Process Modeling and Evaluation of Plasma-assisted Ethylene Production from Methane

Evangelos Delikonstantis, Marco Scapinello and Georgios D. Stefanidis*

Process Engineering for Sustainable Systems (ProcESS), Department of Chemical Engineering KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium

*Correspondence: georgios.stefanidis@cit.kuleuven.be; Tel.: + 32 16 32 10 07

Table of content

1.	Sha	le gas dehydration unit	2
2.	One	e-step process	3
	2.1	Streams mass flow, composition and conditions	3
	2.2	Heat integration	9
	2.3	Electric power and energy requirements	11
	2.4	Profit margin	
3.	Tw	o-step process	
	3.1	Streams mass flow, composition, temperature and pressure conditions	
	3.2	Heat integration	
	3.3	Electric power and energy requirements	24
	3.4	Profit margin	25

1. Shale gas dehydration unit

Water (coming from the extraction process) is contained in raw shale gas. Although most of the liquid water is removed in simple separators, water vapour is still present. Therefore, absorbers are used to remove the water vapour. In this case, a water vapour content of 3% is considered. The mass flow, composition, temperature and pressure conditions of all streams involved in the raw shale gas dehydration unit are presented in Table S1.

Material		Raw	Lean	Dehydrated	Rich	Absorber	Regenerated	Stripper	Recycled	Make-up
		shale gas	TEG	shale gas	TEG	top	TEG	feed	TEG	TEG
Mole flow										
CH ₄	kmol/hr	10.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0
C_2H_6	kmol/hr	1.9	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0
CO ₂	kmol/hr	0.4	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	0.4	0.0	0.0	0.4	0.4	0.0	0.4	0.0	0.0
C ₆ H ₁₄ O ₄ (TEG)	kmol/hr	0.0	0.1	0.0	0.1	0.0	0.1	0.1	0.1	1.8 10-6
Mass flow										
CH ₄	kg/hr	161.0	0.0	160.9	0.1	0.1	0.0	0.1	0.0	0.0
C_2H_6	kg/hr	57.3	0.0	57.0	0.3	0.3	0.0	0.3	0.0	0.0
CO ₂	kg/hr	16.8	0.0	16.7	0.0	0.0	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	6.9	0.5	0.5	6.9	6.4	0.5	6.9	0.5	0.0
C ₆ H ₁₄ O ₄ (TEG)	kg/hr	0.0	12.0	0.0	12.0	0.0	12.0	12.0	12.0	2.7 10-4
Mole Flows	kmol/hr	12.7	0.1	12.3	0.5	0.4	0.1	0.5	0.1	0.0
Mass Flows	kg/hr	241.9	12.5	235.1	19.3	6.8	12.5	19.3	12.5	2.7 10-4
Volume Flow	cum/hr	61.4	0.02	62.1	0.02	11.4	0.01	0.06	0.01	2.3 10-7
Temperature	°C	25	29.6	29.8	25.8	98.5	142.6	84.6	29	25
Pressure	bar	5	5	5	5	1	1	5	1	5

Table S1. Streams mass flow, composition, temperature and pressure conditions of the dehydration unit.

It is worth mentioning that the composition of the dehydrated gas delivered (T-101 top; Table S1) is slightly different than the one used in the simulation (Table S2 and Table S7). This difference is attributed to the fact that raw shale gas of real composition (CH₄:C₂H₆:CO₂:H₂O = 80:14:3:3 ref) is used in the simulation of the dehydration unit, resulting in dehydrated gas composition of CH₄:C₂H₆:CO₂:H₂O = 84:13.5:1:0.5 (v:v), while dehydrated shale gas with composition equal to the one fed in the experiments (CH₄:C₂H₆:CO₂ = 86:13:1) was used in the process simulation. This minor difference does not affect the validity of the simulation results.

2. One-step process

2.1 Streams mass flow, composition and conditions

The mass flow, composition, temperature and pressure conditions of all the streams involved in the onestep plasma-assisted ethylene production process are presented in Table S2.

