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Abstract: In recent papers we have discussed the use of cuboid packed-bed devices as alternative
to columns for chromatographic separations. These devices address some of the major flow
distribution challenges faced by preparative columns used for process-scale purification of biologicals.
Our previous studies showed that significant improvements in separation metrics such as the
number of theoretical plates, peak shape, and peak resolution in multi-protein separation could
be achieved. However, the length-to-width aspect ratio of a cuboid packed-bed device could
potentially affect its performance. A systematic comparison of six cuboid packed-bed devices
having different length-to-width aspect ratios showed that it had a significant effect on separation
performance. The number of theoretical plates per meter in the best-performing cuboid packed-bed
device was about 4.5 times higher than that in its equivalent commercial column. On the other hand,
the corresponding number in the worst-performing cuboid-packed bed was lower than that in the
column. A head-to-head comparison of the best-performing cuboid packed bed and its equivalent
column was carried out. Performance metrics compared included the widths and dispersion indices
of flow-through and eluted protein peaks. The optimized cuboid packed-bed device significantly
outperformed its equivalent column with regards to all these attributes.

Keywords: chromatography; chromatography box; cuboid packed-bed; bioseparation; protein;
separation efficiency

1. Introduction

Column chromatography is widely used for both analytical and preparative purification of
biopharmaceuticals [1–4]. Analytical columns, which have very large bed-height to diameter ratios,
and are packed with fine chromatography media (in the 3–10 micron range) give excellent resolution
in multi-protein separation [3,5]. On the other hand, preparative columns, especially those used for
large-scale bioseparation (which have small bed-height to diameter ratios) and are packed with larger
resin particles (>30 microns) do not [3,6]. While these columns can be loaded with large volumes of
feed material, their separation efficiencies are drastically lower than analytical columns.

In an analytical column, flow distribution in the radial direction is relatively insignificant
compared to that in the axial direction. Also, the volume of sample injected in an analytical column is
very small, and therefore solutes move through the column in a “plug-like” manner. When liquid flows
into a preparative column, it is distributed in radial and axial directions as shown in Figure 1 (on the
left). In large-scale preparative columns, the diameter is frequently comparable, or even larger than the
bed height. For example, in the 20,000 L scale purification process for monoclonal antibodies, the typical
column diameter is 100 cm and the typical bed height is 20 cm [7]. Therefore, efficient radial flow
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distribution in the column headers is critically important. Column flow maldistribution and consequent
poor separation efficiency has been investigated by many researchers [8–13]. Poor separation has
been mainly attributed to dispersion in peripherals, non-uniform packing and maldistribution in
headers [8,9]. In addition, radial temperature gradients in the large-diameter columns could affect local
superficial velocity and thereby retention parameters [14]. Non-uniformity of flow within preparative
columns results in peak broadening and poor resolution, which decrease recovery, increase operating
time and buffer usage, and necessitate subsequent concentration steps [8–14].
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Researchers have tried to address the problem of column flow maldistribution primarily
by modifying and improving the headers [15–23]. This includes the use of ribbed, hyperbolic-
and parabolic-shaped headers, the use of collimators and manifolds, the use of bifurcating,
radially interconnecting and fractal flow distributors, and the use of frits with appropriate porosity.
Other approaches include control of column packing [24–26], adjustment of the column inlet
temperature [27], and the use of parallel flow [28], curtain flow [29], and radial flow [30] columns.

In recent papers, we have proposed a radically different approach i.e., the use of box-shaped
or cuboid packed-bed devices for reducing flow maldistribution [31,32]. The design of the cuboid
packed bed is inspired by that of lateral-fed membrane chromatography (LFMC) devices [33–38].
The cuboid packed-bed device (see Figure 1, on the right) consists of a box-shaped resin-bed into which
liquid is distributed using an upper lateral channel, and from which liquid is collected using a lower
lateral channel [31,32]. This flow arrangement makes the flow path lengths within the packed bed
uniform and narrows down the solute residence time distribution (RTD). Using cuboid packed-bed
devices containing different types of ion-exchange media, we were able to demonstrate their superior
separation performances relative to their equivalent columns (i.e., containing the same media and
having the same bed-height and bed-volume) [31,32]. The cuboid packed-bed devices consistently gave
sharper and more symmetrical flow-through and eluted peaks, and higher resolution in multi-protein
separations. The length-to-width aspect ratios of a cuboid packed-bed device of a given bed height
and bed volume could be adjusted in a flexible manner. That brought us to a pertinent question, i.e.,
was this ratio important? Within a longer device, the velocity gradient in the lateral channels could be
expected to be greater. In our earlier study [32], we hypothesized that the greater the velocity gradient,
the poorer the separation. On the other hand, increasing the width of the device and thereby the width
of the lateral channels could potentially introduce some non-uniformity of flow along the channel
width and thereby affect separation efficiency [32].

