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Abstract: Ferroferric oxide nanoparticle (denoted as Nano-Fe3O4) has low toxicity and is
biocompatible, with a small particle size and a relatively high surface area. It has a wide range
of applications in many fields such as biology, chemistry, environmental science and medicine.
Because of its superparamagnetic properties, easy modification and function, it has become an
important material for addressing a number of specific tasks. For example, it includes targeted drug
delivery nuclear magnetic resonance (NMR) imaging in biomedical applications and in environmental
remediation of pollutants. Few articles describe the preparation and modification of Nano-Fe3O4 in
detail. We present an evaluation of preparation methodologies, as the quality of material produced
plays an important role in its successful application. For example, with modification of Nano-Fe3O4,
the surface activation energy is reduced and good dispersion is obtained.
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1. Introduction

Recently, adsorption has become widely used in industrial wastewater treatment technology.
In the process, many adsorbents have been synthesized and applied to the treatment of pollutants that
contain metallic elements, synthetic dyes and pharmaceutical products [1–4]. However, the removal
of suspended adsorbent in wastewater is still a challenge. If it can be handled properly, it allows the
effective recycling of the adsorbent with a reduction in operational costs. The addition of magnetic
adsorbents has been studied to help efficient removal from wastewater. The use of magnetic
Nano-Fe3O4 as an effective means for separating suspended sorbents has been identified [5,6].

As society develops, the water environment and its protection is increasingly more complex and
treatment demands are much more changeable. Conventional water treatment materials are not able
to satisfy the long term requirements of water treatment processes. Consequently, there is considerable
interest in the development of multi-performance materials. Among them, Nanoadsorption materials
have been considered to be an effective and environmentally friendly high-performance water
treatment material [7]. Compared with atomic or larger scale systems, nanoscale materials have
excellent physical and chemical properties from its mesoscopic effect, small objects effect, quantum
size and surface effect. Nano-Fe3O4 has attracted wide attention because of its small size, large surface
area (BET), super magnetic properties and easy recycling. In addition, it also has the non-toxic and
biocompatible characteristics. Nano-Fe3O4 has diverse applications in new biomedical biosensors [8],
contrast agent in magnetic resonance imaging [9], magnetic targeting for drug delivery system [10],
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tissue engineering [11]. New preparation systems and methods of modification have been developed
during its application. Prabha et al. [12] studied the preparation of polymer nanocomposite coated
magnetic nanoparticles. Compared with the traditional preparation method, this method can increase
the reactivity of the nanoferroferric oxide by changing the active groups such as the amino group and
the carboxyl group on the surface to increase the surface-active sites.

The application of Nano-Fe3O4 has many advantages but it is easy to coalesce and oxidize in the
water environment, resulting in limited development. A modification to the Nanomagnetic particles
can prevent agglomeration, thus increasing its dispersion in water resulting in broader opportunities
for application [13]. To date, superparamagnetic Nano-Fe3O4 has been applied to the preparation
of magnetic fluid material such as ink. These materials in damping device, rotating seal, magnetic
drug target cells, magnetic separation, magnetic card and other fields play an important role [14].
They are also being used in environmental remediation. Given the critical dependence of properties on
preparation methodology, it is useful to provide an overview of the Nano-Fe3O4 in its preparation,
modification and application.

2. Methods for Preparation of Nano-Fe3O4

The methods for the preparation of Nano-Fe3O4 usually consists of co-precipitation [15],
hydrothermal [16], sol-gel [17], micro-emulsion [18], high temperature thermal decomposition [19],
solvothermal [20] and a number of less common approaches, which aim to obtain nanometer sized
magnetic adsorption material. The performance of Nano-Fe3O4 is critically dependent on its particle
size and specific surface area. Fuskele et al. [21] focused on the preparation and stability of nanofluids,
studied the synthesis methods of various nanoparticles and found that the particle size of ferroferric
oxide has a great influence on its performance. As the particle size decreases, the specific surface
area increases, the specific saturation magnetization decreases but the coercive force does not change
substantially. For example, Dutta et al. [22] proposed a simple method for preparing PEGylated
Fe3O4 cubic magnetic nanoparticles using iron acetylacetonate thermal decomposition methods and
discussed its application in drug release and hyperthermia. The results show that Nano-Fe3O4 has good
crystallinity and there are active groups such as carboxyl groups on the surface, which provide colloidal
stability, low toxicity and anti-protein properties. The modified Nano-Fe3O4 has high electrostatic
binding affinity with the positively charged anti-cancer drug doxorubicin hydrochloride and which
provides useful pH release characteristics.

2.1. Hydrothermal Method

The hydrothermal method—also called hot solvent synthesis—refers to a chemical reaction
in a sealed pressure vessel with water as a solvent and under high temperature and pressure.
The nanocrystals prepared by the hydrothermal method have relatively advanced development,
wide distribution range and do not require high-temperature calcination and treatment. However,
because the reaction is carried out at higher temperatures and pressures, the requirements for
equipment are more extreme [23,24]. Yang et al. [25] used iron acetylacetonate as the only iron source
to prepare magnetite nanoparticles under simple hydrothermal conditions and chose polyacrylic acid
as a stabilizer to provide good hydrophilicity. High-water-dispersed Nano-Fe3O4 with a particle size
of about 50 to 100 nm was obtained. The Nano-Fe3O4 was composed of monodispersed magnetite
with a size of about 6 nm and had high magnetic properties. The content of magnetite was over
70%. Wu et al. [26] used FeCl2, FeCl3 and glucose as raw materials at 160 ◦C in water to prepare
Fe3O4@C composite nanoparticles, as shown in Figure 1. The adsorption behavior of methylene blue
on Fe3O4@C was studied. The results showed that Fe3O4@C prepared by hydrothermal method could
adsorb methylene blue effectively and the maximum adsorption capacity was 117 mg/g.
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Figure 1. Scheme of the hydrothermal preparation process of Fe3O4@C composite particles and its
adsorption on dyes.