Table S	32. Streams m	ass flow, compositi	ion, temperature a	nd pressure conditio	ons; one-step p	rocess.
Material		Dehydrated	Recycling	Plasma	Reactor	Water for
		shale gas		Reactor feed	product	washing column
Mole flow						
CO ₂	kmol/hr	0.4	0.0	0.4	0.3	0.0
CO	kmol/hr	0.0	0.0	0.0	0.1	0.0
H ₂	kmol/hr	0.0	40.4	40.4	54.5	0.0
CH ₄	kmol/hr	10.8	27.3	38.1	28.7	0.0
C_2H_6	kmol/hr	1.9	0.0	1.9	1.2	0.0
C_2H_4	kmol/hr	0.0	0.2	0.2	3.4	0.0
C ₂ H ₂	kmol/hr	0.0	0.0	0.0	0.1	0.0
CARBON	kmol/hr	0.0	0.0	0.0	4.4	0.0
H ₂ O	kmol/hr	0.0	0.0	0.0	0.0	110.3
O2	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	16.0	0.0	16.0	12.8	0.0
СО	kg/hr	0.0	0.0	0.0	2.0	0.0
H ₂	kg/hr	0.0	81.4	81.3	109.8	0.0
CH ₄	kg/hr	173.8	437.3	611.1	460.4	0.0
C2H6	kg/hr	56.8	0.2	57.0	35.4	0.0
C_2H_4	kg/hr	0.0	5.4	5.4	95.2	0.0
C_2H_2	kg/hr	0.0	0.0	0.0	1.6	0.0
CARBO-01	kg/hr	0.0	0.0	0.0	52.5	0.0
H ₂ O	kg/hr	0.0	0.0	0.0	0.0	1987.9
O2	kg/hr	0.0	0.0	0.0	1.2	0.0
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
	Ũ					
Mole Flows	kmol/hr	13.1	67.8	80.9	92.6	110.3
Mass Flows	kg/hr	246.6	524.3	770.9	770.9	1987.9
Volume Flow	cum/hr	323.8	230.6	298.6	768.3	2
Temperature	°C	25	-68	-50	250	25
Pressure	bar	1	5	5	5	1

Material		Water for	Washing tower	Washing	1-stage	Cooling of 1-stage
		washing	bottom product	tower top	compression	compression
		column	-	product	outlet stream	outlet stream
Mole flow						
CO ₂	kmol/hr	0.0	0.0	0.3	0.3	0.3
CO	kmol/hr	0.0	0.0	0.1	0.1	0.1
H ₂	kmol/hr	0.0	0.0	54.5	54.5	54.5
CH ₄	kmol/hr	0.0	0.0	28.7	28.7	28.7
C_2H_6	kmol/hr	0.0	0.0	1.2	1.2	1.2
C_2H_4	kmol/hr	0.0	0.0	3.4	3.4	3.4
C_2H_2	kmol/hr	0.0	0.0	0.1	0.1	0.1
CARBON	kmol/hr	0.0	4.4	0.0	0.0	0.0
H ₂ O	kmol/hr	110.3	109.9	0.5	0.5	0.5
O2	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	0.0	0.0	12.8	12.8	12.8
СО	kg/hr	0.0	0.0	2.0	2.0	2.0
H ₂	kg/hr	0.0	0.0	109.8	109.8	109.8
CH ₄	kg/hr	0.0	0.0	460.4	460.4	460.4
C_2H_6	kg/hr	0.0	0.0	35.4	35.4	35.4
C_2H_4	kg/hr	0.0	0.0	95.2	95.2	95.2
C ₂ H ₂	kg/hr	0.0	0.0	1.6	1.6	1.6
CARBO-01	kg/hr	0.0	52.5	0.0	0.0	0.0
H ₂ O	kg/hr	1987.9	1979.4	8.6	8.6	8.6
O ₂	kg/hr	0.0	0.0	1.2	1.2	1.2
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
Mole Flows	kmol/hr	110.3	114.2	88.7	88.7	88.7
Mass Flows	kg/hr	1987.9	2031.9	726.9	726.9	726.9
Volume Flow	cum/hr	2	2	439.4	240.5	192.4
Temperature	°C	25	25	25	117	40
Pressure	bar	1	5	5	12	12

