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Abstract: Ion-sieves are a class of green adsorbent for extraction Li+ from salt lakes. Here,
we propose a facile synthesis of hexagonal spinel LiMn2O4 (LMO) precursor under mild condition
which was first prepared via a modified one-pot reduction hydrothermal method using KMnO4

and ethanol. Subsequently, the stable spinel structured λ-MnO2 (HMO) were prepared by acidification
of LMO. The as-prepared HMO shows a unique hexagonal shape and can be used for rapid
adsorption-desorption process for Li+ adsorption. It was found that Li+ adsorption capacity of
HMO was 24.7 mg·g−1 in Li+ solution and the HMO also has a stable structure with manganese
dissolution loss ratio of 3.9% during desorption process. Moreover, the lithium selectivity (αLi

Mg)

reaches to 1.35 × 103 in brine and the distribution coefficients (Kd) of Li+ is much greater than
that of Mg2+. The results implied that HMO can be used in extract lithium from brine or seawater
containing high ratio of magnesium and lithium.
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1. Introduction

Lithium and its compounds—known as “industrial monosodium glutamate” [1]—are widely
used in significant fields such as batteries, ceramics, glass, alloy, lubricants, refrigerants and the nuclear
industry [2,3]. The lithium reserves in China are the world’s second-largest, which are primarily
distributed in the salt lakes of Qinghai and Tibet [4]. However, the ratio of magnesium to lithium in
the salty brine is extremely high, making it difficult to extract and recover lithium using conventional
separation technologies [5,6]. Compared with precipitation and solvent extraction methods, ion-sieve
adsorption has many technical merits, such as excellent selectivity and relatively low cost [7,8], which is
considered to be the most promising environmentally benign technology for extracting lithium from
salt lakes [9,10].

Manganese series spinel ion-sieves are widely used in lithium ion adsorption, which primarily
includes λ-MnO2, MnO2·0.3H2O and MnO2·0.5H2O, after removal of lithium by acidification from
precursors LiMn2O4 [11], Li4Mn5O12 [12,13] and Li1.6Mn1.6O4 [14–16], respectively. LiMn2O4 (LMO)
is commonly used adsorbent precursor8, which is fabricated through embedding the target Li+ in the
Mn-O chemical skeleton to construct composite LixMnyOz. After extracting Li+ by acidification without
damages in the structure, of λ-MnO2 (HMO) with regular vacancy [17]. The cubic spinel structures
and adsorption-desorption relationship of HMO and LMO is shown in Figure 1. Oxygen atoms(O),
Mn3+/Mn4+ and lithium atoms (Li) occupy 32 e, 16 d and 8 a of the Wyckoff site, respectively [18].
Then, lithium at the 8a position is extracted by hydrogen because of ion exchange process which can
adsorption Li+ subsequently.
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Figure 1. Illustrated microstructures of LiMn2O4 and λ-MnO2. 

In general, existing methods of preparing LMO can be boiled down to two categories, the 
solid-phase and the liquid-phase. Yuan et al. [19] utilized Li2CO3 and MnCO3 (Li/Mn molar ratio was 
0.5) as raw materials and calcined the mixture at 800 °C in air for 5 h to obtain the LMO. Park et al. 
[20] prepared spinel LMO by a simple spray mixed Li(NO)3 and Mn(NO)3 pyrolysis at 700 C, with 
the deficiencies of inhomogeneity and large particle sizes (1 μm). The above-mentioned solid-phase 
LMO preparation methods often require high energy consumption and involve multiple steps. 
Besides, they always result in yielding large size particles because of agglomeration which decrease 
its contact area with solution for Li+ extraction. The liquid-phase method (also known as 
soft-chemical process) for fabrication of LMO usually exhibits high purity, excellent crystal integrity 
and good dispersion. Tang et al. [21] prepared a nano-chain LMO using a sol-gel method. LiNO3 and 
Mn(NO3)2 were stirred with the assistance of the starch at 110 °C for 1.5 h, followed by heating at 250 
°C for 3 h and a thermal treatment at 700 °C for 3 h. Xiao et al. [22] prepared the ultrafine LMO 
powder by mixing Mn(NO3)2 with ammonia to produce precipitate, then they impregnated the 
precipitate with LiOH·H2O and calcined the mixture at 830 °C for 8 h. Zhang et al. [23] prepared 
cubic phase LMO via a hydrothermal method by reacting Mn(NO3)2 with LiOH and H2O2 at 110 °C 
for 8 h. Despite the liquid-phase method being well investigated and developed, simplifying LMO 
synthetic process and improving the adsorbing ability and selectivity are still challenging. The 
existing methods mainly use LiOH·H2O solution or acidic salts as raw materials. To our best 
knowledge, neutral synthetic routes through one-pot hydrothermal reaction to produce LMO and 
the corresponded HMO are rarely reported. Besides, HMO synthesized from high-valence 
manganese always shows higher adsorption capacity and selectivity than that of HMO synthesized 
from low-valence manganese, which is beneficial for lithium extraction from brine with high 
Li+/Mg2+ ratio. 