2.2. Coprecipitation Method

The co-precipitation method involves the mixing of Fe2+ and Fe3+ in 1:2 proportion, precipitation
under alkali conditions followed by filtering, washing and drying to generate Nano-Fe3O4. Due to its
simple procedure, low cost and rapid reaction co-precipitation methods have been widely used [27,28],
(see Figure 2). Qin et al. [29] adopted the chemical coprecipitation method, taking NH3·H2O as the
precipitant, which was added to a mixed solution of Fe2+ and Fe3+. The particle size of NanoFe3O4

could be controlled within 20 nm under appropriate experimental conditions. Meng et al. [30] used
FeCl3·6H2O, FeCl2·4H2O and deionized water to prepare an iron salt solution and a ferrous salt
solution. At the same time, the two solutions were mixed and heated to prepare Nano-Fe3O4 with
NH3·H2O as a precipitant in the mixed solution. The results showed that the concentration of Fe2+/Fe3+

in the mixed solution had the greatest effect on the yield of Nano-Fe3O4. In addition, the temperature
has an effect on the particle size, indicating that as the temperature increases, the Nano-Fe3O4 particle
size increases first and then decreases.

Figure 2. Scheme of co-precipitation synthesis of Nano-Fe3O4.
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2.3. Sol-Gel Method

The sol-gel method typically utilizes iron sulfate, metal alkoxide hydrolysis and metal oxide or
metal hydroxide sol as the raw material and a clean oxide powder [31,32] is then obtained after drying,
as shown in Figure 3. The Fe3O4 synthesized by the sol-gel method has high purity but the gelation
process is slow, the overall period of synthesis is long, with high temperature calcination needed [33].
Zhang et al. [34] prepared Fe3O4 aerogels by sol-gel method using FeCl3·6H2O, FeCl2·4H2O and
propylene oxide as precursors and gel promoters, respectively. The results show that Fe3O4 aerogel
has lower density, larger specific surface area, higher saturation magnetization and its structure
and magnetic properties are controlled by factors such as solution concentration, propylene oxide
and Fe3+ molar ratio and calcining temperature and Fe3O4 aerosol is prepared. The gel has certain
electromagnetic properties in the 2–18 GHz frequency range. Guo et al. [35] used the sol-gel method
for preparation of a Nano-Fe3O4 coated with tetraethyl orthosilicate under a constant temperature of
380 ◦C. It showed a good particle size of 15~20 nm and uniform dispersion.

Figure 3. Scheme of sol-gel synthesis of Nano-Fe3O4.

2.4. Micro-Emulsion Method

Micro-emulsion method using two kinds of mutually miscible e solvents under the action of
surfactant, forms a homogeneous emulsion. The solid phase is subsequently precipitated from the
emulsion and the complete process consisting of nucleation, growth, coalescence and agglomeration
finally forms spherical particles in a spherical droplet, as shown in Figure 4. The microemulsion method
can prevent the agglomeration of particles while synthesizing Fe3O4 but the yield of nanoparticles
prepared by a single synthesis is low, the separation and purification process of particles is complicated
and the water solubility is poor [36,37]. Sun et al. [38] synthesized monodisperse Fe3O4 and
polyaniline core-shell nanocomposites by microemulsion polymerization. Before the polymerization
of aniline, Fe3O4 nanoparticles were prepared by thermal decomposition of acetylacetone and
oleic acid using benzyl alcohol as solvent. Surface modification was carried out, then sodium
dodecylbenzenesulfonate was used as surfactant, ammonium persulfate was used as oxidant and
microemulsion was polymerized on the surface of Fe3O4 nanoparticles to obtain aniline monomer.
Studies have shown that the oleic acid-modified Fe3O4 nanoparticles have good dispersion and the
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particle size is about 10 nm. Lv et al. [39] used the microemulsion hydrothermal method to prepare
a new type of tower-like Fe3O4 particles. Through experiments, it was found that the reaction time
has important influence on the final product. The key factors, such as NaOH concentration and the
formation of tower-like Fe3O4 microstructures, are very large. The relationship and the micro-scale
pagoda-like Fe3O4 crystals were grown from the Fe3O4 rod structure by an etching process and lithium
air cells prepared with a pagoda-type Fe3O4 air electrode had a higher specific capacity at 100 mA g−1.
The specific capacity is up to 1429 mA h g−1.

Figure 4. Scheme of Micro-emulsion synthesis of Nano-Fe3O4.

2.5. Solvent Heat Method

The solvent heat method is similar to the hydrothermal method but the water is replaced by
organic solvents. The solvo-thermal method can precisely regulate the morphology and properties of
Fe3O4 but it requires stringent preparation conditions [40]. Jiang et al. [41] synthesized monodisperse
mesoporous Fe3O4 hollow microspheres with a diameter of 220 nm and a shell thickness of 50 nm
using the trisodium citrate-assisted solvothermal method. The reaction time was good for this kind
of mesoporous structure. The formation method influences the final product. Through experimental
studies, it has been found that the synthesized Fe3O4 hollow microspheres have superparamagnetism,
high saturation magnetization at room temperature, mesopores and high dispersibility. Zeng et al. [42]
used ferric chloride hexahydrate as the sole iron source and sodium dodecylbenzenesulfonate as
the surfactant. A uniform hollow Fe3O4 submicron sphere with a particle size of 350–450 nm was
prepared by solvothermal synthesis. And it has high saturation magnetization and very low coercivity.
The results show that the addition of sodium dodecylbenzenesulfonate is beneficial to the formation
of monodisperse Fe3O4 hollow particles with a narrow particle size distribution, a high specific
capacitance of 294 F g−1 at 0.5 A g−1 and good cycle stability. It maintained about 90.8% of the original
capacitance after 500 charge and discharge cycles.