compression outletstage compression outlet streamcompression outlet streamcompression outlet streamcompression outlet streamstage compression(22%wt) NaOHMole flowstreamoutlet streamsolutionsolutionCO2kmol/hr0.30.30.30.0COkmol/hr0.10.10.10.0H2kmol/hr54.554.554.50.0CH4kmol/hr28.728.728.70.0C2H6kmol/hr1.21.21.20.0C2H4kmol/hr3.43.43.40.0C2H2kmol/hr0.10.10.10.0	Material	ireants mase	2-stage	Cooling of 2-	3-stage	Cooling of 3-	Caustic tower
outlet stream compression outlet stream outlet stream compression outlet stream NaOH solution Mole flow Mole flow 0.3 0.3 0.3 0.03 0.00 CO2 kmol/hr 0.3 0.3 0.3 0.0 0.0 CO kmol/hr 0.1 0.1 0.1 0.0 H2 kmol/hr 54.5 54.5 54.5 0.0 CH4 kmol/hr 28.7 28.7 28.7 0.0 C2H6 kmol/hr 3.4 3.4 3.4 0.0 C2H2 kmol/hr 0.1 0.1 0.0 0.0			compression	stage	compression	stage	(22%wt)
stream outlet stream stream outlet stream solution Mole flow CO2 kmol/hr 0.3 0.3 0.3 0.0 CO2 kmol/hr 0.1 0.1 0.1 0.0 0.0 CO kmol/hr 54.5 54.5 54.5 0.0 H2 kmol/hr 28.7 28.7 28.7 0.0 C2H6 kmol/hr 1.2 1.2 1.2 0.0 C2H4 kmol/hr 3.4 3.4 3.4 0.0 C2H2 kmol/hr 0.1 0.1 0.0 0.0			outlet	compression	outlet	compression	NaOH
Mole flow CO_2 kmol/hr0.30.30.30.0 CO kmol/hr0.10.10.10.0 H_2 kmol/hr54.554.554.554.50.0 CH_4 kmol/hr28.728.728.728.70.0 C_2H_6 kmol/hr1.21.21.21.20.0 C_2H_4 kmol/hr3.43.43.40.0 C_2H_2 kmol/hr0.10.10.10.0			stream	outlet stream	stream	outlet stream	solution
CO_2 kmol/hr0.30.30.30.0 CO kmol/hr0.10.10.10.1 H_2 kmol/hr54.554.554.554.50.0 CH_4 kmol/hr28.728.728.728.70.0 C_2H_6 kmol/hr1.21.21.21.20.0 C_2H_4 kmol/hr3.43.43.43.40.0 C_2H_2 kmol/hr0.10.10.10.0	Mole flow						
COkmol/hr 0.1 0.1 0.1 0.1 0.0 H2kmol/hr 54.5 54.5 54.5 54.5 0.0 CH4kmol/hr 28.7 28.7 28.7 28.7 0.0 C2H6kmol/hr 1.2 1.2 1.2 1.2 0.0 C2H4kmol/hr 3.4 3.4 3.4 0.0 C2H2kmol/hr 0.1 0.1 0.1 0.0	CO ₂	kmol/hr	0.3	0.3	0.3	0.3	0.0
H2kmol/hr54.554.554.554.50.0CH4kmol/hr28.728.728.728.70.0C2H6kmol/hr1.21.21.21.20.0C2H4kmol/hr3.43.43.40.0C2H2kmol/hr0.10.10.10.0	СО	kmol/hr	0.1	0.1	0.1	0.1	0.0
CH4kmol/hr28.728.728.728.70.0C2H6kmol/hr1.21.21.21.20.0C2H4kmol/hr3.43.43.43.40.0C2H2kmol/hr0.10.10.10.0	H ₂	kmol/hr	54.5	54.5	54.5	54.5	0.0
C2H6kmol/hr1.21.21.21.20.0C2H4kmol/hr3.43.43.43.40.0C2H2kmol/hr0.10.10.10.0	CH ₄	kmol/hr	28.7	28.7	28.7	28.7	0.0
C2H4kmol/hr3.43.43.43.40.0C2H2kmol/hr0.10.10.10.0	C_2H_6	kmol/hr	1.2	1.2	1.2	1.2	0.0
C_2H_2 kmol/hr 0.1 0.1 0.1 0.0	C_2H_4	kmol/hr	3.4	3.4	3.4	3.4	0.0
	C_2H_2	kmol/hr	0.1	0.1	0.1	0.1	0.0
CARBON kmol/hr 0.0 0.0 0.0 0.0 0.0	CARBON	kmol/hr	0.0	0.0	0.0	0.0	0.0
H2O kmol/hr 0.5 0.5 0.5 5.2	H ₂ O	kmol/hr	0.5	0.5	0.5	0.5	5.2
O ₂ kmol/hr 0.0 0.0 0.0 0.0 0.0	O2	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH kmol/hr 0.0 0.0 0.0 0.0 0.7	NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.7
NaOH(aq)/22%wt kmol/hr 0.0 0.0 0.0 0.0 0.0	NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃ kmol/hr 0.0 0.0 0.0 0.0 0.0	Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa kmol/hr 0.0 0.0 0.0 0.0 0.0	HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow	Mass flow						
CO ₂ kg/hr 12.8 12.8 12.8 0.0	CO ₂	kg/hr	12.8	12.8	12.8	12.8	0.0
CO kg/hr 2.0 2.0 2.0 0.0	СО	kg/hr	2.0	2.0	2.0	2.0	0.0
H ₂ kg/hr 109.8 109.8 109.8 0.0	H ₂	kg/hr	109.8	109.8	109.8	109.8	0.0
CH ₄ kg/hr 460.4 460.4 460.4 0.0	CH ₄	kg/hr	460.4	460.4	460.4	460.4	0.0
C ₂ H ₆ kg/hr 35.4 35.4 35.4 0.0	C_2H_6	kg/hr	35.4	35.4	35.4	35.4	0.0
C ₂ H ₄ kg/hr 95.2 95.2 95.2 0.0	C_2H_4	kg/hr	95.2	95.2	95.2	95.2	0.0
C2H2 kg/hr 1.6 1.6 1.6 0.0	C_2H_2	kg/hr	1.6	1.6	1.6	1.6	0.0
CARBO-01 kg/hr 0.0 0.0 0.0 0.0 0.0	CARBO-01	kg/hr	0.0	0.0	0.0	0.0	0.0
H2O kg/hr 8.6 8.6 8.6 92.7	H ₂ O	kg/hr	8.6	8.6	8.6	8.6	92.7
O ₂ kg/hr 1.2 1.2 1.2 1.2 0.0	O2	kg/hr	1.2	1.2	1.2	1.2	0.0
NaOH kg/hr 0.0 0.0 0.0 26.1	NaOH	kg/hr	0.0	0.0	0.0	0.0	26.1
NaOH(aq)/22%wt kg/hr 0.0 0.0 0.0 0.0 0.0	NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃ kg/hr 0.0 0.0 0.0 0.0 0.0	Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa kg/hr 0.0 0.0 0.0 0.0 0.0	HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
Mole Flows kmol/hr 88.7 88.7 88.7 5.8	Mole Flows	kmol/br	88 7	88 7	88 7	88 7	5.8
Mole Flows Milling 00.7	Mass Flows	ka/br	726 9	776 0	776 0	776 0	J.O 118 Q
Mass froms Kg/III 720.7 720.7 720.7 720.7 100.7 Volume Elow cum/hr 124.8 102.7 95.2 64.2 0.00	Volumo Flour	ng/III	120.9	102 7	95 2	64.2	0.00
volume from cum/m 124.0 105.7 65.5 64.5 0.09 Temperature °C 114 50 84 0 25	Tomporature	°C	124.0	50	00.5 Q4	04.0	0.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pressure	bar	23	23	31	31	31