In this paper, we have attempted to optimize the performance of a 5 mL cuboid packed-bed device
by systematically examining 6 different cuboid devices having identical bed height and bed volume,
but different length-to-width ratios. The performance of these devices was compared based on the
number of theoretical plates per meter bed height. A head-to-head comparison of the best-performing
cuboid packed-bed device and its equivalent column was also carried out. Performance metrics such
as the widths, and dispersion indices of flow-through and eluted protein peaks were compared.
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2. Materials and Methods

Trizma base (T1503), trizma hydrochloride (T3253), sodium hydroxide (795429), hydrochloric
acid (258148), bovine serum albumin (BSA, isoelectric point 4.8, A7906), lysozyme (isoelectric point
11, L6876) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Sodium chloride (SOD002.205)
was purchased from Bioshop (Burlington, ON, Canada). Strong anion exchange Capto Q medium
(17-5316-03) and HiTrap Capto Q column (5 mL bed volume, 16 mm diameter, 25 mm bed height,
11-0013-03) were purchased from GE Healthcare Biosciences, QC, Canada. All the buffers and the
solutions were prepared using water obtained from a SIMPLICITY 185 water purification unit Millipore
(Molsheim, France). Prior to use, buffers and solutions were filtered through a 0.1 µm VVLP membrane
(Millipore, MA, USA) and degassed.

The different 5 mL cuboid packed-bed devices (see Figure 2), which had the same bed height and
cross-sectional area were fabricated in-house (material: acrylic for the transparent top and bottom
plates, polyvinyl chloride for the central frame). The dimensions were as follows: 14.14 mm (length)
× 14.14 mm (width) × 25 mm (height), 20 mm × 10 mm × 25 mm, 25 mm × 8 mm × 25 mm,
33.3 mm × 6 mm × 25 mm, 50 mm × 4 mm × 25 mm, and 80 mm × 2.5 mm × 25 mm. The basic
design of a 5 mL cuboid packed-bed device has been described in detail in our previous paper [32].
Briefly, it consists of 3 parts: an upper and a lower plate with engraved lateral channel for flow
distribution/collection, and a central frame with a rectangular slot for housing the cuboid packed
bed. A photograph of the assembled 20 mm × 10 mm × 25 mm device is also shown in Figure 2 (inset).
Figure 2 also shows the bed dimensions of the equivalent 5 mL HiTrap column (material: polypropylene).
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Inset photograph: assembled 20 mm × 10 mm × 25 mm device.

The cuboid packed-bed devices were packed with the Capto Q media using the protocol described
in our previous paper [32]. The chromatography experiments were carried out using an AKTA prime
system (GE Healthcare Biosciences, Baie d’Urfe, QC, Canada). The number of theoretical plates in
the cuboid packed-bed devices and the column was determined at different flow rates by injecting
100 µL 0.8 M NaCl solution as tracer (2% of the bed volume), using 0.4 M NaCl solution as the mobile
phase. The best performing cuboid packed-bed device was selected based on the number of theoretical
plates. This device was then compared head-to-head with the equivalent commercial column in terms
of widths, asymmetry and tailing factors, and dispersion indices of flow through and eluted protein
peaks obtained at different flow rates, using different sample injection loops. In these experiments
50 mM Tris-HCl buffer, pH 8 was used as the binding buffer and 50 mM Tris-HCl buffer + 1 M NaCl,
pH 8 was used as the eluting buffer. Flow-through peaks were obtained by injecting different volumes
of 1 mg/mL lysozyme solution, while eluted peaks were obtained using 2 mg/mL BSA solution.
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All experiments with the cuboid devices and their equivalent column were run in duplicate and
average values are reported.