Table 1 summarizes the particle sizes of Fe3O4 prepared by several commonly used chemical
methods; the substances added during the synthesis process and the optimal synthesis conditions;
by optimizing the experimental conditions. The adsorption of pollutants and chemical adsorption
properties are identified and the difference in the physical and chemical properties of Fe3O4 before
and after the experimental conditions were optimized are highlighted.
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Table 1. Optimization of Experimental Conditions in the Synthesis of Nano-Fe3O4 and Its Effect.

Preparation Methods Particle Size Additive Optimum Ratio Pollutants Adsorption Manner Optimization Effect References

Coprecipitation
method 35 nm Ethylenediaminetetraacetic

acid

15 mol FeCl3·6 H2O,
7.5 mol FeCl2·4 H2O,150 mL
deionized water

Ag(I), Hg(II),
Mn(II), Zn(II),

Pb(II) and Cd(II)

Chemical adsorption and
physical adsorption

The Fe3O4 modified by ethylenediaminetetraacetic acid
had reactive functional groups such as carboxyl groups
and amino groups on its surface and could undergo
chemical ligand exchange with heavy metal ions
in water.

[43]

Coprecipitation
method 60 nm Soluble starch

Reaction time = 2 h,
pH = 3, equilibrium
concentration = 1.0 mg/L

P Physical adsorption

The Fe3O4 modified by starch has good dispersion,
shown a monolayer disperse. The starch coats on the
surface of Fe3O4 nanoparticle through steric hindrance
and charge repulsion overcome the van der Waals force
and magnetic attraction force.

[44]

Sol-gel method - Activated carbon fiber pH = 2.0–6.0 at room temperature P Chemical adsorption

After modification through activated carbon fiber,
the Fe3O4 had a significant increase in surface area and
total pore volume. The modified Fe3O4 was positively
charged and negatively charged by the electrostatic
adsorption of phosphate ions. The ion exchange
reaction occurred between phosphate and hydroxide.

[45]

Coprecipitation
method Around 25 nm - pH = 6.0 at 25 ◦C, 4.0 g/L Fe3O4 Pb and Cr ions

Single phase adsorption
Pb ion, multiphase

adsorption for Cr ion

The prepared Fe3O4 particle had a larger BET.
Under the van der Waals force and magnetic attraction,
it had the link structure of the polygon, which increased
the three-dimensional space between the particles.
It had a spinel structure and high crystallization degree.

[46]

Solvent heat method - Bentonite Heating for 8 h at 200 ◦C Pb2+, Cd2+ and
Cu2+ ions

Chemical adsorption

The composites composed of Fe3O4 and bentonite had
reactive functional groups such as hydroxyl and
carboxyl groups on the surface, which exhibited better
adsorption of heavy metal ions. The specific surface
area and total pore volume of composites were larger
than those of pure Fe3O4, with higher magnetization
saturation and lower remanence.

[47]

Coprecipitation and
Sol-gel method 1–100 nm Cellulose

4.0 g FeCl2·4H2O, 8.0 g FeCl3·6H2O,
150 mL deionized water,
Reaction temperature = 60 ◦C
stirring time = 60 min

Mercury ion Chemical adsorption

Cellulose slender nanostructures were more likely to
adsorb mercury ions. Cellulose-modified Fe3O4 has a
reactive functional group such as CH2 on its surface
and interacts with mercury ions.

[48]
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3. The Modification of Nano-Fe3O4

Magnetic attraction is often present in the Nano-Fe3O4 colloidal solution, which has obvious
aggregation effect because of the large BET and small diameter. At the same time, the Nano-Fe3O4

is easily oxidized in the air during the preparation process. It is of great importance to modify
the surface of the Nano-Fe3O4 by using physical and chemical methods to solve the problem that
agglomeration and oxidation in Nano-Fe3O4. The common surface modification methods include
surface chemical reaction [49], surface polymerization reaction [50], ultrasonic chemistry-method [51],
surface adsorption deposit [52] and others. According to the different classification of modified raw
materials, the package materials on Nano-Fe3O4 are generally classified into 3 kinds [53] including
inorganic small molecules [54], organic small molecules [55] and organic polymers [56]. The specific
classification was shown in Table 2.

Table 2. Modification of Nano-Fe3O4 by different substances.

Type Materials Advantages References

Inorganic small molecules
(1) SiO2 and other oxides;
(2) Au, Co, Ni and other
inorganic metals

The modification of SiO2 and other oxides can shield the
dipole interaction between the magnetic nanoparticles to
prevent the particles from agglomerating and facilitate
further functionalization of the particle surface. At the
same time, it had a good biocompatibility, hydrophilicity
and stability. Encapsulation of inorganic metals can
synthesize composite particles of core-shell structure,
giving the magnetic nanoparticles rich and excellent
physical properties.

[57]

Organic small molecules

(1) Ethanol, organic carboxyl,
sulfur and silane coupling agent
oil-soluble substances;
(2) Sodium oleate, sodium
carboxymethylcellulose,
β-cyclodextrin, citric acid, amino acids

Particle oil-soluble conversion to water-solubility was
achieved by the interaction between the modifier and the
stabilizer and the ligand exchange reaction resulting in
water-soluble, oil-soluble and amphiphilic nanoparticles.
Surfactant modification could control nanoparticle size
and shape and changed surface properties of nanoparticle.
Modification of silane coupling agents introduces reactive
groups on the surface of nanoparticles to provide chemical
selectivity for their further functionalization.

[58]

Organic polymers

(1) Glucose, starch, protein,
peptides and other natural polymers;
(2) Polyethylene glycol, polyvinyl
alcohol and other synthetic polymers

Natural biomolecules had a good biodegradability and
biocompatibility, greatly improving the biocompatibility
of magnetic particles and giving them special biological
activity. Synthetic polymer modification could give the
material a variety of different properties to meet the actual
requirement. Biomacromolecules had excellent bioactivity
and were a synthetic polymer-rich chemical-selective
organic combination.

