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Abstract: This study explores the possible use of ionic liquids as a solvent in a commercial
high-pressure CO2 removal process, to gain environmental and energy benefits. There are two
main constraints in realizing this: ionic liquids can be corrosive, specifically when mixed with a
water/amine solution with dissolved O2 & CO2; and CO2 absorption within this process is not
very well understood. Therefore, scavenging CO2 to ppm levels from process gas comes with
several risks. We used 1-butyl-3-methylimidazoium methane sulphonate [bmim][MS] as an ionic
liquid because of its high corrosiveness (due to its acidic nature) to estimate the ranges of expected
corrosion in the process. TAFEL technique was used to determine these rates. Further, the process
was simulated based on the conventional absorption–desorption process using ASPEN HYSYS v 8.6.
After preliminary model validation with the amine solution, [bmim][MS] was modeled based on the
properties found in the literature. The energy comparison was then provided and the optimum ratio
of the ionic liquid/amine solution was calculated.
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1. Introduction

Anthropogenic carbon dioxide (CO2) removal systems are used in various chemical industries
and in various processes or to gain carbon credits [1]. In many processes, its absorption from synthesis
gas is a crucial parameter in order for downstream catalysts to work (usually allowing slippage
<500 ppm) [2]. Major design constraints include the loading rate, CO2 slippage limit and energy
extensiveness. Absorption by solvents is a common practice employed in various industries [3].

Although there are many techniques reported in literature to capture CO2 [4–6] until now only
chemical solvent-based processes promise to achieve low slippage at high loading rates commercially.
Many amines were studied for their CO2 absorption capacity, but amines like methyl ethanolamine
(MEA), diethanolamine (DEA), methyl diethanolamine (MDEA), piperazine (PZ), triethanolamine
(TEA), and 2-amino-2-methyl-1-propanol (AMP) show better results in terms of stability and efficacy [7].
Commercial solvents are made up of concoctions of various chemicals that include optimum
combinations of amines, corrosion inhibitors, antifoaming agents, and other proprietary additives.
These amines mixtures have been commercialized under different names [8–13]. CO2 is captured
by reversible chemical reactions within these amines. The rate of reaction depends on the bulk
concentration of CO2. A simple solvent-based CO2 absorption scheme consists of a stripper and an
absorber at low and high pressure respectively; however, this kind of scheme is extensive in terms of
energy/cost [14]. Regeneration of these solvents requires steam and is thus a major energy consuming
unit operation. Current literature focuses on two techniques in response to this problem: discovery of
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a solvent that requires less decomposition energy to liberate CO2 [15,16], or restructuring the process
to economize pressure and heat energy recovery [17–22]. Therefore, development of new solvents
requiring less drastic conditions without compromising CO2 slippage remains an attractive area of
research [23].

Pure ionic liquids are also reported to absorb CO2 [24,25]. Furthermore, amine groups are
functionalized with ionic liquids to synergize the effects of reaction and absorption in the same
molecule [26,27]. This is reported to enhance the CO2 recovery [28]. Ionic liquids also offer the
advantage of low vapor pressure, decreasing unwanted loss in the stripped stream at high temperatures.
However, ionic liquids have process issues related to corrosion and crystallization.

Corrosion of metals in amine solutions is well known [22,29]. The commercial amine mixture
solvents usually have some corrosion inhibitor or passivators to deal with the detrition of metallic
parts [30]. The corrosion by amine/ionic liquid mixtures is foreseen [31]. Ionic liquids are salts and can
extremely affect the corrosion of various metals, as their hydrolysis can be significantly different [32].
In this study, 1-butyl-3-metylimidazoium methane sulphonate [bmim][MS] was chosen as a model
molecule in the design of an ionic liquid-based process. At 60 ◦C, absorption of 0.25 mol CO2/mol
IL at 5 MPa is reported [33]. The addition of water to the solution has mixing and transfer benefits
that can result in energy efficiency due to decreases in viscosity. The surface tension of [bmim][MS]
decreased when mixed with water, thus increasing the mass transfer coefficient [34].

