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Abstract: A dynamic model of a concentrating solar thermal array and thermal energy storage
system is presented that is differentiable in the design decision variables: solar aperture area
and thermal energy storage capacity. The model takes as input the geographic location of the
system of interest and the corresponding discrete hourly solar insolation data, and calculates
the annual thermal and economic performance of a particular design. The model is formulated
for use in determining optimal hybridization strategies for industrial process heat applications
using deterministic gradient-based optimization algorithms. Both convex and nonconvex problem
formulations are presented. To demonstrate the practicability of the models, they were applied to
four different case studies for three disparate geographic locations in the US. The corresponding
optimal design problems were solved to global optimality using deterministic gradient-based
optimization algorithms. The model and optimization-based analysis provide a rigorous
quantitative design and investment decision-making framework for engineering design and project
investment workflows.

Keywords: concentrating solar thermal; CST; concentrating solar power; CSP; parabolic trough; PTC;
thermal storage; industrial process heat; hybrid solar

1. Introduction

Industrial process systems are enormous consumers of energy (9.23 TWhth), accounting for
roughly one-third of all delivered energy use (28.64 TWhth) in the United States in 2017 [1].
Roughly 60% of the energy consumption in the industrial sector is from the manufacturing sector,
which accounts for roughly 20% of the total US energy consumption [2]. The industrial sector
has historically been the largest consumer of natural gas [1] as both a feedstock and a primary
energy source. In manufacturing, industrial process heat (IPH) accounts for roughly 70% of the total
process energy consumed in the US [3]. When broken down by fuel consumption, the manufacturing
sector accounts for roughly 95% of all IPH demand in the US [3]. Further, since the majority of these
process systems require low- or medium-temperature process heat (<250 ◦C) [3,4], there is a substantial
opportunity to reduce fossil fuel consumption and carbon emissions by augmenting existing IPH
systems with solar thermal power and designing new systems incorporating solar thermal power.

Numerous studies have been conducted over the past 40 years on the potential that solar energy
can play within IPH systems [4–9]. Active interest in the topic in recent years has been motivated
largely by the concern over unsustainable energy consumption, greenhouse gas emissions, and overall
environmental impact of commercial and industrial sectors [10]. Attention to the feasibility of solar
applications to specific industries has been made, such as: food and beverage [11], mining [12,13],
agriculture [14,15], textiles [11,16–19], pulp and paper [20,21], chemicals [22,23], and building
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construction materials [4], among others. Recent reviews [4,6,7,9] resolve the individual industries by
their similar unit operations (e.g., drying, hot water, sterilization, etc.). Results of such studies indicate
general feasibility of solar in IPH applications; however, the economic viability is extremely sensitive
to the application and geographic region of the project. Given the diversity of IPH demand profiles
across industries and applications as well as the widely-varying solar resource performance profiles
across geographic locations, a formal numerical simulation and optimization-based design approach
is necessary to ensure the economic viability of hybrid solar-IPH systems.

1.1. Modeling, Simulation, and Optimization

Numerous models with varying levels of complexity and usage scenarios have been proposed
for the design and simulation of solar thermal energy systems [24–37]. Specifically, the focus of this
paper is on the application of modeling and simulation for mathematical optimization-based design of
solar-IPH systems.

A formal mathematical optimization approach was applied by Ghobeity and Mitsos [28] to
the design and operation of a solar thermal receiver and thermal energy storage (TES) system with
a constant IPH demand for high-temperature steam generation (for power cycles). A sequential
design approach was applied that first considers minimizing total solar cost with the solar array size
and TES capacity as design decision variables and several operating decision variables related to
the proposed dynamical model [28]. The model was developed for use with gradient-based local
optimization solvers and utilized a total daily concentrated energy value based on a single winter day
and a heliostat field efficiency calculated for a location in Cyprus [28]. The economic objective was
considered as a simple linear cost model with fixed specific costs for the TES medium and solar array.
The second optimization problem considered the yearly operation for the fixed design based on the
winter day. Thus, for the fixed design, feasible optimal operating conditions were found with respect
to 12 representative days throughout the year [28].

Modeling and simulation for hybridizing power cycles with concentrating solar thermal (CST)
power was recently considered by Gunasekaran and coworkers [30] with system optimization by
Ghasemi and coworkers [29] and Ayub and coworkers [36]. In [29], the focus was on optimizing
the operation of the hybrid system without considering TES. In [36], economics were considered
to optimize the levelized cost of electricity. However, due to the regional dependence of the solar
model and economic assumptions, optimization with respect to the economics of the parabolic trough
solar concentrator (PTC) array sizing were omitted. Additionally, in [36], no TES was considered.
The thermo-economic model was implemented in Engineering Equation Solver (EES) and a shortcut
method is used to optimize the hybrid system using intermediate variables calculated from the
AspenPlus sequential-quadratic programming (SQP) optimizer.

A simplified approach to the optimal design of solar water heating systems was presented by
Yan et al. [33]. The authors developed a high-level energy conservation model of the water heating
system including TES as a hot water tank. The design decision variables were taken as the array size
and the TES capacity and the objective was the lifecycle savings. The authors [33] proposed an approach
based on diminishing marginal utility and identified optimal solutions based on the intersection of
marginal energy savings and marginal embodied energy curves. Although their simplified approach
was effective for the water-heating application, IPH applications and their dramatically differing
energy demand profiles complicate the optimal design problem as the total utilizable energy and
lifecycle savings exhibit large degrees of nonlinear sensitivity to the decision variables [33].

A hybrid solar-IPH design strategy based on heat integration was considered by
Baniassadi et al. [34]. The authors considered fixed array designs determined by maximizing the solar
fraction for a particular pre-determined investment and analyzed the various options for coupling
solar energy with process streams. They proposed an algorithm which uses the various process stream
temperatures and pinch analysis to identify the best process stream to exchange solar energy with.
They utilized a commercial simulator to calculate the performance of the solar system and subsequently
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the economics of the retrofit strategy [34]. Although the analysis identifies some technical challenges
of physically coupling the solar thermal system with the process from a heat integration perspective,
it does not adequately address the fundamental design considerations of the solar system itself [34].
Further, their approach cannot be used within mathematical optimization-based design strategies as
the solar performance model is only accessible as an ad-hoc black-box simulation [34].

In [31], Silva and coworkers considered a formal simulation and optimization-based design
approach to hybrid solar-IPH systems. In their work, a single-tank thermocline TES device
was modeled along with a PTC array for medium-temperature (100–250 ◦C) IPH applications.
Three economic objective functions were considered: levelized cost of energy, payback time,
and lifecycle savings as their base case [31]. Four design variables were considered in their work:
the number of PTC modules in series, the number of PTC modules in parallel, the spacing between
the rows, and the TES capacity [31]. The authors propose a derivative-free non-deterministic memetic
optimization algorithm based on a modified genetic algorithm [31]. They make explicitly clear that this
approach is in response to the major challenges in optimizing dynamical systems based on simulation:
possible discontinuities, nonlinearity, and expensive complex objective function evaluations [31].

In [32], a hybrid solar-IPH system for zero-liquid discharge desalination (<250 ◦C) was considered.
Similar to [31], a formal simulation and optimization-based design approach was taken using the
net-present value as the economic objective. The design variables considered for the base-case were
the number of PTC modules and the TES capacity. A formal robust design problem was considered as
a nonconvex non-cooperative game by taking into account uncertainty in the natural gas and product
markets and solving the problem formulated as a semi-infinite program [32]. Again, the authors
note that due to the non-differentiable nature of the model, a derivative-free genetic algorithm-based
optimization approach must be used with subsequent analysis to verify feasibility and optimality of
solutions [32].