[59]

3.1. Modification of Small Inorganic Molecules

Currently, there are two types of materials for Nano-Fe3O4 surface modification. The first includes
SiO2 and other oxides and the second is a metal such as Au, Co, Ni. There are also other inorganic
materials used to modify Nano-Fe3O4, for example, the introduction of carbon to ferrosoferric oxide can
increase its electrochemical performance. Han et al. [60] prepared a series of Fe3O4/C nanocomposites
with nanoholes of 5 to 10 nm using a cotton assisted combustion reaction. The particle size of Fe3O4

nanoparticles is less than 10 nm and it is well embedded in the carbon matrix, making Fe3O4/C have
good electrochemical performance. At a current of 0.4 A g−1, the presence of carbon favors good
dispersion and minimal agglomeration of Fe3O4 nanoparticles, with higher conductivity and buffer
volume change.

Coating the Nano-Fe3O4 with a layer of silicon dioxide can effectively improve its corrosion
resistance and dispersion. For example, Wang et al. [61] found that Fe3O4 without silica is highly
susceptible to corrosion by acidic solutions. However, the silica-coated Fe3O4 forms a shell structure
that blocks the contact with the solution. To a large extent, Fe3O4 is protected, which improves its
acid resistance. Mostafaei et al. [62] first synthesized Nano-Fe3O4 by chemical precipitation. It was
found through analysis that its small particle size was easily modified without precipitation and the
dispersion effect was poor before the surface was modified with silica. From the experimental results,
it can be seen that the spherical structure did not change. Each of the microspheres covered with SiO2

has a small number of magnetic particles and has a good dispersion. The reason for this phenomenon
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after modification may be that the SiO2 core shell blocks the dipole interaction between Nano-Fe3O4 to
make the particle distribution more uniform.

The surface of mesoporous SiO2 had Si-OH structure and its surface was easy to be modified
after the Nano-Fe3O4 coated with SiO2, further grafting other active functional groups [63–66].
Xue et al. [67] used the hydrothermal method to prepare Nano-Fe3O4, compounding a magnetic
shell composite microsphere by coating SiO2 on its surface. It had a unique channel structure
and a large BET based on SiO2 groups in the surface. Finally, through the comparison of its
performance in adsorption, they concluded that the adsorption effect for Cr ions by SiO2 on the
Nano-Fe3O4 coating was poor. After introducing -NH2 groups, the attraction of negatively charged
CrO4

2− by the positively charged -NH2 through electrostatic attraction, significantly improved the
absorption of Cr ions. Scanone et al. [68] synthesized Nano-Fe3O4 by co-precipitating Fe2+ and
Fe3+ in ammonia solution and then modified the surface of SiO2 with sodium silicate and passed
3-aminopropyltriethoxysilane. After the alkylsilane (APTS) treatment, the amino group was introduced
onto the surface of SiO2 by grafting. Then use 5, 10, 15, 20-tetrakis (4-carboxyphenyl) porphyrin (TCPP)
activated by carbondiamine (NHS/EDC) and triiron tetraoxide (MNPNH) and coated with silica.
The tri-iron oxide (MNPSINH) is covalently bonded. The photodynamic activities of MNPNH-TCPP
and MNPSINH-TCP in the presence of different photo-oxidation substrates and in microbial cell
suspensions were compared. The main difference is that the silica coating on the surface of mnpnh-tcpp
produces O2 in water. The photodynamic effect of TCPP linked to MNP is very sensitive to the
decomposition of tryptophan. The last study showed that the MNPSINH-TCPP as an antibacterial
material can control the proliferation of microorganisms under visible light and can maintain the
sterilization state and has potential value in the medical field.

Nano-Fe3O4 BET surface area can be controlled in the presence of certain heavy metals.
Sun et al. [69] studied composite Fe3O4 particles under the influence of Ag. The results of the
experiment showed that after coating Ag on Fe3O4, the specific surface area had a significant increase,
the same as its average pore size and total pore volume. In addition, the modification Fe3O4 by Ag
provided excellent physical and chemical properties, with good stability even under high temperature
and also improved its adsorption capacity in heavy metal removal application.

3.2. Modification of Small Organic Molecules

Inorganic nanomaterials have many advantages in the modification of Nano-Fe3O4 but in some
systems (water phase system, oil phase system, oil and water system), their impact is limited.
The modification of Nano-Fe3O4 by small organic molecule can provide good performance in both the
water and oil phase systems. Modification by small organic molecules is divided into two, using either
coupling agents or surfactants. The most common coupling agent is silane and surface-active agents
include β-cyclodextrin [70], sodium carboxymethylcellulose [71], citric acid [71], amino acids [72,73]
and other small organic molecules.

Surfactant-treated Nano-Fe3O4 often has lipophilic and hydrophilic groups forming micelles in
the solution and on this basis, can achieve nanoparticle size and morphology control. The modification
by surfactants can be to form a coating layer of long chain hydrocarbon on the Fe3O4, with the
surface of Fe3O4 as the polar end for adsorption [74]. For example, Zhu et al. [75] modified the
ferroferric oxide with oleic acid and found that the unmodified Nano-Fe3O4 was easy to reunite and
the Nano-Fe3O4, which was modified by oleic acid, had large particle diameter and better dispersion.
The reason for this phenomenon was that oleic acid on the Nano-Fe3O4 surface became a layer which
effectively prevented the aggregation of particles. The hydrophilic group of oleic acid exposed to air
turned the hydrophilic surface of Nano-Fe3O4 into a lipophilic surface. In addition, the modified
Nano-Fe3O4 had more active sites on its surface. Wang et al. [70] synthesized a new cyclodextrin(-CD)
polymer adsorbent-cyclodextrin/ethylenediamine/magnetic oxide graphene (CD-E-MgO) to extract
Cr(VI) from aqueous solution. The adsorption mechanism was also analyzed: (a) electrostatic
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attraction; (b) subject-object interaction; (c) Cr (VI), (HCrO4
-) icons and CD-E-MgO combined with