3. Results and Discussion

The data for the number of theoretical plates (N), tailing factor (TF) and asymmetry factor (AF)
obtained with the six cuboid packed-bed devices and their equivalent column are summarized in
Table 1. N was calculated as follows [39]:

N = 5.545
(

VR
w0.5

)2
(1)

where VR is the residence volume, and w0.5 is the peak width at half height.
TF was calculated as follows [39]:

TF =

(
wL

0.05 + wR
0.05

2wL
0.05

)
(2)

where wL
0.05 is the front peak width at 5% height, wR

0.05 is the rear peak width, also at 5% height.
AF was calculated as follows [39]:

AF =

(
wR

0.1

wL
0.1

)
(3)

where wL
0.1 is the front peak width at 10% height, while wR

0.1 is the rear peak width at 10% height.

Table 1. The number of theoretical plates and attributes of salt peaks obtained with the different
cuboid packed-bed devices and their equivalent column at different flow rates (media: Capto Q anion
exchange, bed volume: 5 mL, mobile phase: 0.4 M NaCl, tracer: 0.8 M NaCl, loop: 0.1 mL, vS = 15, 60,
150 and 300 cm/h at flow rates of 0.5, 2, 5 and 10 mL/min respectively).

Efficiency Metrics Flow Rate
(mL/min) Column

Cuboid—Length × Width (mm × mm)

14.14 × 14.14 20 × 10 25 × 8 33.3 × 6 50 × 4 80 × 2.5

Aspect ratio 1:1 2:1 25:8 33.3:6 25:2 32:1

Number of
theoretical plates

per meter, Ns (/m)

0.5 2296 8923 10,327 7381 6465 6886 710
2 2251 7106 7690 6347 5663 5575 633
5 1968 4403 4620 3867 3684 3402 612
10 1781 2915 3000 2705 2450 2237 602

Tailing factor

0.5 1.61 1.04 0.92 0.96 0.92 0.95 1.03
2 1.54 1.05 0.95 0.96 0.93 0.99 0.99
5 1.29 1.07 0.99 1.00 0.97 0.99 1.00
10 1.18 1.07 1.03 1.03 0.98 1.01 1.03

Asymmetry factor

0.5 2.15 1.02 0.84 0.87 0.89 0.89 1.02
2 2.07 1.04 0.93 0.88 0.90 0.94 0.96
5 1.57 1.09 0.99 0.98 0.95 0.97 0.97
10 1.35 1.08 1.06 1.00 1.00 1.03 1.03

Five out of the six cuboid packed-bed devices out-performed the column in terms of the number
of theoretical plates and other peak attributes. Only the performance of the 80 mm × 2.5 mm cuboid
packed-bed device was worse than that of the column. With all the chromatography devices examined,
i.e., the column and the six cuboid packed beds, the number of theoretical plates per meter (N)
decreased when the flow rate was increased above the optimum flow rate, as expected based on the
van Deemter equation. With the column, the number of theoretical plates increased slightly from
1781/m (at 10 mL/min, vS = 300 cm/h) to 2296/m (at 0.5 mL/min, vS = 15 cm/h). With the best
performing cuboid packed-bed device (i.e., 20 mm × 10 mm × 25 mm) the number increased very
significantly from 3000/m at a flow rate of 10 mL/min (vS = 300 cm/h) to 10327/m at a flow rate
of 0.5 mL/min (vS = 15 cm/h). However, the number of plates did not increase further when the
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flow rate was decreased below 0.5 mL/min. For instance, the value was 10,207/m at 0.4 mL/min
(vS = 12 cm/h) and 8165/m at 0.2 mL/min (vS = 6 cm/h) (data not shown in Table 1), indicating that
0.5 mL/min was the optimal flow rate for the best-performing cuboid packed-bed device. The tailing
and asymmetry factor of the salt peaks obtained with the column increased with decrease in flow rate.
However, the corresponding values for the cuboid packed-bed device remained consistently close to 1
at all the flow rates examined due to consistently uniform flow distribution.