The past approaches to modeling, simulation, and optimization of solar-IPH systems have all
shown favorable results using model formulations or approaches specific to the application of interest
or more general formulations which pose challenges for deterministic gradient-based optimization.
There exists a need for a dynamic model of a CST-TES system for designing optimal hybrid solar-IPH
systems with accurate economic models for assessing technology investment risk and the economic
viability of such projects. In this paper, a model is developed for low- to medium-temperature CST-TES
systems for assessing the economic viability and overall project feasibility of hybrid solar-IPH systems.
The model accounts for a single-axis tracking PTC array, a TES device, and utilizes high-accuracy
hourly solar resource data for the United States available from an open-access database. The model
is developed specifically for use with deterministic (global) optimization algorithms, and therefore
accounts for convex analysis, differentiability, and the trade-offs between computational efficiency and
model accuracy.

In Section 2, the hybrid solar-IPH process performance model will be developed which includes
a smooth formulation, a model of a PTC with solar angle calculations for high-resolution dynamic
simulation of CST performance, an economic model for assessing design feasibility and investment
decision-making, and a mathematical optimization formulation. Additionally, the key theoretical
results and analysis of the model are presented in Section 2. In Section 3, four numerical case studies
for varying fuel costs and IPH demand profiles across three geographically-disparate locations are
presented and discussed followed by the Conclusion in Section 4.

2. Model Formulations

2.1. Concentrating Solar Thermal Model

For a surface or defined geometry oriented horizontally, the performance of the solar energy
collector relies on the surface tilt angle and the incidence angle of the irradiation striking the surface.
Here, we consider the model of a PTC, illustrated in Figure 1 with the aperture area of a single trough
given by Aa = LaLm. The total optical efficiency of the reflector is defined in the following.
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Figure 1. (left) An illustration of a parabolic trough solar concentrator (PTC) with the defined array
length Lm, aperture length La and the aperture plane with incident solar radiation. (right) The
large-aperture PTC (Skyfuel, Lakewood, CO, USA) powering a solar thermal desalination pilot by
Stuber et al. [38].

Definition 1 (Optical Efficiency, ηopt [30]). The optical efficiency of the PTC ηopt is given by:

ηopt = ε1ε2ε3ε4ε5ε6rmarτK, (1)

where εi ∈ [0, 1] for i = 1, . . . , 6 are efficiency factors related to various components of the PTC and the incidence
angle modifier K is given by the empirical relationship [39,40]:

K ≡ (cos θ + 8.84× 10−4θ − 5.369× 10−5θ2). (2)

Here, ε1 is the shadowing factor of the receiver tube (=0 for fully-shadowed and =1 for no shadowing), ε2

is the tracking error factor (=1 for no tracking error), ε3 is the geometry error (=1 for no geometric or mirror
alignment errors), ε4 is the mirror dirt factor (=1 for perfectly clean mirrors), ε5 is the dirt factor for the glass
envelope enclosing the receiver tube (=1 for perfectly clean glass), and ε6 are the unaccounted for losses (=1 for
no unaccounted losses). The factor rm is the reflectance of perfectly clean mirrors (=1 for 100% reflectance), ar is
the absorptance of the receiver tube itself (=1 for a perfect black-body), and τ is the transmittance of the glass
envelope enclosing the receiver tube. The factor K accounts for the fact that irradiance is not normal to the PTC
aperture (unless the array has two-axis tracking). The incidence angle θ follows from the solar position model in
Appendix A.

With the above quantities, the specific thermal power potential (in units of kWth/m2) is given by

q̂ = Idηopt/1000,

with Id the direct-normal irradiance (DNI) at a particular moment in time and geographic location
(in standard units of W/m2). Note the DNI values Id come from experimental measurements.
These values are available for specific geographic locations in the US (and some international regions)
for annual time horizons with hourly resolution (i.e., 8760 discrete hourly values), via the National
Renewable Energy Laboratory’s (NREL) National Solar Radiation Database (NSRDB) [41]. In this work,
a geographic location is specified and the typical meteorological year (TMY) data is downloaded.
The numerical values of the PTC modeling parameters used in this study can be found in Table A1 of
Appendix B. Finally, the solar thermal power produced (in units of kW) by a solar array is given by

q̇s = q̂xa, (3)

with xa ∈ R+ as the total aperture area of the solar array.
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2.2. Process System Model

The process system of interest is represented by the block-flow diagram in Figure 2. Physically,
the system consists of the solar energy collector as the source of solar thermal energy for the system,
the TES, the IPH system which exists as an energy demand, and the conventional (fossil) energy source
for times of inadequate solar energy.

Solar

Energy
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(PTC)

Process Heat 

System

(IPH)

Thermal 

Storage  

(TES)

Unutilizable/

Lost

Solar

Conventional

Energy

Source
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Figure 2. The block-flow diagram representation of the hybrid solar industrial process heat system
being modeled.

The process system model is developed from a high-level with the following simplifying
assumptions:

1. Heat losses to the environment from piping and heat exchangers is negligible.
2. Heat losses to the environment from the TES is negligible.
3. The process system requires low to medium temperature IPH (i.e., ≤250 ◦C).
4. Heat is always available at or above the minimum temperature as required by the IPH system.
5. The IPH system energy demand is not dependent on the state or design decisions of the solar

energy system.

Under these assumptions, the process system model is developed from the overall energy balance
on the entire system:

q̇s + q̇ng = q̇p + q̇ts + q̇l (4)

where q̇s is the instantaneous thermal power provided by the solar system, q̇ng is the instantaneous
thermal power provided by the conventional fossil-fuel (e.g., natural gas) heating system, q̇p is
the instantaneous thermal power demand by the industrial process (IPH), q̇ts is the instantaneous
power supply/demand of the solar thermal energy storage system, and q̇l is the lost solar thermal
power due to meeting the IPH requirements and reaching the maximum thermal storage capacity
(i.e., the unutilizable solar energy). Note that q̇ts can be both positive (charging state) and negative
(discharging state).

The complicating details for accounting for energy in the system comes from the capacity
limitations of the TES. For example, without TES, the solar array will simply deliver all its energy to the
IPH system until the full power demand q̇p is met. At which point, the solar array will simply de-focus,
or we account for the positive difference between the supply and demand as losses or unutilizable
solar q̇l . The negative difference between the supply and demand is simply accounted for by the
conventional heating system q̇ng. However, with the existence of a TES device, the positive difference
between solar thermal power supply and IPH demand can be stored and used in future times when
the solar system alone cannot meet the IPH demand. This complicates the model since we assert a
preference for solar energy over conventional energy sources, and hence must account for the finite
capacity of the storage device and its stored capacity at each instant in time.
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Rearranging Equation (4) to focus on the storage device, we get:

q̇ts + q̇a = q̇s − q̇p

where we have introduced q̇a = q̇l − q̇ng for ancillary energy accounting. Physically, this quantity is
used for load balancing control (i.e., balancing energy supply and demand). Equivalently, we write:

dqts

dt
= q̇s − q̇p − q̇a, qts(t) = 0, t ∈ [0, tend],

assuming the TES device is empty at the start of the simulation. Applying the explicit Euler integration
scheme with h = ∆t as the discrete time step-size (1 h for standard solar data), we can write:

qi+1
ts = qi

ts + h(q̇i
s − q̇i

p − q̇i
a), q1

ts = 0. (5)

Next, we develop the model to account for the finite capacity of the TES device. Since we know
that the energy capacity of the TES device at any instant can only take values between zero and the
maximum capacity, we write:

qi+1
ts = min

{
q̇peak

p xts, max{0, qi
ts + h(q̇i

s − q̇i
p}
}

, q1
ts = 0 (6)

where xts is the storage capacity variable scaled in hours of peak process demand q̇peak
p = maxi q̇i

p,
determined by the process operations schedule model (known a priori). The inner max binary operation
accounts for the condition that if there was excess energy available from the combined solar array
and TES at the previous time, then we should consider storing it for future use. The outer min binary
operation accounts for the condition that, if we are considering storing energy, we can only store at or
below the maximum TES capacity. Equivalently, we can write

min
{

q̇peak
p xts, max{0, qi

ts + h(q̇i
s − q̇i

p}
}
≡ mid

{
q̇peak

p xts, 0, qi
ts + h(q̇i

s − q̇i
p)
}

(7)

where the mid operator selects the median value of the three arguments. Combining Equations (5)–(7),
the overall energy balance becomes:

hq̇i
a = qi

ts + h(q̇i
s − q̇i

p)− qi+1
ts

= qi
ts + h(q̇i

s − q̇i
p)−mid

{
q̇peak

p xts, 0, qi
ts + h(q̇i

s − q̇i
p)
}

. (8)

From this model, there are three possible states from the load-balancing perspective at each
discrete time point i:

1. (q̇i
s < q̇i

p) ∧ (qi
ts < h(q̇i

s − q̇i
p))⇔ q̇i

a < 0

The PTC is not providing enough energy to meet the demand of the process (TES moves into the
discharging state) and there is not enough energy in the TES to meet the demand of the process
over this time step. In this case, conventional energy must be supplied to the process to meet the
full demand of the process.