hydrogen bonding.
Nano-Fe3O4 after being modified by a silane coupling agent, can undergo further surface

modification introducing higher selectivity. Shi et al. [76] used a silane coupling agent as modification
material in the process of synthesizing magnetic microspheres. The results showed that the hydroxyl
group of the Nano-Fe3O4 and the hydroxyl group were dehydrated, so the coupling agent could be
adsorbed on the Nano-Fe3O4 surface. In addition, the surface of the modified Nano-Fe3O4 increases
the relative concentration of oxygen atoms on the silane coupling agent, so that it can better integrate
with other reactive groups and enhance its surface activity. Gui et al. [77] used a coupling agent to
surface-treat Nano-Fe3O4 synthesized by the co-precipitation method and found that the coupling
agent bonds well to the surface of Nano-Fe3O4. In addition, studies have shown that lipophilic and
hydrophilic amphiphilic Nano-Fe3O4 can be obtained on the surface of Nano-Fe3O4 treated with
coupling agent and the coupling agent is chemically bound in the dehydration reaction of the coupling
agent and Nano-Fe3O4 to give new surface activity.

The modification of the coupling agent can improve the surface performance of Nano-Fe3O4.
Lou et al. [78] compared the properties of the Nano-Fe3O4 had coupling agent on the surface and the
unmodified Nano-Fe3O4. The results showed that after modified by coupling agent, the dispersity of
Nano-Fe3O4 was greatly improved and the settlement was difficult to occur with the same magnetic
responsiveness. The methanol formed during the hydrolysis of coupling agent also increased the
hydroxyl groups on the Nano-Fe3O4 surface which is helpful for further modification.

3.3. Modification of Organic Polymers

There are still many deficiencies in aspects of the biocompatibility and stability in the modification
of inorganic nanomaterials using small organic molecule in the case of Nano-Fe3O4. Modification of
Nano-Fe3O4 by an organic polymer provides a special nucleation, shell structure, which also has the
surface functionality and biological activity of the polymer. The modification using an organic polymer
is typically divided into two: a natural biological molecule or a synthetic polymer. The natural polymers
commonly used include: glucan [79], proteins [80], starch [81] and polypeptides [82]. The synthetic
polymers usually used include: polyethylene glycol [83] and polyvinyl alcohol [84,85].

After the modification of natural biomolecules, the biocompatibility of Nano-Fe3O4 can be
improved with new biological activity also established. For instance, as a natural, non-toxic protein
macromolecule, gelatin has two segments, which can provide Nano-Fe3O4 with micellar encapsulation
and water dispersion. The synthesis of magnetic nanoparticles and the stabilizing effect on Fe3O4

nanoparticles were proposed in the polyacrylamide hydrogel gel network by Reddy et al. [86]
The study found that the presence of biocompatible gelatin in magnetic hydrogel enhanced the
absorption of Nano-Fe3O4 and in vitro blood compatibility by thrombus and hemolysis test to study
the biocompatibility of the gel. In addition, drug release was studied under an external magnetic field.
The results showed that the hydrogel prepared in this way can be used for magnetic control drug
release system and had potential application value in magnetic sensor, actuator and pseudo muscle.
The water dispersible Fe3O4 nanoparticles were prepared with the method of gelatin embedding by
Cheng et al. [87] and the surface coated with micellar was analyzed. At the same time, because the
gelatin contained a large number of active groups, the nanocomposites could be prepared by fluorescent
labeling and low-toxic platinum-precursor drugs, which could be applied in anti-cancer therapies.

After the surface modification of Nano-Fe3O4, various copolymers can be introduced to
give Nano-Fe3O4 a variety of better and richer properties. For example, Hu et al. [88] looked at
polyethylamine (PEI). The Fe3O4 modified by PEI was significantly more dispersed than pure Fe3O4

and the modified Fe3O4 particles were more spherical. The explanation was that the made increased
the repulsive effect of charges and increased the steric resistance [89]. He et al. [90] first prepared
ferroferric oxide by coprecipitation method at 90 ◦C, then the ferroferric oxide was coated with sodium
polyacrylate by solution dispersion polymerization and surface Ca2+ crosslinking. The composite
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materials prepared had good adsorption properties for Pb2+ and Cd2+, which had the highest
adsorption rate when the dosage of adsorbent was 1.0 g/L and 1.6 g/L to 200 mg/L Pb2+ solution and
100 mg/L Cd2+ solution. Yan et al. [91] used catalytic polymerization of aniline to load polyaniline
on the surface of Fe3O4 to prepare a highly efficient complex catalyst. In a simulated wastewater
treatment, COD removal was highly effective. In addition, the hydrogen ions provided by polyaniline
can form coordination bonds with iron ions and reduce the loss of iron into the aqueous phase.