In this study, a series of LMO was prepared by a facile one-pot hydrothermal method using 
ethanol as reductant, KMnO4 and LiCl·H2O as precursors. We first optimized several synthetic 
parameters (i.e., LiCl·H2O concentration, mass of KMnO4, volume of ethanol, reaction time and 
reaction temperature) in preparing of LMO. Then we prepared the stable HMO by acidification 
treatment of LMO. The crystallization phase, morphology characteristic and chemical phase of 
as-prepared ion-sieves were systematically investigated. The Li+ adsorption performance of HMO 
was studied and relevant adsorption kinetic model and adsorption isotherm were fitted. Finally, Li+ 
extraction capacity and selectivity in brine containing high ratio of Mg2+ and Li+ were studied. 

2. Experimental 

2.1. Preparation of LMO and HMO Ion Sieve 

All chemicals used in this work are AR reagents unless otherwise noted. The detailed synthetic 
parameters are given in Table 1. Briefly, a certain amount of LiCl·H2O and KMnO4 were added to 75 
mL deionized water. Then, ethanol was dropwise added into the mixed homogeneous solution. The 
final solution was obtained with the addition of deionized water to 150 mL. Next, the solution was 
transferred into a polytetrafluoroethylene (PTFE)-lined stainless-steel autoclave, heated at the 
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In general, existing methods of preparing LMO can be boiled down to two categories,
the solid-phase and the liquid-phase. Yuan et al. [19] utilized Li2CO3 and MnCO3 (Li/Mn
molar ratio was 0.5) as raw materials and calcined the mixture at 800 ◦C in air for 5 h to
obtain the LMO. Park et al. [20] prepared spinel LMO by a simple spray mixed Li(NO)3 and
Mn(NO)3 pyrolysis at 700 ◦C, with the deficiencies of inhomogeneity and large particle sizes (1 µm).
The above-mentioned solid-phase LMO preparation methods often require high energy consumption
and involve multiple steps. Besides, they always result in yielding large size particles because of
agglomeration which decrease its contact area with solution for Li+ extraction. The liquid-phase
method (also known as soft-chemical process) for fabrication of LMO usually exhibits high purity,
excellent crystal integrity and good dispersion. Tang et al. [21] prepared a nano-chain LMO using a
sol-gel method. LiNO3 and Mn(NO3)2 were stirred with the assistance of the starch at 110 ◦C for 1.5 h,
followed by heating at 250 ◦C for 3 h and a thermal treatment at 700 ◦C for 3 h. Xiao et al. [22] prepared
the ultrafine LMO powder by mixing Mn(NO3)2 with ammonia to produce precipitate, then they
impregnated the precipitate with LiOH·H2O and calcined the mixture at 830 ◦C for 8 h. Zhang et al. [23]
prepared cubic phase LMO via a hydrothermal method by reacting Mn(NO3)2 with LiOH and H2O2 at
110 ◦C for 8 h. Despite the liquid-phase method being well investigated and developed, simplifying
LMO synthetic process and improving the adsorbing ability and selectivity are still challenging.
The existing methods mainly use LiOH·H2O solution or acidic salts as raw materials. To our best
knowledge, neutral synthetic routes through one-pot hydrothermal reaction to produce LMO and the
corresponded HMO are rarely reported. Besides, HMO synthesized from high-valence manganese
always shows higher adsorption capacity and selectivity than that of HMO synthesized from
low-valence manganese, which is beneficial for lithium extraction from brine with high Li+/Mg2+ ratio.

In this study, a series of LMO was prepared by a facile one-pot hydrothermal method using
ethanol as reductant, KMnO4 and LiCl·H2O as precursors. We first optimized several synthetic
parameters (i.e., LiCl·H2O concentration, mass of KMnO4, volume of ethanol, reaction time and
reaction temperature) in preparing of LMO. Then we prepared the stable HMO by acidification
treatment of LMO. The crystallization phase, morphology characteristic and chemical phase of
as-prepared ion-sieves were systematically investigated. The Li+ adsorption performance of HMO
was studied and relevant adsorption kinetic model and adsorption isotherm were fitted. Finally,
Li+ extraction capacity and selectivity in brine containing high ratio of Mg2+ and Li+ were studied.