2. (q̇i
s > q̇i

p) ∧ (q̇peak
p xts − qi

ts < h(q̇i
s − q̇i

p))⇔ q̇i
a > 0

The PTC is providing enough energy to meet the demand of the process (TES moves into the
charging state) and there is not enough available capacity to store all excess energy in the TES
device. In this case, the excess energy must be rejected.

3.
(
(q̇i

s < q̇i
p) ∧ (qi

ts ≥ h(q̇i
s − q̇i

p))
)
∨
(
(q̇i

s ≥ q̇i
p) ∧ (q̇peak

p xts − qi
ts ≥ h(q̇i

s − q̇i
p))
)
⇔ q̇i

a = 0

The TES is either in the discharging state with enough stored energy to meet the full demand,
or it is in the charging state and has enough available capacity to store the solar energy in excess
of the process demand.
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With these relationships, we can write:

q̇i
l = max{0, q̇i

a} and q̇i
ng = −min{0, q̇i

a}, (9)

so that q̇l and q̇ng are accurately accounted for. At any given discrete time point, we have the following
relationship for load balancing:

q̇i
l = q̇i

ng = 0∨ (q̇i
l > 0⇒ q̇i

ng = 0) ∨ (q̇i
ng > 0⇒ q̇i

l = 0).

Note that losses are accounted for here as simply the unutilizable solar power at any given
time step and do not account for standard thermal losses to the environment which occur in thermal
systems. As stated previously, heat losses for the TES are expected to be minimal over the timescale
of charging/discharging cycles. This is valid for well-insulated systems that undergo complete or
nearly-complete discharge over the course of the day. For systems that have long-term (i.e., many days
or months) storage, this assumption will not be valid. Further, TES systems to be installed outdoors
and above-ground may need special consideration of ambient environmental/weather conditions as
large temperature swings and high winds may invalidate this assumption as significant heat transfer
with the environment may occur. In all cases, some heat losses are expected during the course of
operation of the physical systems which will result in an under-sized design proportional to the actual
heat losses, under these assumptions.

Additionally, heat losses from piping and heat exchangers are expected to be minimal. Similarly,
these assumptions are valid for well-insulated systems. To account for any of these losses, the
design engineer may apply higher-fidelity models that take into account operating temperatures, heat
exchanger designs, and overall heat transfer coefficients for the system(s) of concern. However, doing
so at this stage significantly complicates the model from an optimization perspective and negatively
impacts computational tractability. Alternatively, high-fidelity modeling may be used to estimate
average losses for a particular geographic region and IPH temperature requirements. These losses can
then be accounted for as an overall thermal efficiency and used to adjust the IPH demand accordingly,
similar to the factor ε6 in the optical efficiency model for the CST array in Equation (1). Finally, to
assess the performance of a CST system with respect to its ability to augment the use of conventional
energy sources for IPH, we define the annual average solar fraction:

SFc =
∫ tend

0

q̇s − q̇l
q̇p

dt = 1−
∫ tend

0

q̇ng

q̇p
dt.

In terms of the discrete values calculated from Equation (8) and the identities in Equation (9), the
solar fraction can be approximated numerically using:

SF =
∑i h(q̇i

s − q̇i
l)

∑i hq̇i
p

= 1−
∑i hq̇i

ng

∑i hq̇i
p

(10)

which represents the fraction of total energy consumed by the process that is supplied by the solar
system over the entire time interval of interest (e.g., a TMY).

Lastly, although it was assumed that q̇p is not a function of the state or design decisions of the
solar energy system, it need not be constant. For the purposes of studying the effects of transient load
demand on the solar hybridization strategy, we will consider the model:

q̇i
p = q̄p

(
1 + σp sin

[
π

i− 7
12

])
, (11)

which assumes i is in hours (h = 1) with i = 1 corresponding to 1:00 a.m. on 1 January, q̄p is the mean
IPH demand, and σp ∈ [0, 1] is the fractional deviation from the mean IPH demand. For σp = 0,
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this models a constant IPH demand. For σp > 0, this model accounts for a dynamic ramp-up
and ramp-down of demand with a maximum demand at local noon and a minimum demand at
local midnight.

To use the developed models effectively within a simulation-based optimization framework, we
present the following concavity result for SF.

Theorem 1. Let Xa, Xts ⊂ R+ be nonempty compact intervals. The solar fraction SF : Xts × Xa → R is a
concave function on its domain.

Proof. From Equations (7)–(9) and the feasible system states, we can write

hq̇i
l = max

{
0, qi

ts + h(q̇i
s − q̇i

p)− q̇peak
p xts

}
for the q̇i

a > 0 case (or else q̇i
l = 0). The physical meaning of this case is that the solar system is

producing more thermal power than can be used by the process or stored in the TES, and hence
lost/rejected. We can see that h(q̇i

s − q̇i
p) is an affine function of xa and

qi
ts − q̇peak

p xts = mid{q̇peak
p xts, 0, h(q̇i−1

s − q̇i−1
p )} − q̇peak

p xts

is a convex function of xts and xa. Therefore,

qi
ts + h(q̇i

s − q̇i
p)− q̇peak

p xts

is an affine function of xts and xa. Since q̇i
l is the pointwise maximum of an affine function and a

constant, it is convex. From Equation (10), we have the summation of the terms:

q̇i
s − q̇i

l

which is an affine function of xa subtracting a convex function of xts and xa, and hence concave. Finally,
since SF in Equation (10) is a summation of concave functions (the denominator is not a function of xts

or xa), it is concave.

2.2.1. Smooth Approximation

Since the energy balance equations from the previous section involve min and max operators,
differentiability of SF as defined in Equation (10) cannot be guaranteed. Since gradient-based
optimization algorithms typically require all functions to be at least once-continuously differentiable,
we must develop a smooth formulation. Consider the following operator:

maxε{0, z} ≡ 1
2

(
z +

√
z2 + ε

)
, z ∈ R, 0 < ε ∈ R

as a smooth approximation of the binary max operator: max{0, z}. The maximum error between the
max operator and maxε is

√
ε/2 and occurs at z = 0. For |z| >> ε, the error approaches zero. Hence,

for small ε values, this approximation is not expected to introduce appreciable error into the model.
A smooth approximation of SF, as defined in Equation (10), is given by:

SFs =
∑i(q̇i

s −maxε{0, qi
ts + h(q̇i

s − q̇i
p)− q̇peak

p xts})
∑i q̇i

p
. (12)

Again, the motivation of the model development is for use within simulation-based
(global) optimization. The following result ensures that the smooth approximation SFs is concave
and differentiable.
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Theorem 2. Let Xa, Xts ⊂ R+ be nonempty compact intervals. Then, the smooth solar fraction
SFs : Xts × Xa → R is concave and continuously differentiable.