3.4. Structure of Nano-Fe3O4 Composite Materials

There were four basic sub-structures for ferroferric oxide modified by inorganic or organic
substances. These include: core-shell [92], shell-core [93], diffuse [94] and sandwich [95] and are shown
in Figure 5a–d. Figure 5a is the core-shell structure, with Nano-Fe3O4 as centrally, surrounded by a
polymer shell. The Nano-Fe3O4 is completely embedded in the polymer. Figure 5b is the shell-core
structure, in which the polymer acts as the core and Nano-Fe3O4 surrounds as the shell. This kind of
composite microsphere is combined with Nano-Fe3O4 by complexation or electrostatic adsorption.
Figure 5c is the diffuse structure, with the Nano-Fe3O4 evenly distributed within the polymer. Figure 5d
is the sandwich structure and inner and outer layers of the complex are organic polymers, while the
middle layer is Nano-Fe3O4. These microspheres are usually coated with organic polymers in the
shell-core structure microspheres [96,97]. In addition, magnetic complexes after modification are found
to have super paramagnetism, which was faster and easier to separate from the reaction system under
the action of magnetic field. Moreover, magnetic compounds can be rapidly dispersed in the reaction
system after removing the external magnetic field, which can assist in the recycling of materials and
reduce its application costs [98,99].
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The magnetic properties of these four different structures varies. The core-shell structure has a
number of advantages over the other three structures. It is easier to modify the magnetic complex
of the core-shell structure and introduce additional functional groups such as hydroxyl, mercapto
and carboxyl group [100,101]. Compared with the diffuse structure and the shell-core structure,
the environmental stability and thermal stability of the core-shell structure magnetic complex were
improved. At the same time, this structure can prevent Nano-Fe3O4 from contacting with air and other
substances, which can avoid its core being oxidized and corroded [102]. Compared with the sandwich
structure, the core-shell structure magnetic complex was easier to prepare and the surface modification
of Nano-Fe3O4 can be completed by a one-step method [103], which produced a superparamagnetic
product and easier to be separated. For example, Kalska et al. [104] prepared nuclear shell nanoparticles
with different magnetic core diameters and different thickness, who used Ag, Au and Cu as spacer
metal. The influence of the thickness and composition of the particles in the structure were studied,
together with the Cu, Au and Ag on the structure of core crystal magnetite. The results showed that
the existence of the precious metal shell and the dipole interaction between the magnetic particles
made the magnetic complex separation better. The presence of Cu, Ag and Au in magnetic particles
leaded to the addition of superfine magnetic fields, which made them superparamagnetic.
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4. Applications of Nano-Fe3O4

4.1. Biomedical Sciences

The Nano-Fe3O4 had more selective and catalytic activity than general materials because of
its characteristics of small particle size, BET and surface activity center [105]. At the same time,
the modified Nano-Fe3O4 can be used as an anti-tumor drug carrier, which had good specificity and
targeting in the field of external magnetic field [106]. The Fe3O4 nanoparticles modified by sodium
oleate were expected to do drug carrier for osteosarcoma chemotherapy. It could be combined with
anticancer drugs targeting tumor body parts through the magnetic field and the basic physiology of
the human body with added benefit of low toxicity [107]. For example, Isiamian et al. [108] studied
the enhanced radio sensitivity of breast cancer cells with the combination of 2-deoxy-D-glucose
and doxorubicin plus superparamagnetic Fe3O4 nanoparticles. At the same time, it was also found
that doxorubicin and 2-deoxy-D-glucose combined with targeted magnetic Fe3O4 nanoparticles can
promote breast cancer radiotherapy by improving the localization of chemotherapy, increasing the
cytotoxicity of tumor cells and reducing the single therapeutic dose.

With good biocompatibility and magnetic effect, Nano-Fe3O4 had a wide application in the
treatment of tumors and magnetic resonance imaging [109]. Zhang et al. [110] studied the application
of Nanoferroferric oxide in rats’ hydrocrania CT imaging, which could be used as a photographic
developer. They also analyzed the Nano-Fe3O4 distribution in rat various organs and found that
there was no accumulation in different organs. This phenomenon showed that the Nano-Fe3O4

had biocompatibility.

4.2. Removal of Heavy Metals from Aqueous Systems

Modified Nano-Fe3O4 surfaces reacts with heavy metal ions and have been studied in the
removal for treatment of aqueous systems. For example, Cui et al. [111] synthesized a new magnetic
nanocomposite material (MgHAP/Fe3O4) by adding Fe3O4 into magnesium hydroxyapatite (MgHAP),
which can remove the Cu2+ from the aqueous solution. The adsorption of Cu2+ by MgHAP/Fe3O4

was mainly by chemical adsorption, with the sharing or exchange of electrons between adsorbent and
Cu2+, in which the valence state is important. Because of this chemical interaction, the combination of
MgHAP/Fe3O4 and Cu2+ had stable chemical and physical properties. In addition, Mg2+ and Cu2+ in
MgHAP had the same charge and similar ionic radius, promoting their exchange in hydroxyapatite.
After adsorption, the properties of the material were very stable, which would not cause secondary
pollution to the environment, making it advantageous for water treatment.

The modified Nano-Fe3O4 can also reduce the reactivity of heavy metals and produce stable
hydroxide and iron oxide precipitation on its surface. Tian et al. [112] modified the Nano-Fe3O4 by
using a kaolin with better functional properties after comparing various modifiers. Based on this,
the pH was studied in the process of removing heavy metal chromium. At higher concentrations,
the kaolin-modified Nano-Fe3O4 forms hydroxides of iron and chromium on the surface, so that the
particles are in a stable state and passivated and their surface almost loses reactivity. Chang et al. [113]
used coprecipitation to wrap the γ-polyglutamic acid (γ-PGA) on the Nano-Fe3O4 surface successfully.
The results showed that the γ-PGA/Fe3O4 particle size was smaller than that of the Nano-Fe3O4,
which also had larger surface area. The removal rate of Cr3+, Cu2+ and Pb2+ by γ-PGA/Fe3O4 in
the deionized water was more than 99%, which was because of the larger specific surface area of the
γ-PGA/Fe3O4 mNPs. The experimental results showed that γ-PGA/Fe3O4 was better performance
than Fe3O4 and γ-PGA/Fe3O4 in heavy metal removal. The adsorption of heavy metal ions got
through the membrane by means of γ-PGA and the unabsorbed ions removal activity was reduced
through the membrane.

The heavy metal ions could react with the function group on the modified Nano-Fe3O4 surface.
For instance, Jin et al. [114] analyzed the process of adsorption of heavy metals by the Nano-Fe3O4

surface loaded amino functional group. The study found that the Nano-Fe3O4 coated with a single
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silicon dioxide had a low adsorption capacity of heavy metals and when its surface is modified
with amino functional group, faster and more effective removal of heavy metal ions occurred. As a
result of the interaction between lewis acid-alkali, amino groups can strengthen the introduction
of SiO2 for heavy metal ions, such as Hg2+, Pb2+ and Ag+. The reason of this phenomenon maybe
is the amino changed the silica shell with Nano-Fe3O4 nuclear structure, increasing the BET and
pore size. Shen et al. [115] investigated the fungi and ferroferric oxide compound material. Using a
kind of rice root mildew derived biomaterial to modify Fe3O4 and analyzed adsorption mechanism.
They concluded that the rhizopus oryzae surface functional groups can readily react with metals,
promoting enhanced adsorption of metals from water.