Figures 3 and 4 show salt peaks obtained with the six cuboid packed-bed devices and the
column during the theoretical plate measurement experiments at the flow rates of 0.5 and 10 mL/min
respectively. In these experiments, 0.4 M NaCl solution was used as the running buffer while 0.8 M
NaCl solution was used as tracer. The volume of tracer injected was 100 µL (i.e., 2% of the bed volume).
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In the chromatograms shown in the figure, the conductivity baseline was normalized for ease
of comparison by deduction of the conductivity corresponding to 0.4 M NaCl. Consistent with the
numerical results summarized in Table 1, the peaks obtained with the best cuboid packed-bed device
(dimension: 20 mm × 10 mm × 25 mm) were sharper than those obtained with the other cuboid
packed-bed devices and the column, especially at the lower flow rate i.e., 0.5 mL/min.

The difference between the maximum and minimum residence time within a cuboid packed-bed
device would depend primarily on the magnitude of the channel velocity gradient [32]:

|τmax − τmin| =

 2l

2v0 − l
∣∣∣ dvU

dz

∣∣∣
−

 2l

2v0 − l
2

∣∣∣ dvU
dz

∣∣∣
 (4)

where τmax is the maximum residence time, τmin is the minimum residence time, l is the length of the
cuboid packed-bed device, v0 is the channel inlet velocity, and vU is the liquid velocity in the upper
channel at location z.

v0 could be obtained by:

v0 =

(
V
hw

)
(5)

where V is the volumetric flow rate, h is the channel height, and w is the width of the channel
(and therefore the width of the cuboid packed-bed device).

In an earlier paper it has been shown that [31]:∣∣∣∣dvU
dz

∣∣∣∣ = vS
h

(6)

where vS is the superficial velocity which could be obtained by:

vS =

(
V
lw

)
(7)

From Equations (4)–(7):

|τmax − τmin| =
(

2hlw
3V

)
(8)

Therefore, the difference between the maximum and the minimum residence time within a
cuboid packed-bed device would depend on the volumetric flow rate, the channel height, and the
area of cross-section of the cuboid packed-bed device. For the six cuboid packed-bed devices
studied, the channel height and area of cross-section were maintained the same. Therefore, based on
Equation (8), the difference between the maximum and the minimum residence time within a cuboid
packed-bed device could be expected to be the same, i.e., they would have the same efficiency. However,
Table 1 shows that this was clearly not the case, i.e., the efficiency depended on the aspect ratio, with the
best performance being observed with the device having 2:1 aspect ratio. The efficiency decreased
with an increase in this ratio, particularly severely when the ratio was 32:1. This discrepancy with the
expectations based on Equation (8) was probably due to the effect of aspect ratio on the pressure drop
within the channel. One of the design criteria for obtaining high efficiency in separation with a cuboid
packed-bed device is that the channel pressure drop should be significantly lower than the pressure
drop across the packed bed [31,32]. An equation based on the resistance model used in membrane
process [34] could be used to estimate the pressure drop in the packed bed (∆Pv):

∆Pv = vSRv (9)

where Rv is the hydraulic resistance offered by the packed bed which would depend on the property
of the packed bed and on the flow rate but would be independent of the channel aspect ratio.
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In a similar way, the pressure drop in the lateral channel (∆Pl) could be estimated as follows:

∆Pl = vU Rl (10)

where vU is the average velocity in the upper channel, Rl is the lateral resistance in the channel.
vU is given by [32]:

vU =

(
2v0 − z

∣∣∣∣dvU
dz

∣∣∣∣)/2 (11)

From Equations (5)–(7) and (11):
vU = v0/2 (12)

Thus:
∆Pl = v0Rl/2 (13)