Proof. Let gi : R2 → R : (xts, xa) 7→ qi
ts + h(q̇i

s − q̇i
p) − q̇peak

p xts for some i, and f : R → R : z 7→
minε{0, z}. It is clear that f is convex on R and gi is affine. Therefore, q̇i

l = f ◦ gi is convex for every i.
Further, both f and gi are continuously differentiable on their domains. Therefore, q̇i

l = f ◦ gi is
continuously differentiable on R2. Since SF is defined as the sum of the terms

q̇i
s − q̇i

l ,

with a constant denominator (with respect to xts and xa), it is concave and continuously differentiable
on R2.

2.3. Economic Model

An economic analysis is at the heart of all new-technology investment decision-making. Therefore,
successfully designing a solar-IPH hybridization strategy requires a thorough economic analysis to
ensure an optimal venture. Often, such an analysis consists of a comparison of conventional energy
prices and the levelized cost of electricity (LCOE) for electrical power systems or the levelized cost
of heat (LCOH) for thermal systems. For IPH applications, the LCOH analysis is often appropriate.
However, the LCOH is defined at a high-level as:

LCOH ≡ sum of costs over lifetime
sum of solar heat utilized

,

which cannot be guaranteed to be convex under appropriate assumptions. In contrast, we will develop
the economic model of total lifecycle savings (LCS) which represents the total cost savings (which we
wish to maximize) realized by hybridizing the IPH system with CSP.

The lifecycle savings is defined as the difference between the total lifetime cost of energy for a
conventional system and that of the hybridized system, accounting for the time-value of money and
energy-price inflation:

f k
LCS(x) =

tli f e

∑
i=1

SFs(xts, xa)Cp,i − Ck
cap,i(xts, xa)− Com,i(xts, xa)

(1 + r)i , (13)

where x = (xts, xa) is simply the vector-form of our decision variables, tli f e is the total lifetime of
the project in years, r is the discount rate, Cp,i is the cost of conventional fuel at year i, Ck

cap,i is the
annualized cost of capital including debt service at year i for financing model k, and Com,i is the annual
operating and maintenance (O&M) cost of the CST-TES system at year i. The solar hybridization
design objective then is to maximize f k

LCS, and hence, it is ideal if f k
LCS is concave on its domain.

The optimization problem formulation will be discussed in the next section.
The cost of conventional fuel at year i is given by:

Cp,i = Cth,0(1 + rth)
i−1 ∑

j
hq̇j

p,

where Cth,0 is the current specific thermal energy cost and rth is an inflation rate on the fuel price.
The O&M cost is typically estimated under a fixed-pricing model [42] (i.e., cost per kWh of thermal
energy produced).

The annualized capital expenditure and debt service of the CST-TES system at year i is given by [32]:

Ck
cap,i(xts, xa) =

 rcCk
cap,0(xts, xa)

(
1 + rc

12
)12tdebt

((
1 + rc

12
)12tdebt − 1

)−1
, i ≤ tdebt

0, i > tdebt
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which assumes monthly-compounded interest at an annual rate of rc, over the loan term tdebt (in years).
The term Ck

cap,0 is the total capital expenditure (debt principal), which can be calculated using different
pricing models k. The most common equipment pricing model has the form:

Cdisc
cap,0(xts, xa) = CPTC,0x0.92

a + CTES,0(q̇
peak
p xts)

0.91 (14)

which accounts for discounts in volume pricing (economies of scale). The factors CPTC,0 and CTES,0 are
cost parameters which can be found in Table A2. The exponents of xa and xts and the cost parameters
are derived from various vendor quotes for commercially-available and custom-built equipment. Note,
this model is concave in the variables (xts, xa). Since this term is subtracted within f disc

LCS, concavity of
f disc
LCS cannot be guaranteed using this model, in general, which complicates solving the optimal design

problem (i.e., global optimization is required).
Alternatively, a fixed-pricing (linear) model can be used:

C f ix
cap,0(xts, xa) = xaCPTC + xts q̇peak

p CTES, (15)

where CPTC is the specific installed cost of the solar array ($/m2 aperture area) and CTES is the specific
installed cost of thermal energy storage ($/kWh). Taking CPTC and CTES as a nominal specific cost
for projects at a scale relevant to the design problem will yield results that are sufficiently accurate
for initial design feasibility purposes but could lack the accuracy necessary for detailed design and
economic analysis. Further, without a priori knowledge of the expected scale of a design, accurate cost
estimates cannot be guaranteed with this model.

The following result details the construction of the convex envelope of the concave discounted
equipment pricing model in Equation (14). The convex envelope is the tightest convex lower-bounding
function that can be constructed for any nonconvex function on a domain of interest. The importance
here is that it provides a rigorous lower bound on Equation (14) over its domain of interest while
providing the best-possible convex approximation of Equation (14) over that domain.

Theorem 3. Consider the interval domain X ⊂ R2
+ with X = Xts × Xa = [xL

ts, xU
ts ]× [xL

a , xU
a ]. The convex

envelope of Equation (14) on X is given by

Ccv
cap,0(xts, xa) = ∑

i∈{a,ts}

(
fi(xL

i ) +
fi(xU

i )− fi(xL
i )

xU
i − xL

i
(xi − xL

i )

)
, (16)

with fa(xa) = CPTC,0x0.92
a and fb(xts) = CTES,0x0.91

ts .

Proof. Since Cdisc
cap,0 is separable, we can write Cdisc

cap,0 = fts(xts) + fa(xa). Further, its convex envelope
can be constructed as the sum of the convex envelopes of the separable factors fts and fa [43].
The convex envelopes of these (univariate) factors are calculated simply as the secant lines between
their endpoints:

f cv
i = fi(xL

i ) +
fi(xU

i )− fi(xL
i )

xU
i − xL

i
(xi − xL

i ), i ∈ {a, ts}. (17)

Corollary 1. Let xL
ts = xL

a = 0, CPTC = CPTC,0(xU
a )
−0.08 and CTES = CTES,0(xU

ts q̇peak
p )−0.09. Then (15) is

the convex envelope of Equation (14) on X.
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Proof. Since xL
ts = xL

a = 0, we have fts(xL
ts) = fa(xL

a ) = 0 and Equation (16) reduces to

Ccv
cap,0 = ∑

i∈{a,ts}

(
fi(xU

i )

xU
i

xi

)
= CPTC,0

(xU
a )

0.92

xU
a

xa + CTES,0
(xU

ts q̇peak
p )0.91

xU
ts

xts

= CPTC,0(xU
a )
−0.08xa + CTES,0(xU

ts q̇peak
p )−0.09xts q̇peak

p

= xaCPTC + xts q̇peak
p CTES

= C f ix
cap,0.

From the above results, we have the following relationships between the models:

C f ix
cap,0 ≤ Ccv

cap,0 ≤ Cdisc
cap,0 ⇒ f disc

LCS ≤ f cv
LCS ≤ f f ix

LCS. (18)

for f f ix
LCS constructed via Corollary 1.

2.4. Optimization

The solar hybridization optimal design problem is formulated as a constrained nonlinear program
(NLP) using the economic objective in Equation (13) developed in the previous section. The model is
formulated as

f ∗k =max
x∈R2

f k
LCS(x)

s.t. g(x) ≤ 0 (19)

x ∈ X = {x ∈ R2
+ : xL ≤ x ≤ xU}

where g : R2 → Rnc are nc performance constraints that we may include, and X is simply a
two-component interval vector with xL and xU as lower- and upper-bounds on the variable vector
x = (xts, xa), respectively. In this work, we define only one constraint:

g(x) = ξ − SFs(xts, xa) ≤ 0, ξ ∈ [0, 1]

where ξ represents some minimum fraction of the total IPH energy supply that must come from
solar (e.g., a social responsibility constraint or a tax-incentive constraint). However, this general
formulation can accommodate any relevant set of constraints. The parameters of the optimization
model in Equation (19) can be found in Table A2.