The removal activity of modified Nano-Fe3O4 for heavy metals is strongly pH dependent.
For example, Zhao et al. [116] successfully synthesized Fe3O4-MnO2 magnetic nanoplates using
a simple hydrothermal method to remove divalent heavy metals in water. The modification of
amorphous MnO2 can significantly increase the specific surface area of Fe3O4-MnO2 and reduce the
zero-charge point, thus ensuring good adsorption capacity for metal cations. Experiments show that
the acid-alkaline environment affects the surface charge of Nano-Fe3O4 during the adsorption of
divalent heavy metal by Nano-Fe3O4. The reason is that at low pH, H+ ions easily combine with the
hydroxyl groups on the surface of Nano-Fe3O4, which increases the positive charges and groups on the
surface and the negatively charged divalent heavy metal ion complexes are electrostatically attracted to
the surface of Nano-Fe3O4. At the same time, the ability to adsorb divalent heavy metals is increased.
Kilianová et al. [117] reported a simple and cheap synthesis of ultra-fine Nano-Fe3O4 with narrow
particle size distribution and its application in the field of arsenic removal in a water environment.
The study showed that the mesoporous arrangement of nanoparticles in their system enhanced the
adsorption capacity, which was due to the strong magnetic interaction between nanoparticles. As (V)
would be removed totally when the pH value was in the acid range. At this time, the Zeta potential of
Nano-Fe3O4 adsorbent was 7.6; pH value was 5–7.6; Fe/As was approximately 20/1 and the balance
of arsenic removal was 45 mg/g.

Table 3 lists the modification of Fe3O4 by surface chemical physical methods for different
substances. After modification, Fe3O4 can increase the adsorption efficiency of heavy metal ions
and the mechanism of removal of metal ions also differs between them. The three main mechanisms
are electrostatic adsorption, surface reaction and chemical ligand exchange.

Table 3. Methods for the modification of Nano-Fe3O4 and mechanism for the removal of heavy metals.

Heavy Metal Methods Removal Mechanism References

Pb With different amounts
of glycerol Surface coordination, chemical adsorption. [118]

As With manganese dioxide
and graphene oxide

Manganese dioxide can oxidize arsenic into
pentavalent arsenic and graphene oxide can
increase adsorption ability.

[119]

Cr With Reduced
graphene oxide

Electrostatic adsorption and acid
groups adsorption. [120]

Hg With cellulose The complex of mercury ion and cellulose on the
surface of Fe3O4. [48]

Pb and Cr With micrococcus

Weak electrostatic forces between cadmium ions
(II) and carboxyl groups or hydroxyl groups;
chemical bonding of lead (II) ions and
amino groups.

[121]

U and Cu
With calcium alginate
containing-chitosan

hydrogel beads

Chemical interaction of NH3-groups in Chitosan
with -COOH groups in calcium alginate. Physical
pore adsorption and electrostatic adsorption.

[122]

4.3. Electrochemical Sensor and Energy Storage

Complex Nano-Fe3O4 had shown excellent charge-discharge cycling stability [123]. For example,
composite material combined by Nano-Fe3O4 and Graphene after modification had good
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electrochemical sense performance. The modified graphene can enhance its stability and conductivity
and Fe3O4 has a reversible capacity synergistic effect [124]. Peng et al. [125] synthesized a novel
multifunctional magnetic biomolecule with Fe3O4 as the core, and heme protein and polydopamine
as shells, using a one-pot chemical polymerization method. The results showed that the synthesized
biomacromolecules not only possess the magnetic properties of Fe3O4 but also maintain the native
structure of the heme protein under the action of an external magnetic field. Polydopamine and Au
nanoparticles have good biocompatibility and conductivity. At the same time, due to the presence of
Au nanoparticles, the exchange of electrons between the hemoprotein and the electrode is enhanced.
Zheng et al. [126] synthesized magnetic Fe3O4 nanoparticles using chemical co-precipitation method
and mixed Fe3O4 nanoparticles with chitosan to form a matrix of immobilized hemoglobin to prepare
a hydrogen peroxide biosensor. In the pH range of 4–10, the potential of the Fe(III)/Fe(II) couples
changes linearly with increasing pH, indicating that electron transfer is accompanied by transport
of single protons in the electrochemical reaction. At the same time, it also has a certain effect on the
storage of electrical energy.

After secondary modification, the dispersion of the composite particles was better and graphene
had a stronger protective effect on granules, which was of great practical significance. Zhu et al. [127]
studied a lab prepared Nano-Fe3O4 compound rich in amino and carboxyl groups on the rheophore.
After testing the content of the alpha fetoprotein antibody absorbed by amino and electrostatic forces,
they concluded that alpha fetoprotein immune sensor had high sensitivity and stability. In addition,
the adsorption capacity of nanometer compound to the antibody was increased compared with the
traditional method.

4.4. Chemical Catalysis

Cai et al. [128] found that when Ag was loaded on the surface of Fe3O4, the effect on the catalytic
reduction of nitrophenol was greater than in its absence and that this effect increased with the increase
in Ag concentration. Zou et al. [129] used PdCl2, SnCl2·2H2O as precursors to prepare different Fe3O4

catalysts with different Fe3O4 content. They found, using cyclic voltammetry and timing current tests,
that the catalyst had a good electrocatalytic activity for ethanol oxidation and the charge transfer
resistance had a strong relationship with the Pd/Sn content.