2. Experimental

2.1. Preparation of LMO and HMO Ion Sieve

All chemicals used in this work are AR reagents unless otherwise noted. The detailed synthetic
parameters are given in Table 1. Briefly, a certain amount of LiCl·H2O and KMnO4 were added to
75 mL deionized water. Then, ethanol was dropwise added into the mixed homogeneous solution.
The final solution was obtained with the addition of deionized water to 150 mL. Next, the solution
was transferred into a polytetrafluoroethylene (PTFE)-lined stainless-steel autoclave, heated at the



Processes 2018, 6, 59 3 of 14

specified temperatures (130–180 ◦C) for the specified time and cooled naturally to room temperature.
The black precipitate was collected, filtered, washed completely and then dried at 80 ◦C for 12 h to
obtain the as-prepared LiMn2O4 (LMO). Subsequently, the obtained LMO was added in hydrochloric
acid solution (0.1 mol·L−1) at 20 ◦C for 24 h until the lithium were completely extracted. The resulting
precipitate was filtered, washed completely and dried at 80 ◦C for 12 h to obtain the λ-MnO2 (HMO).

Table 1. Experimental parameters of synthesis LiMn2O4 (LMO) at different schemes.

Experiment Group LiCl·H2O (mol·L−1) KMnO4 (g) Ethanol (V, %) React. Time (h) React. Temp. (◦C)

1 a 3 7.5 12 160
2 11 b 7.5 12 160
3 11 3 c 12 160
4 11 3 7.5 d 160
5 11 3 7.5 12 e

Note: a = 4, 7, 11; b = 5, 7, 9; c = 2.5, 7.5, 8.75; d = 8, 10, 12; e = 130, 160, 180.

2.2. Characterization

The phase composition of the samples was characterized by X-ray powder diffraction
(XRD, Mini Flex600, Rigaku Coporation, Tokyo, Japan with monochromatized Cu Kα radiation
(λ = 1.54056 Å), operating at 40 kV and 15 mA, with a scanning rate of 20◦/min from 10◦ to 80◦.
The concentration of each ion was measured by Inductively Coupled Plasma (ICP, Optima 7000DV,
Perkin Elmer, Waltham, MA, USA), which was used to examine adsorption/desorption activity
of the samples. The morphology of the samples was examined by scanning electron microscopy
(SEM, S-4800, Hitachi, Tokyo, Japan) while morphology and crystal lattice were obtained by high
resolution transmission electron microscopy (HRTEM, Libra120, Carl Zeiss AG, Jena, Germany).
The chemical phase of manganese in the sample was analyzed by X-ray photoelectron spectroscopy
(XPS, EscaLab 250Xi, Thermo Fisher, Shang Hai, China), with AlKα radiation (hv = 1103 eV), C1s of
20.05 eV to calibration.

2.3. Adsorption Behavior

2.3.1. Adsorption Capacity Test at Different pH Value

The lithium ion adsorption behavior test was measured by stirring (200 rpm) 0.1 g HMO in 500 mL
LiCl·H2O solution (pH value: 4, 5, 6, 7, 8, 9, 10 and 11, respectively), adjusted by a buffer solution
composed of 0.1 mol·L−1 NH4Cl and 0.1 mol·L−1 HCl and 0.1 mol·L−1 NH4OH) with a uniform initial
concentration of lithium ions (50 mg·L−1) at 18 ◦C for 12 h.

The adsorption capacity is calculated by Equation (1).

Qt = C0 − Ct ×V/W (1)

where C0 is the initial concentration of metal ions (mg·L−1); Ct is the concentration of metal ions at
time t (mg·L−1); V is the volume of solution (L); and W is the weight of HMO ion sieve (g).

2.3.2. Static Kinetic Test

The lithium ion adsorption behavior test was measured by stirring (200 rpm) 0.1 g HMO in
500 mL LiCl·H2O solution (Ph = 10, adjusted by a buffer solution composed of 0.1 mol·L−1 NH4Cl and
0.1 mol·L−1 NH4OH) with a uniform initial concentration of lithium ions (50 mg·L−1) at 18 ◦C for 12 h.

The data of the HMO adsorption capacity was fitted by a simplified Crank’s single-hole diffusion
model to obtain an efficient film coefficient (De) by Equation (2) [24,25].