2. Materials and Methods

1-Butyl-3-methylimidazolium methanesulfonate [bmim][MS] was provided by Ionic Liquid
Technologies, Helibronn, DE (io.li.tec) with a purity of 99.6–99.9% and 98.5–99.9% respectively.
Diethylethanol amine and piprazine were purchased from Sigma Aldrich, Al-Khobar, KSA.
Three-electrode system was used to carry out electrochemical tests on a PG STAT-101 potentiostat,
provided by AUTOLAB and powered by NOVA software. Ag/AgCl was used as a standard electrode
with a platinum electrode as the counter electrode. The sample coupon of carbon steel was grinded
and polished. The sample coupon was also washed with distilled water and ethanol before testing.
Temperature was controlled manually by oil circulation in the cell jacket. All experiments were
done at atmospheric pressure. Pure carbon dioxide was bubbled through the solution continuously
(≈1 mL/min). Electrodes were immersed and left for 30 min to achieve a steady state before any
measurement. Open circuit potential was first measured and ±100 mv range to open circuit potential
is adjusted for Tafel scan. Scan rate was fixed at 1 mv/s. Each experiment was repeated thrice.
Uncertainty in the results was less than ±7%.

Differential Scanning Calorimeter was provided by Netzch, Selb, DE (DSC 200 F3). The samples
(about 10–15 mg) were initially heated to 100 ◦C to erase the thermal history, then cooled to room
temperature, and finally heated at 1 ◦C per min from ≈25 ◦C to 120 ◦C. Aluminum crucible with
pierced lid was used. The obtained thermograms were used to determine the glass transition/melting
temperature of the ionic liquids.

3. Results & Discussion

3.1. Differential Scanning Calorimetry

The differential scanning calorimetry (DSC) results are shown in Figure 1. As [bmim][MS] is
a strong hydrophilic ionic liquid and can absorb moisture from the environment, care was taken to
keep contact between the ionic liquid and the environment to a minimum, to avoid water ingression
after sample preheating. However, it cannot be completely avoided. The valley started immediately
after heating began. This was attributed to the vaporization of the absorbed water. The exact melting
point for the ionic liquid is hard to measure but [bmim][MS] must be kept above 65 ◦C to avoid
crystallization in the CO2 absorption process. The heat capacity data (above 65 ◦C) obtained from
the DSC was also used to model the process, as described in the next section. No decomposition
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of the ionic liquid was physically observed below 100 ◦C. Moreover, after cooling of DSC samples
there was no/negligible weight loss. Kärkkäinen discussed the stability of the ionic liquids and
reported [bmim][MS] decomposition onset temperature as 335 ◦C. Therefore, it is assumed that
no decomposition of the ionic liquid occurs at the process conditions described in the simulation
section [35].
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Figure 1. Differential scanning calorimetry (DSC) results for the 1-butyl-3-methylimidazoium methane
sulphonate ([bmim][MS]), scan rate is 1 ◦C/min. Gray dotted line—Temperature of the sample (◦C),
Black continuous line—Heat Flow (W/g).

3.2. TAFEL Curves

Figures 2 and 3 present the Tafel curves obtained without and with carbon dioxide for pure
[bmim][MS] respectively. Corrosion current is reported per unit area (cm2) of the exposed surface.
Corrosion rates are obtained by the standard procedure of Tafel slopes. The rate of corrosion increased
with temperature because of the enhanced mobility of the ions and charge transfer. It is also shown
that carbon dioxide absorption in water lowers the pH of water, thus increasing the oxidation rates.
The same was observed for [bmim][MS]. As there is no water present the increase in corrosion rates is
attributed to the enhanced charge mobility by [bmim][MS]. CO2 was physically absorbed on the ionic
liquid, structural modification of imidazole cation is shown by the published data of Jung et al. [33].
Increase in CO2 absorption by longer chain cations than [bmim] further strengthens the view that the
cation is a major source of CO2 absorption. The slopes of the Tafel curves suggest that cation charge
transfer controls the oxidation rates. This is true both with and without CO2. Results suggest that the
CO2 absorption on cation enhances its mobility in the solution.

Corrosion rates drop sharply when amine solution (40%MDEA, 2%PZ, 58%H2O) is mixed with
[bmim][MS], as presented by Figures 4 and 5. Amine saturated with CO2 has corrosion current rates
for carbon steel in the range of 3 to 4 µA [28]. The perturbation in Figure 5 can be attributed to noise.
As the solution becomes more conductive, more noise is expected due to increase in the sensitivity
levels. Amine introduces a strong inhibition effect on corrosion for ionic liquids. However, this is not
true if the concentration of the amine solution is increased beyond a certain threshold. This can be
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observed from the results presented in Figures 6 and 7. For any commercial process, such corrosion
rates are usually not acceptable. Furthermore, the corrosion rates drop with increase in temperature.Processes 2018, 6, x FOR PEER REVIEW  4 of 12 
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3.3. Process Simulation and Validation