The magnitude of both v0 and Rl would increase with aspect ratio. v0 would increase due to
a decrease in the area of cross-section of the channel while Rl would increase due to an increase in
channel length. Therefore, the greater the aspect ratio, the greater would be the net pressure differential
between the channel extremities. When the channel is long and narrow (i.e., when the aspect ratio is
very high), ∆Pl might become comparable in magnitude to ∆Pv and thereby the basic design criteria
for cuboid packed beds, i.e., the channel pressure drop should be significantly lower than the pressure
drop across the packed bed, would not hold good any more. Under such conditions, the higher channel
pressure closer to the entrance of a narrow channel would result in more liquid going through the
regions of the packed bed closer to the inlet than through the regions of the packed bed further down,
i.e., vS would no longer be constant. This would also result in a non-linear channel velocity gradient,
making Equation (8) invalid for such a situation. Interestingly, the cuboid packed-bed device with
an aspect ratio of 1:1 performed marginally poorer than the one with 2:1 ratio. A lower aspect ratio
implies a wider channel. The channels in each of the cuboid packed-bed devices were fed from a
narrow inlet and drained through a narrow outlet using a tapered distributor. Figure 5 shows the
diagrams for the tapered distributors corresponding to the 1:1 and 2:1 aspect ratio cuboid packed-bed
devices. While such tapered flow distributors worked well at the scale examined in this paper, i.e.,
5 mL, they are likely to be less effective with larger devices with wider channels. For such larger
devices, a better flow distributor could potentially be required.
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The above discussion highlights an efficiency trade-off between the length and the width of a
cuboid packed-bed device. Increasing the length would increase the pressure in the channel which
could decrease the efficiency of the device. On the other hand, increasing the width of the device could
result in flow non-uniformity along the width of the channel which in turn could reduce the efficiency.
In this study, the 2:1 aspect ratio cuboid packed-bed device represents the efficiency “sweet spot” for
the 5 mL cuboid packed-bed devices examined. However, it should be noted that the difference in
efficiency between the 2:1 and 1:1 aspect ratio devices was not very big, particularly at the higher flow
rates. For larger devices, non-uniformity along the width of the channel could potentially become a
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significant factor and advanced flow distribution features to reduce such variability would need to
be incorporated.

The 20 mm × 10 mm × 25 mm cuboid packed-bed device which had approximately 4.5 times as
many theoretical plates as the column was used in all subsequent head-to-head comparisons with the
column. This cuboid packed-bed device is henceforth referred to as the best cuboid packed-bed device
to avoid any confusion.

Figure 6 and Figure S1 (supplementary information) show the unbound protein (i.e., lysozyme)
breakthrough peaks obtained with the column and the best cuboid packed-bed device at different
flow rates (1 mL/min and 5 mL/min, i.e., at vS = 30 cm/h and 150 cm/h respectively). In these
experiments, 50 mM Tris-HCl, pH 8 was used as the running buffer and 5 mL of 1 mg/mL lysozyme
solution prepared in the running buffer was injected after ultraviolet (UV) absorbance equilibration.
The large lysozyme sample volume ensured that the UV absorbance plateaued for a significant duration
before decaying back to the baseline. The unbound protein breakthrough curves obtained with the
best cuboid packed-bed device were sharper at both flow rates, clearly indicating its superior flow
distribution attribute.Processes 2018, 6, x FOR PEER REVIEW  9 of 14 
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and its equivalent column (media: Capto Q anion exchange, bed volume: 5 mL, buffer: 50 mM Tris-HCl,
pH 8.0, sample: 1 mg/mL lysozyme, flow rate: 1 mL/min, vS = 30 cm/h).

Figure 7 and Figure S2 (supplementary information) show lysozyme flow through peaks obtained
with the best cuboid packed-bed device and the column, at different flow rates (1 mL/min and
5 mL/min, i.e., at vS = 30 cm/h and 150 cm/h respectively) by injecting 0.5 mL of 1 mg/mL lysozyme
solution. Consistent with the salt peaks shown in Figures 3 and 4, the lysozyme flow-through peaks
obtained with the best cuboid packed-bed device were significantly sharper and more symmetrical
than those obtained with the column. In order to compare the above flow through peaks, a parameter
termed dispersion index (DI) was used, and is defined below:

DI =

(
2w0.5

Vinj

)
(14)

where Vinj is the volume injected. The calculated values are summarized in Table 2.
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Figure 7. Lysozyme flow-through peaks obtained with the best cuboid packed-bed device and its
equivalent column (media: Capto Q anion exchange, bed volume: 5 mL, buffer: 50 mM Tris-HCl,
pH 8.0, sample: 1 mg/mL lysozyme, loop: 0.5 mL, flow rate: 1 mL/min, vS = 30 cm/h).