Qt

Q∞
= 1− 6

π2 × exp
(
−π2 × De × t

r2

)
(2)
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where Q∞ is the adsorption capacity at the final time(mg·L−1); De is the diffusion coefficient (cm2·s−1);
and r is the particle size of the adsorbent (cm).

The pseudo-first-order kinetic model (Equation (3)) and the pseudo-second-order kinetic model
(Equation (4)) were used to simulate the saturated adsorption curve, aimed to confirm the kinetic
constant of the adsorption process.

lg(Qe −Qt) = lgQe −
(

K1

2.303

)
× t (3)

t
Qt

=
1

K2
× 1

Q2
e
+

1
Qe
× t (4)

where Qe is the adsorption capacity when it reaches the adsorption equilibrium (mg·L−1); Qt is
the adsorption capacity calculated with Equation (1); K1 is the adsorption rate constant of the
pseudo-first-order kinetic model; and K2 is the adsorption rate constant of pseudo-second-order
kinetic model.

2.3.3. Adsorption Isotherm Test

The lithium ion adsorption behavior test was measured on HMO (0.04, 0.075, 0.11, 0.15 and
0.19 g) in 500 mL initial concentrations (10, 20, 30, 40 and 50 mg·L−1 LiCl·H2O solution) were added to
five flasks respectively, (Ph = 10, adjusted by a buffer solution composed of 0.1 mol·L−1 NH4Cl and
0.1 mol·L−1 NH4OH). The flasks were shaken on a shaker at 200 rpm at 18 ◦C for 12 h.

The adsorption isotherm curve is fitted according to the following isotherm models:
Langmuir isotherm model:

Qe1 =
Qm × KL × Ce

1 + KL × Ce
(5)

Freundlich isotherm model:
Qe2 = KF × C1/n

e (6)

where Qm is the theoretically calculated maximum adsorption capacity; KL is the Langmuir constant;
KF is the Freundlish constant; and n is an empirical constant.

2.4. Selective Adsorption Behavior

The selectivity of lithium ions compared with other coexisting ions in brine was adjusted pH
value to 10 by 0.1 mol·L−1 NH4OH, carried out by stirring (200 rpm) 0.1 g ion sieve in 20 mL
saline brine at 20 ◦C for 72 h. The adsorption capacity of metal ion at equilibrium (Qe), distribution
coefficient (Kd), separation factor (αLi

Me) and concentration factor (CF) are calculated according to the
following equations:

Kd = C0,Me − Ce,Me ×V/(Ce,Me ×W) (7)

αLi
Me = Kd,Li/Kd,Me (Me = K+, Ca2+, Na+, Mg2+, Li+) (8)

CF = Qe,Me/C0,Me (Me = K+, Ca2+, Na+, Mg2+, Li+) (9)

where C0, Me is the initial concentrate of ions in brine (mg·L−1); Ce, Me is the final concentrate of ions
in brine after adsorption (mg·L−1); V is the volume of solution (L); W is the weight of the HMO ion
sieve (g); Qe, Me is the saturated adsorption capacity of ions in brine (mg·g−1).

2.5. Desorption Behavior

LMO was renamed LMO-1 after the Li+ adsorption of the HMO. The curve of the Li+ extraction
and manganese dissolution was carried out by stirring (200 rpm) 0.1 g LMO-1 in 500 mL hydrochloric
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acid solution (0.04 mol·L−1) for 24 h at 20 ◦C. The extraction ratio of lithium and the dissolution loss
ratio of manganese were calculated using Equation (10).

RMe =
Ct,Me ×V

WMe
× 100% (Me = Mn2+, Li+) (10)

where RMe is the extraction ratio of lithium or dissolution loss ratio of manganese; Ct,Me is the element
concentration of different times; V is the solution volume and WMe is the weight of Me in the LMO-1.
The influence of hydrochloric acid concentration was studied by stirring (200 rpm) 0.05 g LMO-1 in
100 mL hydrochloric acid solution (0.02–0.1 mol·L−1) for 12 h at 20 ◦C.