Table S2. Streams mass flow, comp	position, temperature and	l pressure conditions; one-step	process (continued).
-----------------------------------	---------------------------	---------------------------------	----------------------

Material		Caustic tower	Caustic	Cooling of	Demethanizer	Demethanizer
		bottom	tower top	caustic tower	top product	bottom
		product	product	top product		product
Mole flow						
CO ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0
СО	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂	kmol/hr	0.0	54.5	54.5	54.5	0.0
CH ₄	kmol/hr	0.0	28.7	28.7	28.7	0.0
C_2H_6	kmol/hr	0.0	1.2	1.2	0.0	1.2
C_2H_4	kmol/hr	0.0	3.4	3.4	0.2	3.2
C ₂ H ₂	kmol/hr	0.0	0.1	0.1	0.0	0.1
CARBON	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	5.9	0.0	0.0	0.0	0.0
O ₂	kmol/hr	0.04	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.3	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.1	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	0.0	0.0	0.0	0.0	0.0
СО	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂	kg/hr	0.0	109.8	109.8	109.8	0.0
CH ₄	kg/hr	0.0	460.4	460.4	460.3	0.0
C_2H_6	kg/hr	0.0	35.4	35.4	0.2	35.1
C_2H_4	kg/hr	0.0	95.2	95.2	5.7	89.5
C_2H_2	kg/hr	0.0	1.6	1.6	0.0	1.6
CARBO-01	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	106.4	0.1	0.1	0.0	0.1
O ₂	kg/hr	1.2	0.0	0.0	0.0	0.0
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	30.8	0.0	0.0	0.0	0.0
HCOONa	kg/hr	4.9	0.0	0.0	0.0	0.0
Mole Flows	kmol/hr	6.3	87.8	87.8	83.4	4.4
Mass Flows	kg/hr	143.3	702.5	702.5	576.1	126.4
Volume Flow	cum/hr	20.0	64.0	33.9	30.3	0.3
Temperature	°C	25	0	-115	-126	-7
Pressure	bar	31	31	31	31	31

