology has brought new opportunities
to fix nitrogen at low temperatures and atmospheric pressure with high energy efficiency and a green
environmental profile.

The research on the plasma-assisted nitrogen fixation in the last five years has been reviewed
in this work. In particular, the research in this field has focused on two targeted products, NOx and
ammonia. In the case of NOx production, non-thermal plasma has a lower theoretical limitation of
energy consumption (0.2 MJ/mol) than the H-B process. The activation of N2 via vibrational excited
N2

* produced by electron impact is considered an energy efficient way to overcome the high activation
barrier of dinitrogen reactions. Thermal plasma, such as arc and spark, have been studied intensively
in the past, while “warm” plasma, like the gliding arc discharge, has recently received a lot of attention
due to its high energy efficiency. The operation parameters such as frequency or gas composition have
a great influence on the NOx production rate, NO2/NO ratio and energy consumption. In the case of
ammonia synthesis, a plasma reactor in combination with catalysts has been intensively investigated.
DBD packed catalyst reactors are the preferred reactor configuration. The effect of the catalysts has
been tested including mono catalysts, supported catalysts and catalysts with promoters. Besides,
attempts have been made in the literature in order to use feedstocks that reduce the energy impact
of H2 production upstream. In particular, the feasibility of using H2O, CH4 and indirect routes have
been proposed.

However, the plasma-assisted nitrogen fixation process is still not comparable with the H-B
process, which has been improved over 100 years, especially when considering the energy consumption
and product yield. As suggested by Patil et al. [20], the aim of future research should target energy
consumption below 33–35 GJ/TonN and production concentration above 15%. To reach this goal,
further investigation on plasma reactor along with plasma-catalysis interaction is needed. Similar with
the H-B process, the selection of catalysts is the key in plasma-catalysis for nitrogen fixation, and a large
amount of work on catalysts screening is needed in future research. Besides, pulsed energization has
proven to be beneficial to many plasma processes [150,168–170]. Using high frequency, nanosecond
pulsing for plasma generation could potentially optimize the energy efficiency and yield of the
plasma-assisted nitrogen fixation process. As suggested by Anastasopoulou et al. [171], there are three
critical aspects for the energy performance of the plasma-assisted nitrogen fixation process: integration
of renewable energy, power supply system and reactor and the process design for industrial scale.
Current research has been just focused on the reactor itself, and limited research has been carried out
concerning topics like product separation, absorption or the overall process design. As mentioned
by Peng et al. [120], the back reaction of ammonia synthesis by plasma is a major hurdle that needs
to be overcome. To avoid this problem, the strategy would consist of the immediate absorption of
the produced ammonia and its removal from the plasma region. On the other hand, due to the low
conversion of current technology, separation of the product and recycling the unreacted gas save
material and reduce capital costs. In addition, developing large-scale plasma processes is also a great
challenge. Owing to the complex nature of the plasma, a very limited knowledge for the scaling up of
a plasma-assisted nitrogen fixation process has been acquired so far. However, valuable experience
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could be learnt from the industrialized plasma process such as the ozone production process in which
numbering-up approaches have been used [172,173].

On the other hand, the technology for renewable energy production has rapidly advanced during
the past decades. Integration with renewable energy could greatly compensate for the high energy
demand of the plasma process and provide a sustainable solution to the environmental concerns of
industrial nitrogen fixation. Renewable energy sources such as wind and solar could generate electricity
to power the plasma plant, and it could also be used to produce hydrogen for ammonia synthesis.
Furthermore, the small-scale character of plasma-assisted nitrogen fixation process fits perfectly in
the concept of decentralized production. Container/modular size plants could be developed for the
small-scale production of NOx or ammonia for application such as fertilizers and fuels. This will
largely reduce the cost and product lost during transportation, enable on-site production and provide
flexibility to meet the varying demand. Despite the progress made during the past decades and the
growing attention attracted, there is still a long way for plasma-assisted nitrogen fixation technology
before it can compete with the H-B process in industrial scale. However, it can be predicted that
small-scale application under certain conditions could be realized in the near future. As suggested by
Pfromm [25], emerging markets with currently low NH3 capacity but a fast-growing population are
ideal targets for the research of alternatives to the H-B process. For example, the access to fertilizers
is stranded in Africa, but the ever-fast growing population brings a significant demand. Instead of
large-scale industrial fertilizer production, plasma-assisted process with the decentralized concept
can better meet the requirements of low capital cost, scale-down economics and utilization of rich
renewable resources distributed in local areas. In addition to the development of the technology,
evaluation study on the techno-economic feasibility and sustainability of the plasma-assisted nitrogen
fixation process should also be conducted in parallel [171,174,175]. This will provide guidance to
further improve the process performance towards practical applications.
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