3. Results and Discussion

3.1. Optimization of Synthesis Parameters

The XRD patterns of the products obtained under different conditions are shown in Figure 2.
Figure 2a shows intermediate γ-MnOOH (JCPDS cards no. 50-0009) was produced at low Li+

concentration. With the increase of Li+ (>11 mol·L−1), the target LMO was produced and intermediate
γ-MnOOH was disappeared. Figure 2b indicates that with the increase of the amount of KMnO4,
the LMO lattice structure becomes stable gradually but when the amount of KMnO4 was above 9 g,
the impurity (∇) was generated. Figure 2c shows that using lower ethanol volume in the synthesis
process resulted in the formation of intermediate Li4Mn14O27·xH2O (JCPDS cards no. 41-1379).
When the volume fraction increases above 8.75%, the impurity peak (•) was observed. Figure 2d
showed that the intermediate Li4Mn14O27·xH2O and γ-MnOOH were first formed within a short
reaction time and LMO could be obtained after 12-h reaction. Figure 2e reflects the effect of reaction
temperature on the LMO. Li4Mn14O27·xH2O and γ-MnOOH were produced at the lower temperature
and LMO could be synthesized when the reaction temperature over 160 ◦C. Thus, we found the
optimal LMO could be obtained at Li+ concentration of 11 mol·L−1, hydrothermal reaction at 160 ◦C
for 12 h, ethanol volume fraction of 7.5%, using 3 g of KMnO4. We speculate the synthesis is followed
by the mechanism illustrated in Figure 3. In LiCl·H2O solution, KMnO4 is firstly reduced by ethanol
and the intermediates Li4Mn14O27·xH2O and γ-MnOOH are formed. Then γ-MnOOH is oxidized by
KMnO4 and Li4Mn14O27·xH2O is furthered reduced by ethanol simultaneously. Finally, the lithium
ion enters the Mn-O framework to form cubic LMO with the increase of lithium concentration.
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Figure 3. Synthetic mechanisms: (a,b) synthesis of LMO; (c) absorption-desorption mechanism of
λ-MnO2 (HMO) and LMO.

3.2. Ion-Sieves Characterization

Figure 4 shows the XRD patterns of the LMO, HMO and the sample after adsorption process
(noted as LMO-1). The diffraction peak of LMO corresponds to a cubic spinel HMO structure [space
group: Fd3m (JCPDS 35-0782)], with the lattice constants is 8.23 Å. It should be noted that the XRD
patterns of HMO and LMO-1 are similar with the diffraction patterns of LMO, with lattice constants
of 8.01 Å and 8.23 Å, respectively, indicating that the Li+ is free to access the structure and the Mn-O
lattice remains stable during the adsorption and desorption process. It is found that the diffraction
peak of HMO shifts to a higher diffraction angle than that of LMO, which can be explained by the
mechanism showed in Figure 3c. During the Li+ desorption process, H+ in the solution replaces the
original position of Li+ in the LMO the ionic radius of H+ is smaller than Li+, leading to cell shrinkage,
which is also reported in literature [26]. The characteristic diffraction peaks of LMO-1 are still sharp
and only the intensities decreased compared with the LMO, indicating that the HMO can be used for
efficient adsorption of Li+.
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Figure 5 describes the XPS spectra of LMO and HMO. As showed in Figure 5a, the spectra of
the Mn3s orbit shows the binding energy difference of the two peaks was 5.15 eV (∆E = 5.15 eV),
indicating that the valences of Mn in LMO are +3 and +4. The binding energy of Mn3+ peak
was 641.33 eV and Mn4+ peaks were 643.76 eV and 642.66 eV, which were obtained by means of
peak-differentiation-imitating analysis at the Mn2p3/2 orbit (Figure 5b). The results are in line with a
previous report [27]. The average valence of Mn in LMO (+3.65) could be calculated (Table 2), which is
higher than the theoretical valence (+3.5), indicating that proportion of Mn3+ in LMO is lower than
theoretical. Thus, it can be deduced that LMO has a more stable crystal structure. Figure 5c is the
XPS spectra of HMO in the Mn3s orbit and the binding energy difference of the two peaks is 4.78 eV,
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indicating that the manganese valence in HMO is +4. Furthermore, this is also proven by the peak of
HMO in the Mn2p3/2 orbital (Figure 5d).Processes 2018, 6, x FOR PEER REVIEW  7 of 14 
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Figure 5. X-ray photoelectron spectroscopy (XPS) Mn3s and Mn2p spectra of LMO and HMO.

Table 2. Average valances of Mn element in LMO and HMO.