Table 2. Comparison of the attributes of the lysozyme flow-through peaks obtained with the best
cuboid packed-bed device and its equivalent column (media: Capto Q anion exchange, bed volume:
5 mL, buffer: 50 mM Tris-HCl, pH 8.0, sample: 1 mg/mL lysozyme, vS = 30 and 150 cm/h for the flow
rate of 1 and 5 mL/min respectively, injection volume: 0.5 mL)

Flow Rate (mL/min)
Column Cuboid

Width at Half Height (mL) Dispersion Index Width at Half Height (mL) Dispersion Index

5 0.98 3.94 0.62 2.50
1 1.1 4.42 0.6 2.38

The peak widths at half height and DI values of the flow through peaks obtained with the best
cuboid packed-bed device by injecting 0.5 mL of lysozyme sample were significantly lower than
those obtain with the column at the different flow rates. Moreover, the peaks were more symmetrical,
the difference in symmetry being greater at the lower flow rate. Once again, these results demonstrate
the role of flow distribution in the performance of chromatographic devices.

Figure 8 and Figure S3 (supplementary information) show the BSA elution peaks obtained with
the best cuboid packed-bed device and the column. The binding buffer used in this experiment
was 50 mM Tris-HCl buffer, pH 8, while 50 mM Tris-HCl buffer, 1M NaCl, pH 8 was used as the
eluting buffer. These experiments were carried out at two different flow rates (1 mL/min and
5 mL/min, i.e., at vS = 30 cm/h and 150 cm/h respectively) by injecting 5 mL of 2 mg/mL BSA
solution. Figures S4 and S5 (supplementary information) show the results obtained from similar
experiments carried out using 0.5 mL of 2 mg/mL BSA solution. In each case, a step change from the
binding buffer to 100% eluting buffer was made immediately after sample injection. At all the different
conditions examined (i.e., shown in Figure 8 and Figure S3–S5), the BSA elution peaks obtained with
the best cuboid packed-bed device were sharper than those obtained with the column. Earlier in the
paper, the parameter DI was used for quantifying the spread of flow through peaks. The corresponding
metric for an eluted peak could be referred to as the apparent dispersion index (ADI), quantified in a
similar manner, i.e., using Equation (14). The qualifier “apparent” is necessary for an eluted peak as its
spread depends not only on column hydraulics but also on the gradient used for elution. Therefore,
for comparison of two eluted peaks using ADI, the elution gradient has to be identical. The calculated
ADI data obtained from the peaks shown in Figure 8 and Figure S3–S5 (supplementary information)
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are summarized in Table 3 and Table S1 (supplementary information). At each experimental condition,
the peak width at half height and corresponding ADI obtained with the best cuboid packed-bed device
was significantly lower than that obtained with the column.
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Figure 8. Eluted BSA peaks obtained with the best cuboid packed-bed device and its equivalent
column (media: Capto Q anion exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0,
eluting buffer: 50 mM Tris-HCl, 1 M NaCl, pH 8.0, sample: 2 mg/mL BSA, loop: 5 mL, flow rate:
1 mL/min, vS = 30 cm/h).

Table 3. Comparison of the attributes of the eluted BSA peaks obtained with the best cuboid packed-bed
device and its equivalent column (media: Capto Q anion exchange, bed volume: 5 mL, binding buffer:
50 mM Tris-HCl, pH 8.0, eluting buffer: 50 mM Tris-HCl, 1 M NaCl, pH 8.0, sample: 2 mg/mL BSA,
vS = 30 and 150 cm/h for the flow rate of 1 and 5 mL/min respectively, injection volume: 0.5 mL)

Flow Rate (mL/min)
Column Cuboid

Width at Half
Height (mL)

Apparent
Dispersion Index

Width at Half
Height (mL)

Apparent
Dispersion Index

5 1.82 7.28 0.9 3.6
1 1.51 6.04 0.6 2.4

Chromatography columns used for large-scale purification of biologicals such as monoclonal
antibodies have low bed height to diameter ratios. For instance affinity chromatography,
anion exchange chromatography, and cation exchange chromatography columns having ratios of 0.15,
0.18 and 0.08, respectively, have been used for 20,000 L scale production of monoclonal antibodies [7].
The bed height-to-diameter ratio of the cuboid packed-bed devices and colums used in this study is
1.57. Therefore, it may be anticipated that the cuboid packed-bed devices would show even better
relative performances when the bed height-to-diameter ratio is lower. The amount of material used to
fabricate the wall of a chromatography device is an important factor determining equipment cost. For a
given wall thickness, a column would use the least amount of material as the circular cross-section
ensures the lowest perimeter for a given cross-sectional area. For the cuboid packed-bed device,
the amount of material used to fabricate the wall would depend on the length-to-width aspect ratio,
as the perimeter would depend on it, the minimum being when the aspect ratio is one. In terms of
wall material cost, the cuboid packed-bed device with an aspect ratio of one would be more expensive
than the column by a factor of 1.128. This factor would increase with increase in the aspect ratio.