3.3.1. Existing Facility Model

Zwitterion mechanism is considered responsible for CO2 absorption by amines [36,37].
The reactions are provided in Table 1. The first five reactions are considered to be in quasi-state
equilibrium. The rest of the reactions are used to model the CO2 absorption based on the mass
transfer coefficient and kinetics. These reactions along with the Electrolyte Non-Random Two Liquids
(ENRTL) method form ‘ACID GAS’ package (specifically designed for amine-based solvents) for
thermodynamic calculations using ASPEN HYSYS V 8.6 (Aspen Technology, Inc., Bedford, MA, USA).
A similar technique was used by Greer et al. to simulate the CO2 absorption process (solvent MEA) but
using the Peng–Robinson model. Furthermore, absorption has been modeled using chemical reaction
and Henry’s law [38].

Table 1. Reactions involved in CO2 absorption by methyl diethanolamine (MDEA)/piperazine
(PZ) mixture.

No Reactions Forward Reaction Backward Reaction

1 MDEAH+ + H2O � H3O+ + MDEA Quasi-state equilibrium
2 2H2O � H3O+ + OH− Quasi-state equilibrium
3 H2O + HCO−

3 � H3O+ + CO2−
3 Quasi-state equilibrium

4 PZ + H3O+ � +H2O + PZH+ Quasi-state equilibrium
5 HPZCOO + H2O � H3O+ + PZCOO− Quasi-state equilibrium
4 CO2 + OH− � HCO−

3 1.33 × 1017 exp
(
−13258

RT

)
[CO2]

[
OH−] 6.63 × 1016 exp

(
−25674

RT

)[
HCO−

3
]

5 MDEA + H2O + CO2 � HCO−
3 + MDEAH+ 6.85 × 1010 exp

(
−9035.1

RT

)
[MDEA][CO2] 6.62 × 1017 exp

(
−22146

RT

)[
HCO−

3
][

MDEAH+
]

6 PZ + H2O + CO2 � H3O+ + PZCOO− 1.75 × 1010 exp
(
−319.21

RT

)
[PZ][CO2] 3.4 × 1023 exp

(
−14169

RT

)[
H3O+

][
PZCOO−]

7 PZCOO− + H2O + CO2 � H3O+ + PZCOO2− 1.04 × 1014 exp
(
−8043.3

RT

)[
PZCOO−][CO2] 3.2 × 1020 exp

(
−8697.9

RT

)[
H3O+

][
PZCOO2−

]

Figure 8 shows the simple process flow diagram. Process gas is produced by reforming and
is available at high temperature and pressure (78 ◦C, 33 bar). The gas contains 59%H2, 18%CO2,
20%N2, and the rest is water, methane and traces of H2S (mol basis). The process is designed to
economize the process for stripping the rich amine solution (1–2). After cooling, this gas is passed
through the absorber and the clean process gas is available (3–4). The downstream processes are
designed based on the maximum CO2 contents of 500 ppm. The absorber is divided into two sections.
The upper section receives the lean amine solution from the stripper and works on approach to
equilibrium (20–22). The lower section is at high temperature and receives comparatively hot semilean
solution from intermediate flashing scheme (12–14). The lower absorber section thus enhances the CO2

absorption kinetics, which is slower in the upper section. The high-pressure rich amine solution is then
depressurized in a turbine to feed the high-pressure flash drum. This flash drum pressure is optimized
to recover hydrogen and nitrogen that is absorbed along with CO2. As flash gas contains high contents
of acid gas, it is therefore recycled back to the absorber (5–7). The amine solution then goes to the
low-pressure flash drum. The pressure in this flash drum is equal to the stripper. The purpose of this
flash drum is to split the amine flow to feed both the stripper and the lower part of the absorber (13–16).
The acid gas is also recovered from this flash drum (10). Downstream stripper is used to produce the
lean solution, almost free of acid gas, to feed the absorber upper section (17–22).
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The process simulation is validated according to the real industrial data as shown in Table 2.
Industrial maximum and minimum value is obtained from the three years steady state operational log.
The close proximity of the process parameters with the model provides the confidence to use the same
package for amine solution in ionic liquid mixture. The same model will be used to design the process
based on ionic liquid and amine solution mixture.

Table 2. Model comparison with real industrial data. The industrial data maximum and minimum is
based on the three years with steady state plant conditions. * Process gas temperature is a constraint
(boundary condition) for the process.