Sample Binding Energy (eV) Chemical State Peak Area Average Valences

LMO
643.76 Mn2p3/2 Mn4+ 38,795.51

+3.65642.66 Mn2p3/2 Mn4+ 40,557.36
641.33 Mn2p3/2 Mn3+ 42,725.95

HMO — Mn2p3/2 Mn4+ — +4

Figure 6 shows the morphology of LMO, HMO and the ion-sieve after Li+ adsorption (LMO-1).
The LMO presents regular hexagonal shape with the thickness of 110 nm and the lateral size of
~300–400 nm (Figure 6a). It is apparent that the LMO (Figure 6b) have a smooth surface without
agglomeration, while HMO and LMO-1 appear to have a small crack on the surface (Figure 6c).
We speculate that it is attributed to the manganese loss after acid treatment that results in partial
collapse of the crystal. However, HMO and LMO-1 can still remain their intact hexagonal structure
and it is consistent with the XRD results in Figure 4.
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Figure 6. Scanning electron microscopy (SEM) images of LMO (a,b), HMO (c) and LMO-1 (d).

Figure 7 shows the HRTEM images of LMO and HMO. Both LMO and HMO were observed as a
non-agglomerated particle with a regular hexagonal morphology (Figure 7a,d). The lattice spacing are
0.478 nm and 0.477 nm, respectively, as shown in Figure 7b,f, which agrees with the (111) crystal plane
of the XRD pattern in Figure 4. The selected area electron diffraction (SAED) patterns of LMO and
HMO can be seen in Figure 7c,g, the dot matrix confirms their cubic single-crystal structures.
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3.3. Adsorption Behavior of the HMO

3.3.1. Effect of pH Value on Adsorption Capacity

Figure 8 describes the pH value effect on the Li+ adsorption process. The adsorption capacity
of HMO was very low in acidic condition. The adsorption capacity of HMO increased sharply and
then reached the maximum with the pH value increase in solution, which indicated that alkaline
adsorption environment favored the adsorption of HMO. The adsorption-desorption mechanism of
LMO can be explained by Figures 1 and 3c. Adsorption Li+ at alkaline condition is beneficial to the
formation of LMO and desorption of Li+ at the acid condition is beneficial to the formation of HMO.
The mathematic relationship [12] between adsorption capacity (Qe) and pH could be described by
the equation Qe = f (Ce, pH). The Qe (the amount of Li+ insertion) increases by the increase of pH.
When the pH was greater than 10, the adsorption capacity of HMO hardly increase with the increase
of pH value. We speculated that the reduction of Mn4+ was accelerated under the strong alkaline
condition, so the adsorption of the ion sieve was inhibited. Therefore, when pH > 10, the adsorption
capacity Qe tends to be stable. The similar phenomenon was also found by other reseachers [28].
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3.3.2. Static Adsorption Test

Figure 9 shows that the adsorption process occurs primarily in the rapid adsorption stage and the
exchange of Li+ into the spinel lattice dominates the adsorption flat stage. Table 3 compares synthesis
method and adsorption capacity of λ-MnO2 in this paper with those of other paper. Solid-phase [19,20]
method is often reacted with high energy consumption. It is apparent that hydrothermal method
usually uses strong alkaline LiOH [29] or acidic manganese salt [23] as raw material with the
disadvantage of corroding equipment. In this study λ-MnO2 was obtained by the one-pot hydrothermal
method under neutral and mild condition. The adsorption capacity is 24.7 mg·g−1, 64.4% of the
theoretical adsorption capacity Qth = MLi

Mλ−MnO2
= 6.94×1000

180.94 = 38.3 mg·g−1; Q
Qth

= 24.7
38.3 = 64.4%, which

is higher than the 49.2% of the theoretical adsorption capacity reported in the paper [23]; and 61.9% of
the theoretical adsorption capacity in the paper. The Crank’s model was used to predict the adsorption
rate of Li+. The model fitted well with the experimental data. The efficient film coefficient (De)
were calculated by Equation (2) as 1.35 × 10−5 cm2·s−1. The correlation coefficient (R2) was 0.9971.
The coefficient of mass transfer (k) can be obtained by efficient film coefficient and physical property of
adsorption system. In all, De derived from fitting calculation provides a vital parameter of feed height
in adsorption tower design [30].
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Table 3. Similar method of adsorption capacity comparison.

Ion Sieve Raw Materials Method Temp. (◦C) t (h) Crystal
Morphology

Q
(mg·g−1)

Q
Qth

(%) Ref.