Material		PSA outlet	PSA outlet stream	Heated PSA outlet	Recycling stream	Purge
		stream-H2	to be recycled	stream prior to	after the	stream
		removal		recycling	expansion	
Mole flow						
CO ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0
СО	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂	kmol/hr	12.0	42.5	42.5	42.5	2.1
CH ₄	kmol/hr	0.0	28.7	28.7	28.7	1.4
C_2H_6	kmol/hr	0.0	0.0	0.0	0.0	0.0
C_2H_4	kmol/hr	0.0	0.2	0.2	0.2	0.0
C_2H_2	kmol/hr	0.0	0.0	0.0	0.0	0.0
CARBON	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	0.0	0.0	0.0	0.0	0.0
O ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	0.0	0.0	0.0	0.0	0.0
СО	kg/hr	0.0	0.0	0.0	0.0	0.0
H_2	kg/hr	24.1	85.7	85.7	85.7	4.3
CH ₄	kg/hr	0.0	460.3	460.3	460.3	23.0
C_2H_6	kg/hr	0.0	0.2	0.2	0.2	0.0
C_2H_4	kg/hr	0.0	5.7	5.7	5.7	0.3
C_2H_2	kg/hr	0.0	0.0	0.0	0.0	0.0
CARBO-01	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	0.0	0.0	0.0	0.0	0.0
O ₂	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
	0					
Mole Flows	kmol/hr	12.0	71.4	71.4	71.4	3.6
Mass Flows	kg/hr	24.1	551.9	551.9	551.9	27.6
Volume Flow	cum/hr	4.8	24.5	55.1	242.7	12.1
Temperature	°C	-126	-126	15	-68	-68
Pressure	bar	31	31	31	5	5

Material		Deethanizer	Deethanizer	Deethanizer	Purifier feed	Purifier	Purifier top
		feed	bottom product	top product		bottom	product
						product	
Mole flow							
CO ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
CO	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
H ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
CH ₄	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
C_2H_6	kmol/hr	1.2	1.0	0.2	0.2	0.2	0.0
C_2H_4	kmol/hr	3.2	0.0	3.2	3.2	0.0	3.2
C_2H_2	kmol/hr	0.1	0.0	0.0	0.0	0.0	0.0
CARBON	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
O2	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0	0.0
Mass flow							
CO ₂	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
СО	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
H ₂	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
CH ₄	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
C_2H_6	kg/hr	35.1	28.7	6.5	6.5	6.5	0.0
C_2H_4	kg/hr	89.5	0.6	89.0	89.0	0.0	89.0
C_2H_2	kg/hr	1.6	0.4	1.2	1.2	1.2	0.0
CARBO-01	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	0.1	0.1	0.0	0.0	0.0	0.0
O2	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0	0.0
	0						
Mole Flows	kmol/hr	4.4	1.0	3.4	3.4	0.3	3.2
Mass Flows	kg/hr	126.4	29.7	96.7	96.7	7.7	89.0
Volume Flow	cum/hr	1.5	0.1	3.5	57.7	0.0	43.3
Temperature	°C	-34	-19	-38	-67	-89	-104
Pressure	bar	15	15	15	1	1	1

Table S2. Streams mass flow, composition, temperature and pressure conditions; one-step process (continued).

2.2 *Heat integration*

Seven hot and four cold process streams can be integrated to reduce the external hot and cold utility demand. The supplied and targeted temperatures, the temperature intervals and the energy content of these streams are presented in Table S3.

Character	N /T	Actua	1	Interva	al	CD	A T T	Tetal damaged
Streams	No/ I ype	temperat	ture	temperat	ture	СРМ	Δн	l otal demand
		0	С	0	С	kW/°C	kW	kW
		Tsup	Ttarg	Tsup	Ttarg			
 T-203/Condenser	1/Hot	-83	-126	-88	-131	3.7	-159	
T-203/Reboiler	2/Cold	-8	-7	-3	-2	129.8	146	400
T-204/Condenser	3/Hot	-38	-39	-43	-44	38.6	-58	400
T-204/Reboiler	4/Cold	-19	-18	-14	-13	105.2	64	(Hot utility)
T-205/Condenser	5/Hot	-104	-105	-109	-110	111.8	-95	
T-205/Reboiler	6/Cold	-92	-91	-87	-86	93	93	
HEX-201	7/Hot	117	40	112	35	0.8	-64	
HEX-202	8/Hot	114	50	109	45	0.8	-54	-596
HEX-203	9/Hot	84	0	79	-5	0.9	-74	(Cold Utility)
HEX-204	10/Hot	0	-115	-5	-120	0.8	-92	
 HEX-211	11/Cold	-126	15	-121	20	0.7	97	

Table S3. Process streams available for heat integration in the one-step plasma-assisted ethylene production process.