Theorem 4. The constrained NLP in Equation (19) with the inequality constraint g(x) = ξ−SFs(xts, xa) ≤ 0
and k ∈ {cv, f ix} is a convex program.

Proof. Since SFs is concave (Thm. 2) and Ck
cap,i is convex for k ∈ {cv, f ix} and for all i

(Corollary 1), f k
LCS, k ∈ {cv, f ix} is concave by design. Further, since SFs is concave, the function

g(x) = ξ − SFs(xts, xa) is convex. Therefore, the feasible set F = {x ∈ R2 : g(x) ≤ 0, xL ≤ x ≤ xU}
is convex. Since Equation (19) is a concave maximization problem on a convex feasible set, it is a
convex NLP.

Note that, from Equation (18), we have the following relationship between the optimal solution
values:

f ∗disc ≤ f ∗cv ≤ f ∗f ix
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for f f ix
LCS constructed via Corollary 1. Therefore, we can use the fixed-pricing model in Equation (15)

for initial high-level economic feasibility studies, which will overestimate the value of the more
precise discount-pricing model in Equation (14). Further, given the result of Theorem 3, we can use
Equation (19) with k = cv as a valid upper-bounding problem and solve the nonconvex program in
Equation (19) with k = disc to global optimality by applying a spatial Branch-and-Bound algorithm (see
Appendix C). Therefore, for greater-detail engineering design and economic feasibility studies, a global
optimum of Equation (19) with k = disc can be readily obtained using the models presented herein.

3. Numerical Experiments and Results

The models presented above were implemented in the Julia programming language [44] using
JuliaPro v.0.6.2.2 (Cambridge, MA, USA). Three disparate geographic locations across the US were
considered as test cases for this model: Firebaugh, CA (California’s Central Valley), Aurora, CO
(Greater Denver Area), and Weston, MA (Greater Boston Area). The TMY hourly data for each location
was obtained from the NREL NSRDB [41] (Physical Solar Model v.3). The monthly and annual average
DNI values for each location can be found in Table A3. Note that the full TMY hourly dataset was
used in this study. Two IPH demand profiles (i.e., constant and periodic) with equivalent total daily
demand were considered for each geographic location, as were two fuel costs (i.e., commercial rate and
industrial rate from [45]). For all studies, O&M cost was omitted (Com,i = 0) to simply illustrate the
trade-off between conventional fossil energy consumption cost and solar capital costs. Additionally, for
each study, the fixed-pricing model in Equation (15) calculated via Corollary 1 and the discount-pricing
model in Equation (14) were used.

An optimal hybridization design study was conducted for each of the three geographic locations,
for each case below. All problems were solved on a personal workstation running Windows 10 v1803
operating system with an Intel Core i7-5960X CPU and 32GB of RAM. All local optimization was
performed using the interior-point algorithm IPOPT [46] from within the JuMP modeling platform [47]
v0.18.0 utilizing forward-mode automatic differentiation for exact derivative information. Since f f ix

LCS
is concave on its domain, IPOPT is effective in solving Equation (19) with k = f ix (constructed using
Corollary 1) to global optimality. Since f disc

LCS is nonconvex on its domain, a global optimum cannot
be guaranteed using IPOPT (or any local optimizer) alone. In this case, the problem is solved to
global optimality using the the deterministic spatial Branch-and-Bound (B&B) algorithm in the EAGO
software package [48,49] v0.1.0 with a relative convergence tolerance of ε = 10−2 and the greatest
relative-width midpoint branching heuristic. The B&B algorithm for maximization is presented in
Algorithm A1 of Appendix C with the concept of branching illustrated in Figure A1. The concave
upper-bounding problem of Equation (19) with k = disc is simply given by k = cv. A valid upper
bound is obtained at each iteration by solving the upper-bounding problem on the domain of interest
using the IPOPT algorithm from JuMP. A valid lower bound is obtained by solving Equation (19)
with k = disc to local optimality using IPOPT from JuMP. A global optimum is provided for each case
for comparison against the optimal solution of the fixed-pricing model.

3.1. Constant IPH Demand, Commercial Fuel Rate

In this study, the IPH demand was modeled using Equation (11) with q̄p = 105kWth and σp = 0.

Hence, we have a constant IPH demand: q̇peak
p = q̄p = 105kWth. The fuel cost was set at the commercial

rate [45] in Table A2 and we let ξ = 0.
Table 1 contains the location information and corresponding optimal solar-IPH hybridization

strategies (i.e., the optimal solutions of Equation (19)) for both the linear fixed-pricing model in
Equation (15) and the nonconvex discount-pricing model in Equation (14). For each location, the
fixed-pricing model determines an optimal design that has a lower TES capacity and less PTC aperture
area (and therefore lower annual solar fraction) than the global optimal solution. The fixed-pricing
model overestimates the total lifecycle savings by 6.5% for Weston, 1.7% for Aurora, and 1.6% for
Firebaugh. For initial feasibility studies, this overestimation is sufficiently small as the optimal
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TES capacity and PTC aperture area are within roughly 5% of the global optimal designs for the
discount-pricing model.

Table 1. The optimal solar-IPH hybridization strategies for the three geographic locations for constant
IPH demand with q̄p = 105 kWth for the commercial fuel rate. The global optimal results for the
concave capital cost model in Equation (14) are included for comparison against the linear capital cost
model in Equation (15).

City, State Lat., Long. Time Zone Capital Model x∗ts (h) x∗a(m2) SF∗
s f∗k

Weston, MA 42.37,−71.30 −5 k = f ix (Linear), Equation (15) 11.24 46,436.4 0.516 $2.976 M
k = disc (Concave), Equation (14) 11.72 48,229.1 0.523 $2.795 M

Aurora, CO 39.73,−104.66 −7 k = f ix (Linear), Equation (15) 13.85 50,618.1 0.721 $6.487 M
k = disc (Concave), Equation (14) 14.58 53,238.5 0.731 $6.377 M

Firebaugh, CA 36.85,−120.46 −8 k = f ix (Linear), Equation (15) 11.42 42,601.7 0.695 $7.533 M
k = disc (Concave), Equation (14) 11.72 43,615.2 0.698 $7.320 M

The monthly thermal performance profiles for the global optimal designs are shown in Figure 3.
Both Aurora and Weston experience less seasonal variance in DNI than Firebaugh (see Table A3) and
so the thermal performance profiles appear flatter over the year than those for Firebaugh. Even though
the annual average DNI for Aurora and Firebaugh are within about 8% of each other, they differ by as
much as 36% in the summer months. Hence, the optimal designs for Firebaugh are significantly smaller
and provide significantly more lifecycle savings than those for Aurora. Interestingly, the optimal TES
capacity for Weston and Firebaugh are very similar, whereas the PTC aperture area for Weston sits
between Firebaugh and Aurora. Clearly, the widely differing DNI profiles has a dramatic influence on
the optimal designs.
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Figure 3. The thermal performance of the global optimal hybridization strategies for constant IPH
demand and the commercial initial specific fuel cost.

The f f ix
LCS and SFs functions are plotted in Figure 4 for each geographic location for comparison.

Each of the surfaces are qualitatively similar but there are clear differences between the geographic
regions in terms of how sharply the economics change as you move away from the optimal design.
The lifecycle savings for Weston are much more sensitive to the design decisions than Aurora and
Firebaugh, which exhibit broader relatively-flat regions around the optimum. This explains why the
optimal economics between the fixed-pricing and discount-pricing models are within less than 2% for
Aurora and Firebaugh but almost 7% for Weston. It can be concluded from this analysis that designing
solar-IPH hybridization strategies for lower-DNI regions may require the use of higher-accuracy cost
models (e.g., discount-pricing models) with global optimization.
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Figure 4. The objective function surfaces f f ix
LCS (left column) and the solar fraction surfaces SFs (right

column) for constant IPH demand for commercial fuel rate show similar qualitative trends between
each region (rows).