Description Model
Industrial Data

Min Max

CO2 slippage (ppm) 500 200 500
Specific Energy Consumption kcal/NMC of CO2 removed 464 452 486

Lean solution loading 4.2 3.4 3.47
* Process gas temperature 78 70 78

High pressure flash drum temperature 72 70 74
Semilean solution to stripper temperature 87 87 95

Absorber top temperature 57 51 58

3.3.2. Absorption Process with Ionic Liquid

Ionic liquids cannot be modeled with an ‘ACID GAS’ package. In ASPEN HYSYS it is modeled as
a hypothetical molecule. The equation of state is used to define its properties. Pereiro et al. provide
different properties [39]. The density data and molecular weight of the ionic liquid is used to estimate
the critical properties of the hypothetical molecule. The solubility of the carbon dioxide in the ionic
liquid is regressed as a polynomial, based on the data available in the literature [33] (at low pressure
<5 MPa, it can be considered a straight line). The process using an ionic liquid is modeled as parallel to
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the existing process, but without mixing with amine solution (solution of amine and ionic liquid is
assumed as an ideal mixture i.e., mixture properties are just the summation of pure species property
with entropy adjustment with no chemical reaction between amine and [bmim][MS]). Task-specific
ionic liquids (TSIL) are tailored—usually cation functionalized ionic liquids enhance CO2 absorption.
The immidazolium-based cation is functionalized and it is reported to increase CO2 absorption by
threefold for ionic liquids [40,41]. The functionalization mechanism usually involves specific radicals
and ion exchangers. Furthermore, the immidazolium cation functionalization, with CO2 absorption,
increases the solution viscosity to a gel-like substance [42]. At the process conditions, it is highly
unlikely to have a functionalization reaction between amine and [bmim][MS], as the exponential
increase in viscosity was not observed in our corrosion experimentation. Any side reaction kinetics is
assumed to be negligible due to the long chain diffusion limitations. Functionalization can increase the
absorption of CO2 but gravimetrically due to lower CO2 loadings it is not feasible to use these TSIL
alone in commercial processes [43].

Vapor pressure of the ionic liquid is taken as negligible. In the case of an ionic liquid mixed with
the amine, the temperature of the process is kept above 65 ◦C. First, the carbon dioxide is absorbed in
the ionic liquid according to the equilibrium relation obtained from the regression. Then the resulting
gas is contacted with the amine solution. No dissolution of any other gas is considered in the process
modeling of the ionic liquid, so a high-pressure flash drum is not required with ionic liquids. If only
ionic liquid, without amine, is considered then in practice it is not possible to lower the amount of
CO2 in purified gas to 500 ppm. The pure ionic liquid has a tendency of crystallize. Furthermore, its
high viscosity may result in extensive pressure drops. Therefore, amine/water solution is required
to polish the gas by scavenging remaining carbon dioxide to acceptable levels, to avoid [bmim]z
crystallization and to lower its viscosity. Viscosity is reported to decrease with the addition of water
and is comparable with amine solution (30 wt. % ionic liquid, 20 ◦C, 0.1 MPa, amine viscosity
≈ 4 mPa·s, [bmim][BF4] ≈ 2 mPa·s) [44,45]. The ratio between amine solution and ionic liquid is fixed
and their total quantities are adjusted to achieve the purity level of 500 ppm. Figure 9 shows the
relation between the amount of energy required per NMC of the carbon dioxide removal and the
percentage of amine solution mixed with the modeled [bmim][MS]. There exists an optimum mixture
of ≈27% with the minimum amount of energy required.
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Figure 9. Amount of energy required per NMC of CO2 removal. Dotted line presents the conventional
process working with amine solution. The circles present the data directly obtained by simulation.
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4. Conclusions

The current study provides initial estimates for using ionic liquid [bmim][MS] for carbon dioxide
removal. The corrosion rates of amines are considerably less than the ionic liquids, but the combined
effect of both the solvents has a weight percent threshold limit. Extreme corrosion rates are expected
and advanced corrosion mitigation techniques must be considered for the process design Usually
commercial solvent recipes for CO2 removal come with corrosion inhibitors. The role of these inhibitors
should be enhanced for any ionic liquid inclusion. The ASPEN HYSYS ‘ACID GAS’ package provides
an excellent estimation of the amine properties and corresponds very well with the industrial data.
Modeling of ionic liquids is not very mature and requires certain assumptions, because of the lack of
available data. The built-in ‘COSMOSAC’ model (in ASPEN) does not provide good estimates in the
case of [bmim][MS]. It is therefore modeled using primitive techniques, thus slight discrepancies in the
results are expected that can be addressed with more experimental data input. Nevertheless, it can be
concluded with sufficient evidence that an optimal mixing ratio exists, when using ionic liquid for
high-pressure commercial CO2 removal process under different conditions.
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