The process streams heat balances and the problem table algorithm involved in the pinch analysis for the one-step process are presented in Table S4. Hot utility of 105.9 kW should be added to balance the heat cascade. The pinch temperature is at -87°C.

	Tab	le S4.	Heat	balaı	nces fo	or the	temp	eratu	re inte	rvals	and p	roblem	table algor	rithm of th	ne on-step p	process.	
Temperature				S	tream	s ove	rlapp	ing				ΔΤ	ΣCPm	ΔH	S/D^1	Unb C. ²	B C. ³
°C												°C	kW/°C	kW		kW	kW
112																	Add:
																	1105.9
												3	-0.8	-2.5	Surplus		
109																2.5	108.4
												30	-1.7	-49.7	Surplus		
79																52.2	158.1
												34	-2.5	-86.5	Surplus		
45								♥								138.8	244.7
												10	-1.7	-17.1	Surplus		
35							♥									155.9	261.8
												15	-0.9	-13.3	Surplus		
20																169.2	275.1
												22	-0.2	-4.4	Surplus		
-2																173.5	279.4
												1	129.6	129.6	Deficit		
-3																43.9	149.8
												2	-0.2	-0.4	Surplus		
-5																44.3	150.2
												8	-0.1	-0.9	Surplus		
-13																45.2	151.1
												1	105.1	105.1	Deficit		
-14																-59.8	46.1
												29	-0.1	-3.3	Surplus		
-43																-56.5	49.4
												1	-38.7	-38.7	Surplus		
-44			♥													-17.8	88.1
												42	-0.1	-4.8	Surplus		
-86																-13.0	92.9
												1	92.9	92.9	Deficit		

2.3 Electric power and energy requirements

Table S5. Electric power demand distribution over the different process steps involved in the on-step process.

Electricity demand	kW	Source
CH4 compress/Cooling	400	Simulation
CH4 expansion/Cooling	-109	Simulation
CH ₄ feed	152	Simulation
Water feed	0.4	Simulation
Compression 1 stage	88	Simulation
Compression 2 stage	76	Simulation
Compression 3 stage	34	Simulation
Recycle expansion	-49	Simulation
Plasma reactor	1904	2020 kJ/mol ethylene [1]
Total	2498	kW
Specific energy demand	101,018	kJ/kg ethylene
	28	kWh/kg ethylene
Hot utility demand	181	kgH2O/kg ethylene

Profit margin 2.4

Table S6. Profit margin of the one-step process as function of the electricity price.									
Ethylene price	Electricity price	Electricity cost	Raw material cost	Ethylene production cost	Profit Margin				
USD/ton	USD/MWh	USD/ton	USD/ton	USD/ton	USD/ton				
1200	100	2806	546	3352	-2152				
1200	50	1403	546	1949	-749				
1200	25	702	546	1247	-47				
1200	20	561	546	1107	93				
1200	15	421	546	966	234				
1200	10	281	546	826	374				
1200	5	140	546	686	514				

Ethylene production cost=Specific energy demand × electricity price + Specific gas demand × gas price

Specific gas demand=Volumetric shale gas feed/mass of ethylene produced

Profit margin=Ethylene price - ethylene production cost

Break-even electricity price=23 USD/MWh

3. Two-step process

3.1 Streams mass flow, composition, temperature and pressure conditions

The mass flow, composition, temperature and pressure conditions of all the streams involved in the twostep plasma-assisted ethylene production process are presented in Table S7.

Table	S7. Streams	mass flow, composit	ion, temperature ar	nd pressure conditio	ns; two-step p	rocess.
Material		Dehydrated	Recycling	Plasma	Reactor	Water for
		shale gas		reactor feed	product	washing column
Mole flow	1 14	2.4		2.4	0.0	
	kmol/hr	0.4	0.0	0.4	0.3	0.0
СО	kmol/hr	0.0	0.0	0.0	0.1	0.0
H_2	kmol/hr	0.0	40.4	40.4	50.4	0.0
CH ₄	kmol/hr	9.8	28.3	38.1	29.8	0.0
C_2H_6	kmol/hr	1.9	0.0	1.9	1.3	0.0
C_2H_4	kmol/hr	0.0	0.1	0.1	4.2	0.0
C_2H_2	kmol/hr	0.0	0.0	0.0	0.1	0.0
CARBON	kmol/hr	0.0	0.0	0.0	1.4	0.0
H ₂ O	kmol/hr	0.0	0.0	0.0	0.0	551.7
O2	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	16.0	0.0	16.0	12.8	0.0
CO	kg/hr	0.0	0.0	0.0	2.0	0.0
H ₂	kg/hr	0.0	81.3	81.3	101.6	0.0
CH ₄	kg/hr	157.3	453.8	611.1	477.7	0.0
C_2H_6	kg/hr	57.0	0.2	57.2	38.2	0.0
C_2H_4	kg/hr	0.0	3.2	3.2	117.5	0.0
C_2H_2	kg/hr	0.0	0.0	0.0	1.6	0.0
CARBO-01	kg/hr	0.0	0.0	0.0	16.2	0.0
H ₂ O	kg/hr	0.0	0.0	0.0	0.0	9939.6
O2	kg/hr	0.0	0.0	0.0	1.2	0.0
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
	-					
Mole Flows	kmol/hr	12.1	68.8	80.8	87.5	551.7
Mass Flows	kg/hr	230.3	538.6	768.9	768.9	9939.6
Volume Flow	cum/hr	279.7	948.2	1270.4	3388.9	10
Temperature	°C	25	-107	-84	200	25
Pressure	bar	1	1	1.1	1	1