3.2. Periodic IPH Demand, Commercial Fuel Rate

In this study, the IPH demand is modeled using Equation (11) with q̄p = 105 kWth and σp = 0.1.
Hence, this case ramps up thermal power demand by 10% over the mean at the height of the workday
(q̇peak

p = 11 MWth) and then ramps down to 10% below the mean by midnight to simulate reduced
staffing and production output overnight. We consider the commercial rate for fuel [45] and we let
ξ = 0.

Table 2 contains the location information and corresponding optimal solar-IPH hybridization
strategies (i.e., the optimal solutions of Equation (19)) for both the linear fixed-pricing model in
Equation (15) and the nonconvex discount-pricing model in Equation (14). As expected, the optimal
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designs have lower TES capacities than the constant IPH demand since the periodic demand is
relatively synchronized with the sunrise and sunset. Further, the optimal PTC aperture areas are
very similar to the constant IPH demand case since the total energy consumption between the two
cases are the same. Note, the TES capacity xts is scaled against the peak IPH demand q̇peak

p . Hence,
to compare the TES capacity between the periodic IPH case and the constant IPH case, we need to
scale them using q̇peak

p , for each case. Thus, for the Weston fixed-pricing model and constant IPH
demand, we have a TES capacity of 11.24 h ×105 kWth=1.124 MWhth. For the Weston fixed-pricing
model and periodic IPH demand, we have a TES capacity of 9.537 h ×1.1· 105 kWth=1.05 MWhth.
Thus, the TES capacity is roughly 7% larger for the constant IPH demand over the periodic IPH
demand. The periodic IPH demand is clearly more economical from a solar hybridization perspective.
However, without accounting for the economics of the process itself, one cannot conclude that it
should be operated in such a periodic fashion to achieve overall-better economics. In other words, it
may be more costly to operate the process in a periodic fashion than what is saved with an optimal
solar hybrid design.

Table 2. The optimal solar-IPH hybridization strategies for the three geographic locations for periodic
IPH demand with q̄p = 105 kW and σp = 0.1 for the commercial fuel rate. The global optimal results
for the concave capital cost model in Equation (14) are included for comparison against the linear
capital cost model in Equation (15).

City, State Lat., Long. Time Zone Capital Model x∗ts (h) x∗a(m2) SF∗
s f∗k

Weston, MA 42.37,−71.30 −5 k = f ix (Linear), Equation (15) 9.537 46,248.8 0.507 $3.079 M
k = disc (Concave), Equation (14) 9.966 47,945.8 0.521 $2.881M

Aurora, CO 39.73,−104.66 −7 k = f ix (Linear), Equation (15) 11.92 50,006.8 0.706 $6.593 M
k = disc (Concave), Equation (14) 12.59 53,238.7 0.731 $6.460 M

Firebaugh, CA 36.85,−120.46 −8 k = f ix (Linear), Equation (15) 9.732 42,688.4 0.691 $7.641 M
k = disc (Concave), Equation (14) 9.966 43,615.2 0.698 $7.411 M

3.3. Constant IPH Demand, Industrial Fuel Rate

We consider the IPH demand modeled using Equation (11) with q̄p = 105 kWth and σp = 0 (i.e.,
constant demand profile). In this case, the industrial rate for fuel [45] is considered from Table A2
and we let ξ = 0. The objective function surfaces for both the fixed-pricing model (k = f ix) and
discount-pricing model (k = disc ) are plotted in Figure 5. Table 3 contains the location information and
corresponding optimal solar-IPH hybridization strategies (i.e., the optimal solutions of Equation (19))
for both the linear fixed-pricing model in Equation (15) and the nonconvex discount-pricing model in
Equation (14).

Table 3. The optimal solar-IPH hybridization strategies for the three geographic locations for constant
IPH demand with q̄p = 105 kW for the industrial fuel rate. The global optimal results for the concave
capital cost model in Equation (14) are included for comparison against the linear capital cost model in
Equation (15).

City, State Lat., Long. Time Zone Capital Model x∗ts (h) x∗a(m2) SF∗
s f∗k

Weston, MA 42.37,−71.30 −5 k = f ix (Linear), Equation (15) 0.001 0.01 0.000 $920.2
k = disc (Concave), Equation (14) 0.001 0.01 0.000 $920.2

Aurora, CO 39.73,−104.66 −7 k = f ix (Linear), Equation (15) 0.001 15,720.7 0.250 $323.8 k
k = disc (Concave), Equation (14) 0.001 15,648.7 0.248 $95.59 k

Firebaugh, CA 36.85,−120.46 −8 k = f ix (Linear), Equation (15) 0.046 16,581.5 0.298 $698.1 k
k = disc (Concave), Equation (14) 0.001 16,424.3 0.295 $468.3 k
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Figure 5. The objective function surfaces f f ix
LCS (left column) and f disc

LCS (right column) for constant IPH
demand for industrial fuel rates are plotted for each geographic location. The discount-pricing model
exhibits nonconvexity in all cases and suboptimal local minima for Aurora and Firebaugh.

It is clear from Table 3 and Figure 5 that the lower fuel costs dramatically reduce the
lifecycle savings, and therefore jeopardize the economic viability of the hybridization project.
Further, the reduced fuel costs ensure that the capital cost terms have a much greater impact on
the lifecycle savings. As a result, significant nonconvexity is observed for the discount-pricing model.
In fact, for the Aurora and Firebaugh cases, there exists a suboptimal local minimum at
x = xL = (xL

ts, xL
a ) ≈ 0. IPOPT was applied to the nonconvex problem directly and only found the

suboptimal local minima unless the domain was manually partitioned or bounded. Hence, without
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the application of the B&B algorithm (Algorithm A1), one may falsely conclude that solar-IPH
hybridization is not economically viable. For the Weston, MA case, the fixed-pricing model concludes
that the project is not economically viable, and hence, neither is the project with the discount-pricing
model due to the upper-bounding relationship in Equation (18). Similar trends in the optimal solutions
for the other locations are observed as for the previous cases. However, it is worth noting that for
the Aurora and Firebaugh cases, the economics between the fixed-pricing and the discount-pricing
models are significant. This is because significant nonconvexity is introduced for the lower fuel cost
case. Hence, one can conclude that, for this low fuel cost case, the fixed-pricing model calculated via
Corollary 1 over this large of a design space will not yield sufficiently accurate results. As a result,
the discount-pricing model should be used with deterministic global optimization to ensure accurate
results are obtained for feasibility studies.

3.4. Periodic IPH Demand, Industrial Fuel Rate

We consider the IPH demand modeled using Equation (11) with q̄p = 105 kWth and σp = 0.1 (i.e.,
fluctuating demand profile). In this case, the industrial rate for fuel [45] is considered from Table A2
and we let ξ = 0.

Table 4 contains the location information and corresponding optimal solar-IPH hybridization
strategies (i.e., the optimal solutions of Equation (19)) for both the linear fixed-pricing model in
Equation (15) and the nonconvex discount-pricing model in Equation (14). The results are similar to
the constant IPH demand case for the industrial fuel rate. Global optimization is required to locate the
global optimal solution for the discount-pricing model case. Interestingly, the optimal solar design
for the periodic IPH demand case is measurably larger in PTC aperture area over the constant IPH
demand case for the same industrial fuel rate. This result differs from the commercial fuel rate cases
which showed nearly identical aperture sizes between the designs. The results we see here is largely
due to the very low annual solar fraction and the fact that the optimal designs call for the minimum
TES capacity. Hence, the periodic IPH demand enables a greater solar fraction without adding TES
capacity. However, as was identified for the constant IPH demand case, the fixed-pricing model
dramatically overestimates the lifecycle savings due to the large degree of nonconvexity introduced
by the discount-pricing model in the lower fuel cost case. As a result, it is still recommended for this
case that the discount-pricing model is used with deterministic global optimization to ensure accurate
results are obtained for feasibility studies.