λ-MnO2 Mn(NO3)2, LiOH, H2O2 hydrothermal 110 10 Nanowire 23.7 61.9 [29]

λ-MnO2 MnSO4, (NH4)2S2O8 hydrothermal 150
650

12
6 Nanowire 16.9 49.2 [23]

λ-MnO2 LiNO3, Mn(NO3)2 solid-phase 700 1 Sphere - [20]
λ-MnO2 Li2CO3, MnCO3 solid-phase 800 5 - - [19]
λ-MnO2 LiCl KMnO4 ethanol hydrothermal 160 12 Hexagonal 24.7 64.4 This work

3.3.3. Adsorption Kinetic Test

Figure 10 shows the linear fitting of the pseudo-first-order kinetic model and the
pseudo-second-order kinetic model. Table 4 compares the fitted kinetic data of the two models
at same temperatures. Under the same test conditions, the two models both predicted the adsorption
capacity and the correlation coefficient (R2) of the pseudo-second-order kinetics equation is much
larger than the pseudo-first-order kinetic equation (R2 = 0.7678). These data reveal that the adsorption
behavior of the HMO ion sieve conforms to the pseudo-second-order kinetics model and the adsorption
process is primarily chemical adsorption [31].Processes 2018, 6, x FOR PEER REVIEW  11 of 14 
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Table 4. Dynamic parameters of lithium adsorption.

Temperature Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

K1 Qe1 R2 K2 Qe2 R2

18 ◦C 0.115 8.41 0.7678 0.0687 25.3 0.9998

3.3.4. Adsorption Isotherm of Li+ on HMO

The adsorption constants and the correction factors were obtained by Langmuir and Freundlich
equations fittings. Table 5 lists the various parameter values for both models. Figure 11 show the fitting
effect of the two models. The Langmuir isotherm model (R2 = 0.9999) fitting was much better than
that of the Freundlich isotherm model (R2 = 0.9918) compared with the experimental data. This result
indicates that the HMO has homogeneous adsorption sites.
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Figure 11. Langmuir and Freundlich isotherms of Li+ adsorption by HMO at 18 ◦C.

Table 5. Adsorption isotherm constants of Li+ on HMO.

Temperature
Langmuir Model Freundlich Model

KL Qm R2 KF n R2

18 ◦C 0.415 24.6 0.9999 13.2 6.38 0.9918

3.4. Absorption Selectivity of HMO

Table 6 shows the HMO ion sieve adsorption selectivity for Li+ compared with other coexisting
metal ions in brine, including Na+, K+, Ca2+ and Mg2+. According to Table 6, the adsorption capacity
of HMO in brine is 6.26 mg·g−1, which is lower than the value of that in the pure Li+ solution. We
speculated that the acidic environment (pH = 5.64) is not conducive to the free insertion of lithium
ions in λ-MnO2. The distribution coefficients (Kd) are in the order of Li+ > Ca2+ > K+ > Na+ > Mg2+,
indicating high selectivity for Li+, compared with other metal ions. The ion sieve showed excellent ion
selectivity, especially for Mg2+, whose separation factor (αLi

Mg) is 1.35 × 103. This solves the problem
of separating Li+ and Mg2+ in brine with a high ratio of magnesium to lithium. Na+, K+, Ca2+, Mg2+

in solution do not have competitive effect with Li+ during ion sieve adsorption process since the
concentration factor (CF) of Li+ is higher than other ions.
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Table 6. Adsorption selectivity data of metal ions on HMO in brine.

Metal Ion C0 (mg·L−1) Ce (mg·L−1)) CF (L·g−1 × 10−3) Qe (mg·g−1) Kd (mL·g−1) ffLi
Me

Li+ 319.3 288.0 19.6 6.26 19.6 1.00
Na+ 1810.0 1804.6 0.591 1.07 0.592 36.7
K+ 815.8 812.6 0.793 0.647 0.796 27.3

Ca2+ 121.8 120.2 2.63 0.320 2.63 8.16
Mg2+ 119,600.0 119,590.4 0.0161 1.93 0.0161 1.35 × 103

Experiment conditions: T = 18 ◦C, pH = 5.64, V = 20.0 mL, W = 0.100 g.

3.5. Desorption Behavior of LMO-1

Figure 12 shows the desorption curve of Li+ or Mn2+ after adsorption. It was observed that
the extraction of Li+ and Mn2+ occurred rapidly at the beginning of the desorption process, almost
reaching the maximum extraction rate at 20 min, then slightly rose up to 22.0 mg·g−1 and 38.9 mg·g−1,
respectively. The maximum extraction rate of RLi

+ is 98.7%. The dissolution of Mn2+ (RMn
2+) is

only 3.9%, which was calculated by Equation (10). This phenomenon may benefit from the unique
layered structure. Integrity shape without defect with a larger surface can sufficiently contact with Li+

of solution and maintain adsorption stability, accelerating the absorption and desorption process.