Material		Water for	Washing tower	Washing	1-stage	Cooling of 1-stage
		washing column	bottom product	tower top	compression	compression
		after the pump	-	product	outlet stream	outlet stream
Mole flow						
CO ₂	kmol/hr	0.0	0.0	0.3	0.3	0.3
СО	kmol/hr	0.0	0.0	0.1	0.1	0.1
H ₂	kmol/hr	0.0	0.0	50.4	50.4	50.4
CH ₄	kmol/hr	0.0	0.0	29.8	29.8	29.8
C_2H_6	kmol/hr	0.0	0.0	1.3	1.3	1.3
C_2H_4	kmol/hr	0.0	0.0	4.2	4.2	4.2
C_2H_2	kmol/hr	0.0	0.0	0.1	0.1	0.1
CARBON	kmol/hr	0.0	1.4	0.0	0.0	0.0
H ₂ O	kmol/hr	551.7	549.4	2.3	2.3	2.3
O2	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	0.0	0.0	12.8	12.8	12.8
СО	kg/hr	0.0	0.0	2.0	2.0	2.0
H ₂	kg/hr	0.0	0.0	101.6	101.6	101.6
CH ₄	kg/hr	0.0	0.0	477.7	477.7	477.7
C_2H_6	kg/hr	0.0	0.0	38.2	38.2	38.2
C_2H_4	kg/hr	0.0	0.0	117.5	117.5	117.5
C2H2	kg/hr	0.0	0.0	1.6	1.6	1.6
CARBO-01	kg/hr	0.0	16.2	0.0	0.0	0.0
H ₂ O	kg/hr	9939.6	9897.7	41.9	41.9	41.9
O2	kg/hr	0.0	0.0	1.2	1.2	1.2
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
Mole Flows	kmol/hr	551.7	550.8	88.4	88.4	88.4
Mass Flows	kg/hr	9939.6	9913.9	794.5	794.5	794.5
Volume Flow	cum/hr	10.0	10.0	2192.6	1192.9	899.0
Temperature	°C	25	27	25	116	25
Pressure	bar	1	1	1	2.4	2.4

Material	e off off off officiality	1-stage flush	1-stage flush	2-stage	Cooling of 2-stage	2-stage flush
		drum bottom	drum top	compression	compression outlet	drum bottom
		product	product	outlet stream	stream	product
Mole flow			_			
CO ₂	kmol/hr	0.0	0.3	0.3	0.3	0.0
СО	kmol/hr	0.0	0.1	0.1	0.1	0.0
H ₂	kmol/hr	0.0	50.4	50.4	50.4	0.0
CH ₄	kmol/hr	0.0	29.8	29.8	29.8	0.0
C_2H_6	kmol/hr	0.0	1.3	1.3	1.3	0.0
C_2H_4	kmol/hr	0.0	4.2	4.2	4.2	0.0
C_2H_2	kmol/hr	0.0	0.1	0.1	0.1	0.0
CARBON	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	1.4	1.0	1.0	1.0	0.5
O ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	0.0	12.8	12.8	12.8	0.0
СО	kg/hr	0.0	2.0	2.0	2.0	0.0
H ₂	kg/hr	0.0	101.6	101.6	101.6	0.0
CH ₄	kg/hr	0.0	477.7	477.7	477.7	0.0
C_2H_6	kg/hr	0.0	38.2	38.2	38.2	0.0
C_2H_4	kg/hr	0.0	117.5	117.5	117.5	0.0
C_2H_2	kg/hr	0.0	1.6	1.6	1.6	0.0
CARBO-01	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	24.6	17.2	17.2	17.2	9.6
O2	kg/hr	0.0	1.2	1.2	1.2	0.0
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
Mole Flows	kmol/hr	1.4	87.1	87.1	87.1	0.5
Mass Flows	kg/hr	24.6	769.9	769.9	769.9	9.6
Volume Flow	cum/hr	0.0	898.9	513.2	389.7	0.0
Temperature	°C	25	25	116	25	25
Pressure	bar	2.4	2.4	5.5	5.5	5.5