Table 4. The optimal solar-IPH hybridization strategies for the three geographic locations for periodic
IPH demand with q̄p = 105 kW for the industrial fuel rate. The global optimal results for the concave
capital cost model in Equation (14) are included for comparison against the linear capital cost model in
Equation (15).

City, State Lat., Long. Time Zone Capital Model x∗ts (h) x∗a(m2) SF∗
s f∗k

Weston, MA 42.37,−71.30 −5 k = f ix (Linear), Equation (15) 0.001 0.01 0.000 $773.4
k = disc (Concave), Equation (14) 0.001 0.01 0.000 $773.4

Aurora, CO 39.73,−104.66 −7 k = f ix (Linear), Equation (15) 0.001 16,894.0 0.267 $350.2 k
k = disc (Concave), Equation (14) 0.001 16,879.1 0.267 $120.8 k

Firebaugh, CA 36.85,−120.46 −8 k = f ix (Linear), Equation (15) 0.033 17,972.1 0.320 $759.4 k
k = disc (Concave), Equation (14) 0.001 17,839.1 0.318 $529.4 k

3.5. Computational Efficiency

The solution times for each of the numerical experiments are provided in Table 5.
The computational cost trade-off of using the fixed-pricing model versus the discount-pricing model
is clear. In almost all cases, using the discount-pricing model requires an order-of-magnitude longer
to solve the problem than the fixed-pricing model due to nonconvexity and the need for the B&B
algorithm. Despite this, the solution times for the discount-pricing model are still favorable considering
the model’s scale with O(104) state variables. As previously mentioned, the Weston location with
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the lower industrial fuel rate (for both IPH demand profiles) yielded the result that the hybridization
project would not be economically viable. As can be seen in Table 5, these are the only cases where
solving the discount-pricing model requires roughly the same order of computational effort as solving
the fixed-pricing model. Additionally, due to the relationship in Equation (18), one can immediately
conclude from the solution of the fixed-pricing model that the project is not economically viable.
Therefore, for the purposes of investment decision-making, an additional “economic feasibility”
termination criterion can be added to Algorithm A1, whereby the algorithm simply terminates if
the upper bound is below some threshold of economic viability. For the purposes of this optimal
design problem, the optimal solution translates to not implementing any CSP, and hence, a termination
criterion could also be added that identifies this case. With these termination criteria, the B&B algorithm
(Algorithm A1) would be identical in solution time to the fixed-pricing model since it would terminate
at the root node with the solution of economic infeasibility after solving only the upper-bounding
problem. For such cases, f cv

LCS = f f ix
LCS if xL = 0. Note, from Table A2, the lower bounds on the decision

variables were not exactly zero, albeit very close with respect to their scale, which helps avoid some
numerical round-off issues observed. Since xL ≈ 0, the results still hold.

Table 5. The solution times (in seconds) for each of the numerical experiments.

City, State
Section 3.1 Section 3.2 Section 3.3 Section 3.4

k = f ix k = disc k = f ix k = disc k = f ix k = disc k = f ix k = disc

Weston, MA 1.09 10.4 0.632 13.3 0.103 0.42 0.103 0.39
Aurora, CO 0.70 6.69 0.495 6.40 0.187 15.5 0.208 19.4
Firebaugh, CA 0.70 10.1 1.06 9.92 0.604 12.77 0.517 12.67

4. Conclusions

A dynamic concentrating solar power performance model is presented for use with design
optimization and investment decision-making problems for hybridizing IPH systems. The model
utilizes high-fidelity solar resource data from the NSRDB [41] and accounts for the aperture area of
a parabolic trough solar concentrator and the storage capacity of a thermal energy storage device as
design decision variables. The solar performance model was constructed such that it is concave and
differentiable on the domain of interest. Since determining the performance of the solar system
requires a dynamic simulation (with 8760 time steps using hourly DNI data), concavity of the
model on the decision domain ensures that it is efficient for use with mathematical optimization.
Additionally, an economic model based on the lifecycle savings was constructed that utilizes the
solar performance model as well as two capital cost models: a linear fixed-pricing model and a
nonconvex discount-pricing model. The convex envelopes of the nonconvex discount-pricing model
were presented, which, when used within a spatial Branch-and-Bound algorithm, enable the global
solution of the economic optimization problem with the nonconvex discount-pricing model. For the
higher-cost commercial fuel rate, optimization of the fixed-pricing model and the discount-pricing
model show good agreement. However, for the lower-cost industrial fuel rate, significant nonconvexity
complicates the problem and therefore the greater-accuracy discount-pricing model (and global
optimization) is recommended for investment decision-making.

The economic model presented herein is relatively simple to illustrate the trade-off between the
fuel savings and the capital cost of the project. Greater levels of detail can easily be incorporated
in this model, such as taxes, incentives, capital depreciation, carbon pricing, detailed O&M, etc.
Similarly, the solar thermal performance model assumes the simplifying characteristics of negligible
heat losses, ideal temperature delivery, and negligible CST array shadowing. These details can be
readily incorporated in this model, if necessary. The developed models may serve as the foundation for
more greater-complexity model-building for systems performance and economic analyses. Specifically,
the models may easily incorporate various sources of uncertainty and investment and/or thermal
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performance thresholds to address robust design and operations under uncertainty and new technology
investment risk. However, if enhancing complexity, the user must consider how convexity/concavity
and computational tractability are affected. For example, simple tax models and carbon pricing
models may be incorporated as increased O&M costs without significantly affecting computational
cost or convexity/concavity results. However, high-fidelity heat transfer models complicate the
calculation of the annual solar fraction SFs which substantially increase the integration cost and
may introduce nonconvexity/nonconcavity. In this case, solving the optimization problem(s) will
become extremely computationally expensive as convex and concave relaxations of SFs must be
introduced, ensuring many more iterations of the B&B algorithm are required to identify an optimal
solution. Similarly, accounting for various sources of uncertainty may have equivalent effects. As
additional modeling complexity may add significant computational burden, the models presented
herein represent a balanced approach between computational cost and modeling complexity for the
purposes of optimization problem tractability and sufficient accuracy of the results for engineering
design and investment decision-making.
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Abbreviations

The following abbreviations are used in this manuscript:

B&B Branch-and-Bound
CSP Concentrating Solar Power
CST Concentrating Solar Thermal
IPH Industrial Process Heat
LCS Lifecycle Savings
NLP Nonlinear Program
NREL National Renewable Energy Laboratory
NSRDB National Solar Radiation Database
O&M Operations and Maintenance
PTC Parabolic Trough Solar Concentrator
TES Thermal Energy Storage
TMY Typical Meteorological Year

Appendix A. Solar Position Model

Unless the CST technology of interest employs two-axis tracking, the center of the performance
model is the incidence angle: the angle which the incoming solar radiation strikes the mirrors of the
concentrator as measured from the normal of the concentrator aperture plane (see Figure 1). Since the
sun’s position in the sky is well-understood to a very high-degree of accuracy for a static global position,
the incidence angle is readily calculable for every moment in time. With the incidence angle and
the physical design of the CST technology, the specific thermal energy output can be calculated.
The incidence angle calculation follows from [25,27,29,30,50] and the calculation of the solar position
as a function of time. The model is included here for clarity and completeness.

Definition A1 (Equation of Time Factors, B, ST, TC [27]). Due to the eccentricity of the Earth’s orbit and
tilt of its axis, the length of a day varies throughout the year. The variation is calculated by the solar time ST:

B ≡ 360
365

(N − 81)

ST ≡ 9.87 sin 2B− 7.53 cos B− 1.5 sin B
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with B in degrees and ST in minutes and the integer N as the day number. To relate the solar time to the
local time, a time correction, TC (in minutes), is required:

TC ≡ ST ± 4[15(Time Zone (h))− Longitude◦]

where (+) is chosen if the location is east of the prime meridian and (−) if it is to the west.