Processes 2018, 6, 160 11 of 13

In summary, a cuboid packed-bed device shows significant promise in applications such as large-scale,
high-resolution purifications of biologicals.

4. Conclusions

Preparative columns used in large-scale biopharmaceutical purification processes typically have
low bed height-to-diameter ratios. Ensuring adequate flow distribution in such columns is challenging.
Cuboid packed-bed devices examined in this study were designed to provide superior flow distribution
and thereby better separation than equivalent preparative columns. The length-to-width aspect ratio
of a cuboid packed-bed device had a significant effect on performance. The cuboid packed-bed device
with a 2:1 aspect ratio showed the best performance while the one with an aspect ratio of 32:1 performed
the worst. The number of theoretical plates in the best-performing cuboid packed-bed device was
approximately 4.5 times of that in the equivalent column. The performance of the worst-performing
cuboid packed-bed device was poorer than that of the column. If the length-to-width ratio of the
cuboid packed-bed device is too high, increase in channel back pressure could decrease the efficiency
of the device. On the other hand, increasing the width of the device could potentially result in
non-uniformity along the width of the channel which, in turn, could also somewhat reduce the
efficiency of separation. The best-performing cuboid packed-bed device significantly outperformed
the column in terms of all the protein separation metrics examined. The results discussed in this paper
show that precice optimization of the design of a cuboid packed-bed device is essential to ensure that
it performs efficiently.

5. Patents

CHROMATOGRAPHY DEVICE AND METHOD FOR FILTERING A SOLUTE FROM A FLUID
R Ghosh—US Patent App. US20170349626A1

Supplementary Materials: The following are available online atwww.mdpi.com/xxx/s1, Figure S1: Unbound
lysozyme break through curves obtained with the best cuboid packed-bed device and its equivalent column
(media: Capto Q anion exchange, bed volume: 5 mL, buffer: 50 mM Tris-HCl, pH 8.0, sample: 1 mg/mL lysozyme,
flow rate: 5 mL/min, vS = 150 cm/h), Figure S2: Lysozyme flow through peaks obtained with the best cuboid
packed-bed device and its equivalent column (media: Capto Q anion exchange, bed volume: 5 mL, buffer:
50 mM Tris-HCl, pH 8.0, sample: 1 mg/mL lysozyme, loop: 0.5 mL, flow rate: 5 mL/min, vS = 150 cm/h),
Figure S3: Eluted BSA peaks obtained with the best cuboid packed-bed device and its equivalent column (media:
Capto Q anion exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0, eluting buffer: 50 mM
Tris-HCl, 1 M NaCl, pH 8.0, sample: 2 mg/mL BSA, loop: 5 mL, flow rate: 5 mL/min, vS = 150 cm/h), Figure S4:
Eluted BSA peaks obtained with the best cuboid packed-bed device and its equivalent column (media: Capto Q
anion exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0, eluting buffer: 50 mM Tris-HCl,
1 M NaCl, pH 8.0, sample: 2 mg/mL BSA, loop: 0.5 mL, flow rate: 1 mL/min, vS = 30 cm/h), Figure S5: Eluted
BSA peaks obtained with the best cuboid packed-bed device and its equivalent column (media: Capto Q anion
exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0, eluting buffer: 50 mM Tris-HCl, 1 M NaCl,
pH 8.0, sample: 2 mg/mL BSA, loop: 0.5 mL, flow rate: 5 mL/min, vS = 150 cm/h), Table S1: Comparison of the
attributes of the eluted BSA peaks obtained with the best cuboid packed-bed device and its equivalent column
(media: Capto Q anion exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0, eluting buffer:
50 mM Tris-HCl, 1 M NaCl, pH 8.0, sample: 2 mg/mL BSA, vS = 30 and 150 cm/h for the flow rate of 1 and
5 mL/min respectively, injection volume: 5 mL).
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