Coupling agents were used to connect the heavy metal bridge on the Nano-Fe3O4 surface,
effectively inhibiting the agglomeration of Fe3O4 and enhance its stability. Gu et al. [130] prepared
Au/Fe3O4 by ultrasound in the presence of 3-aminopropyl triethoxysilane, which had high catalytic
activity and did not agglomerate because of the action of the amino containing 3-aminopropyl
triethoxysilane. Its rate constant can reach 0.2256 min−1 in the catalytic reduction of 4-nitrophenol.
After nine cyclic reactions, the catalytic conversion rate was still very high. Gao et al. [131] utilized
Nano-Fe3O4 as a filler for polytetrafluoroethylene and the linear expansion coefficient of composite
material was greatly reduced. When the mass fraction of Fe3O4 was 15%, the linear expansion
coefficient decreased by 40.1 × 10−6/◦C compared with the single polytetrafluoroethylene.

4.5. Others

The use of Nano-Fe3O4 has great practical value in other applications (as shown in Table 4).
In addition, to the water environment, a number of studies had shown that Nano-Fe3O4 can effectively
remove heavy metals from sewage and also remove organic, inorganic compounds, dyes, algae [132]
and other environmental pollutants in water. Ito et al. [133] studied the effect of ZrFe2(OH)8 as
adsorbent on phosphorus removal in wastewater. According to the study, ZrFe2(OH)8 was a good
phosphate adsorbent. More than 90% of the phosphate can be removed within 5 min. It can effectively
prevent the eutrophication of polluted water and is straight forward to recycle. Phenol was widely
used in rubber, pesticides, dyes, plastics and other fields but its toxicity led to significant environmental
pollution and subsequent restriction. Nano-Fe3O4 shows good adsorption for phenol, for example,
Jiang et al. [134] in studies of fungal degradation, compared Nano-Fe3O4 immobilized cells to
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isolated fungal cells without nucleus, free floating cells and calcium alginate immobilized cells
without nanoparticles. The results showed that the immobilized dedoxycycline strain had better
biodegradability than the free cells and the Nano-Fe3O4 immobilized cells had the highest rate of
removal of phenol. In addition, when the initial phenol concentration was higher than 900 mg L−1,
the Nano-Fe3O4 immobilized cells could degrade over 99.9 percent of phenol in 80 h and had good
stability in the saline environment. On the contrary, the free cells removal rate of phenol was 34.5%
and immobilized cells without Nano-Fe3O4 was 81.3%.

Table 4. The application of modified Nano-Fe3O4 in treatment of other environmental pollutants.

Pollutants Methods for Modification of
Nano-Fe3O4

Removal Principles References

Congo red With hydroxyapatite and zeolite
The interaction of the dye and Nano-Fe3O4 through
Surface coordination, hydrogen bonding, Lewis acid
base reaction.

[135]

Natural rubber With silane coupling agent The Fe3O4 has high binding energy after modification and
it was much easier to bond with rubber. [136]

Rhodamine B With Fenton reaction in the
presence of H2O2

The surface of Fe3O4 formed complexes and hydroxyl
radicals, resulting of degradation of dye. [137]

Methylene blue
With natural eloise under
vacuum impregnation and high
temperature pyrolysis

A large number of hydroxyl groups on the surface of rocky
oxidized methylene blue. [138]

Acid orange With Chitosan Interacting of ions of dye with the protonated amino ions
of chitosan [139]

Methylene blue With Graphene The positive charged oxygen-containing groups in
Graphene attracted a negatively charged methylene blue. [140]

Bisphenol A With amine-containing
β-cyclodextrin

Hybrid effects of electrostatic, hydrophobic and
van der Waals. [141]

Organics
2,4,6-trinitrophenol With activated carbon

Porous physical adsorption on the surface of activated
carbon; Electrostatic adsorption and hydrogen bonding;
Surface reaction; In the presence of dissolved oxygen, the
phenols on the surface of activated carbon are gathered.

[142]

Due to having a magnetic property, some materials are likely to combine with it and enhance their
functions. They often show a combination performance other than individual. For example, in order
to short settling time of flocs in coagulation-flocculation, with the help of external magnetic fields,
the coagulation by magnetic coagulant consisting of Nano-Fe3O4 and conventional coagulants (e.g.,
polyaluminum chloride [143], chitosan [144,145], polyacrylamide [146] et al.) is easy to achieve the
purpose. In fact, it is far more than the effect in settling speed enhancement because the presence
of Nano-Fe3O4 is likely to enhance original functions of coagulant in charge neutralization, netting
adsorption-bridging [147]. Therefore, Nano-Fe3O4 is helpful in improving performance of coagulation.
Magnetic separation is a green technology and its development is more tempting. Research on the
magnetic coagulant is, however, quite deficient. How to ensure its stability and effectiveness is an
important problem. In on another part, the Nano-Fe3O4 has also received wide attention. A typical
example is the metal-organic frameworks (MOFs) being powder materials means that they have a
small Nanosize, which means they are often difficult to separate from liquid phase. With the help of
Nano-Fe3O4, this difficulty can be overcome. The hybridized materials of Nano-Fe3O4 and MOFs were
able to show more special functions than their individual [148]. Overall, the composite material of
Nano-Fe3O4 and other functional materials may be a better solution in overcoming their shortcomings
or obtaining their expected functions.

5. Conclusions

Because Nano-Fe3O4 has the excellent chemical properties, it has been an important research
focus in recent years. It is different from general magnetic materials due to unique features which
include simple preparation and lower requirements for equipment compared with the traditional
adsorbents. Although Nano-Fe3O4 has been widely applied in many fields, some problems still need
to be addressed. For example, its dispersion and stability. Through modification, iron oxide has
multidimensional functional properties such as oxidation, adsorption, catalysis, magnetic separation.
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If the Nano-Fe3O4 was applied to different fields, the morphology, structure and surface properties
are the main factors controlling their successful application. Further research on their modification
is still needed. Finding a more convenient and more economical way to prepare and modify good
Nano-Fe3O4 should be addressed to fully exploit their potential in the diverse fields of application.
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