Definition A2 (Declination Angle, δ [27]). The solar declination angle δ is the angular distance of the
sun’s rays north (or south) of the equator:

δ ≡ 23.45◦ sin B.

Definition A3 (Hour Angle, γ [27]). The hour angle γ is the angle between the meridian of an observer and
the sun. It is negative before local solar noon and positive after local solar noon. At local solar noon, γ = 0◦.
The hour angle (in degrees) is defined as

γ ≡ 15(Local Time Hour + TC/60− 12).

Definition A4 (Zenith Angle, φ [27]). The solar zenith angle φ (in degrees) is the angle between the sun’s
rays and the vertical plane:

cos φ = sin[Latitude◦] sin δ + cos[Latitude◦] cos δ cos γ.

Definition A5 (Solar Elevation (Altitude) Angle, α [27]). The solar elevation or altitude angle α

(in degrees) is the angle between the sun’s rays and the horizontal plane:

sin α = cos φ⇒ φ + α = π/2 = 90◦.

Definition A6 (Azimuth Angle, ζ [27]). The solar azimuth angle ζ is the angle between the sun’s rays
and due South for the Northern Hemisphere. If the sun rises and/or sets south of the East–West line (i.e.,
cos γ > tan δ/ tan[Latitude◦]), then we have:

sin ζ = sin ζ ′ =
cos δ sin γ

cos α
.

For certain periods of the year and for certain locations, this may not be the case (i.e., cos γ ≤
tan δ/ tan[Latitude◦]), and the azimuth angle becomes:

ζ =

{
|ζ ′| − π if γ ≤ 0
π − ζ ′ else

Definition A7 (Surface Tilt Angle, β [27]). The surface tilt angle β of a horizontal surface with a N-S axis
orientation and E-W tracking is given by:

tan β = tan φ cos[90◦ − ζ], ∀γ > 0

with the convention of −90◦ due East and 90◦ due West.

Definition A8 (Surface Incidence Angle, θ [25,27,50]). The surface incidence angle θ (in degrees) is the
angle between the sun’s rays and the normal of the horizontal surface. For fixed N-S axis with E-W tracking,
the incidence angle can be calculated as:

cos θ =
√

cos2 φ + cos2 δ sin2 γ.
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Note, to maximize the collection of solar energy, the incidence angle must be minimized at all
times. The extent to which this angle can be minimized depends on the orientation of the collector
and the tracking capability of the collector (e.g., fixed non-tracking, one-axis tracking, and two-axis
tracking). Other orientations and tracking capabilities are discussed further in [27].

Appendix B

Table A1. The PTC modeling parameters.

ε1, Shadowing Factor 0.98
ε2, Tracking Error 0.994
ε3, Geometry Error 0.98
ε4, Mirror Dirt Factor 0.88/rm ≈ 0.941
ε5, Glass Receiver Envelope Dirt Factor (1 + ε4)/2 ≈ 0.971
ε6, Unaccounted Losses 0.96
rm, Mirror Reflectance 0.935
am, Receiver Tube Absorptance 0.94
τ, Glass Receiver Envelope Transmittance 0.963

Table A2. The economic modeling and optimization parameters.

CPTC,0, specific installed cost of PTC ($/m1.84) 425.0
CTES,0, specific installed cost of TES ($/kWh0.91

th ) 45.14
Cth,0, commercial initial specific fuel cost ($/kWhth) 7.232/293.1≈ 0.02467

industrial initial specific fuel cost ($/kWhth) 3.420/293.1≈ 0.01167
r, discount rate (-) 10%
rc, capital financing APR (-) 6.5%
rth, fuel cost annual inflation rate (-) 1%
tdebt, loan term (years) 10
tli f e, lifetime of project (years) 30
xL = (xL

ts, xL
a ), variable lower bound (h, m2) (0.001, 0.01)

xU = (xU
ts , xU

a ), variable upper bound (commercial fuel case) (h, m2) (16.0, 6× 104)
variable upper bound (industrial fuel case) (h, m2) (14.0, 5× 104)

ξ, minimum solar fraction (-) 0

Table A3. The annual average DNI (kWh/m2/day) for each location is resolved by month. The data
are calculated from the hourly TMY values obtained from [41].

Month Weston Aurora Firebaugh

Janary 3.73 4.68 3.21
Febrary 4.41 5.25 4.24
March 4.61 6.36 6.07
April 5.31 6.42 7.03
May 5.33 6.72 8.68
June 5.32 7.98 10.16
July 5.60 7.14 9.54
August 5.37 6.82 9.30
Sepember 5.24 7.21 7.70
Octorber 4.13 6.33 6.54
November 3.72 5.44 4.50
December 3.39 4.08 3.36
Ann. Avg. 4.68 6.21 6.71

Appendix C. Spatial Branch-and-Bound (B&B) Global Optimization

The spatial B&B algorithm is a deterministic global optimization algorithm that is guaranteed
to find a global optimum (within some numerical tolerance ε) of a nonlinear program or determine
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that the problem is infeasible in finitely-many iterations. The algorithm systematically partitions
the decision space X, with a procedure referred to as branching. Then, upper- and lower-bounds
on the global optima on each partition of X are obtained by solving corresponding optimization
problems (or interval analysis calculations). A summary of the algorithm is provided here for solving
maximization problems as in Equation (19). Here, we present the B&B algorithm (Algorithm A1) for
solving Equation (19) with k = disc to global optimality. The upper- and lower-bounding problems are
defined in Equations (A1) and (A2), respectively. The concept of partitioning the decision space X is
illustrated in Figure A1.

Definition A9 (Upper-Bounding Problem). Consider an interval Xi ⊂ X. The upper-bounding problem is
given by:

max
x∈R2

f cv
LCS(x) (A1)

s.t. g(x) ≤ 0

x ∈ Xi.

Definition A10 (Lower-Bounding Problem). Consider an interval Xi ⊂ X. The lower-bounding problem is
given by:

max
x∈R2

f disc
LCS(x) (A2)

s.t. g(x) ≤ 0

x ∈ Xi.
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Figure A1. (Left) The decision space X (outer box) is shown overlaying the feasible set F and is
partitioned into subintervals using a bisection strategy. Note that X7 ∩ F = ∅ and therefore the
corresponding upper- and lower-bounding problems are infeasible. (Right) An illustration of the B&B
tree corresponding to the decision space partitioning.
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Algorithm A1: Branch & Bound Maximization

UBD, UBD0 := +∞, LBD := −∞, ε > 0, j := 1, S := {X}
while UBD− LBD > ε and S 6= ∅ do

Select and delete Xi from S for some i
Construct Equation (A1) and solve it to global optimality
if Equation (A1) is infeasible then

Set UBDi := −∞

else
Set UBDi to the optimal solution value
Set x̂ to the optimal solution
if x̂ is feasible for Equation (A2) and f disc

LCS(x̂) > LBD then
set LBD := f disc

LCS(x̂), x∗ := x̂

Construct Equation (A2) and solve it to local optimality
if a feasible point x̂ is found and f disc

LCS(x̂) > LBD then
set LBD := f disc

LCS(x̂), x∗ := x̂

if UBDi = −∞ or UBDi ≤ LBD then
cycle

Partition Xi into sets X j and X j+1

Set UBDj, UBDj+1 := UBDi

Add nodes X j, X j+1 to S
Set j := j + 2
Delete from S all nodes Xi with UBDi ≤ LBD
Set UBD := maxXi∈S UBDi

if LBD = −∞ then
problem is infeasible

else
LBD is the ε-optimal solution value and x∗ is the feasible optimal solution
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