Processes 2018, 6, x FOR PEER REVIEW  12 of 14 

 

3.4. Absorption Selectivity of HMO 

Table 6 shows the HMO ion sieve adsorption selectivity for Li+ compared with other coexisting 
metal ions in brine, including Na+, K+, Ca2+ and Mg2+. According to Table 6, the adsorption capacity 
of HMO in brine is 6.26 mg·g−1, which is lower than the value of that in the pure Li+ solution. We 
speculated that the acidic environment (pH = 5.64) is not conducive to the free insertion of lithium 
ions in λ-MnO2. The distribution coefficients (ୢܭ) are in the order of Li+ > Ca2+ > K+ > Na+ > Mg2+, 
indicating high selectivity for Li+, compared with other metal ions. The ion sieve showed excellent 
ion selectivity, especially for Mg2+, whose separation factor (ߙ୑୥୐୧ ) is 1.35 × 103. This solves the 
problem of separating Li+ and Mg2+ in brine with a high ratio of magnesium to lithium. Na+, K+, Ca2+, 
Mg2+ in solution do not have competitive effect with Li+ during ion sieve adsorption process since the 
concentration factor ሺܥ୊ሻ of Li+ is higher than other ions. 

Table 6. Adsorption selectivity data of metal ions on HMO in brine. 

Metal Ion ࡯૙ (mg·L−1) ܍࡯ (mg·L−1)) ۴࡯ (L·g−1 × 10−3) ܍ࡽ (mg·g−1) ܌ࡷ (mL·g−1) ܑۺ܍ۻࢻ  
Li+ 319.3 288.0 19.6 6.26 19.6 1.00 
Na+ 1810.0 1804.6 0.591 1.07 0.592 36.7 
K+ 815.8 812.6 0.793 0.647 0.796 27.3 

Ca2+ 121.8 120.2 2.63 0.320 2.63 8.16 
Mg2+ 119,600.0 119,590.4 0.0161 1.93 0.0161 1.35×103 

Experiment conditions: T = 18 °C, pH = 5.64, V = 20.0 mL, W = 0.100 g. 

3.5. Desorption Behavior of LMO-1 

Figure 12 shows the desorption curve of Li+ or Mn2+ after adsorption. It was observed that the 
extraction of Li+ and Mn2+ occurred rapidly at the beginning of the desorption process, almost 
reaching the maximum extraction rate at 20 min, then slightly rose up to 22.0 mg·g−1 and 38.9 mg·g−1, 
respectively. The maximum extraction rate of RLi+ is 98.7%. The dissolution of Mn2+ (RMn2+) is only 
3.9%, which was calculated by Equation (10). This phenomenon may benefit from the unique layered 
structure. Integrity shape without defect with a larger surface can sufficiently contact with Li+ of 
solution and maintain adsorption stability, accelerating the absorption and desorption process. 

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

 Li+    cond. data
 Mn2+ cond. data

 

Time (min)

R
Li

+  (
%

)

0

1

2

3

4

5

6

R
M

n (%
)

 
Figure 12. Desorption and Dissolution loss behavior of LMO-1. 

4. Conclusions 

A series of LMO was successfully prepared via a facile one-pot hydrothermal method and we 
optimized synthetic conditions as well. The HMO ion-sieve has unique hexagonal spinel structure 
with the thickness of 110 nm and lateral size of 300–400 nm. XRD patterns of LMO and HMO 
confirm their high crystallization degree. The average valence of Mn in LMO is +3.65, which higher 

Figure 12. Desorption and Dissolution loss behavior of LMO-1.

4. Conclusions

A series of LMO was successfully prepared via a facile one-pot hydrothermal method and we
optimized synthetic conditions as well. The HMO ion-sieve has unique hexagonal spinel structure
with the thickness of 110 nm and lateral size of 300–400 nm. XRD patterns of LMO and HMO confirm
their high crystallization degree. The average valence of Mn in LMO is +3.65, which higher than that
in theory (+3.5). The adsorption capacity of HMO is 24.7 mg·g−1 in Li+ solution and the dissolution of
Mn2+ is only 3.9%. The adsorption equilibrium isotherms data are well fitted with Langmuir model.
Moreover, the distribution coefficients (Kd) of HMO is much larger between Li+ and Mg2+ and the
separation factor (αLi

Mg) was 1.35 × 103. Therefore, our HMO ion-sieve shows great potential to extract
lithium in brine or seawater under high magnesium ratio conditions.
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