Material		2-stage flush	3-stage	Cooling of 3-stage	3-stage flush	3-stage flush
		drum top	compression	compression outlet	drum bottom	drum top
		product	outlet stream	stream	product	product
Mole flow		_				
CO ₂	kmol/hr	0.3	0.3	0.3	0.0	0.3
СО	kmol/hr	0.1	0.1	0.1	0.0	0.1
H_2	kmol/hr	50.4	50.4	50.4	0.0	50.4
CH ₄	kmol/hr	29.8	29.8	29.8	0.0	29.8
C_2H_6	kmol/hr	1.3	1.3	1.3	0.0	1.3
C_2H_4	kmol/hr	4.2	4.2	4.2	0.0	4.2
C_2H_2	kmol/hr	0.1	0.1	0.1	0.0	0.1
CARBON	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	0.4	0.4	0.4	0.2	0.2
O ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	12.8	12.8	12.8	0.0	12.8
СО	kg/hr	2.0	2.0	2.0	0.0	2.0
H ₂	kg/hr	101.6	101.6	101.6	0.0	101.6
CH ₄	kg/hr	477.7	477.7	477.7	0.0	477.7
C_2H_6	kg/hr	38.2	38.2	38.2	0.0	38.2
C_2H_4	kg/hr	117.5	117.5	117.5	0.0	117.5
C_2H_2	kg/hr	1.6	1.6	1.6	0.0	1.6
CARBO-01	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	7.6	7.6	7.6	4.2	3.4
O ₂	kg/hr	1.2	1.2	1.2	0.0	1.2
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
Mole Flows	kmol/hr	86.5	86.5	86.5	0.2	86.3
Mass Flows	kg/hr	760.3	760.3	760.3	4.2	756.1
Volume Flow	cum/hr	389.7	218.2	164.3	0.0	164.3
Temperature	°C	25	120	25	25	25
Pressure	bar	5.5	13	13	13	13

Material		4-stage	Cooling of 4-stage	4-stage flush	4-stage flush	5-stage
		compression	compression outlet	drum bottom	drum top	compression
		outlet stream	stream	product	product	outlet stream
Mole flow					_	
CO ₂	kmol/hr	0.3	0.3	0.0	0.3	0.3
СО	kmol/hr	0.1	0.1	0.0	0.1	0.1
H ₂	kmol/hr	50.4	50.4	0.0	50.4	50.4
CH ₄	kmol/hr	29.8	29.8	0.0	29.8	29.8
C_2H_6	kmol/hr	1.3	1.3	0.0	1.3	1.3
C_2H_4	kmol/hr	4.2	4.2	0.0	4.2	4.2
C_2H_2	kmol/hr	0.1	0.1	0.0	0.1	0.1
CARBON	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	0.2	0.2	0.1	0.1	0.1
O ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	12.8	12.8	0.0	12.8	12.8
СО	kg/hr	2.0	2.0	0.0	2.0	2.0
H ₂	kg/hr	101.6	101.6	0.0	101.6	101.6
CH ₄	kg/hr	477.7	477.7	0.0	477.7	477.7
C_2H_6	kg/hr	38.2	38.2	0.0	38.2	38.2
C_2H_4	kg/hr	117.5	117.5	0.0	117.5	117.5
C_2H_2	kg/hr	1.6	1.6	0.0	1.6	1.6
CARBO-01	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	3.4	3.4	1.7	1.6	1.6
O2	kg/hr	1.2	1.2	0.0	1.2	1.2
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
	-					
Mole Flows	kmol/hr	86.3	86.3	0.1	86.2	86.2
Mass Flows	kg/hr	756.1	756.1	1.7	754.3	754.3
Volume Flow	cum/hr	94.0	71.0	0.0	71.0	69.5
Temperature	°C	117	25	25	25	28
Pressure	bar	30	30	30	30	31

Material		Caustic tower	Caustic tower	Caustic tower	Cooling of caustic	Demethanizer
		(22%wt) NaOH	bottom product	top product	tower top product	top product
		solution				
Mole flow						
CO ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0
CO	kmol/hr	0.0	0.0	0.0	0.0	0.0
H_2	kmol/hr	0.0	0.0	50.4	50.4	50.4
CH ₄	kmol/hr	0.0	0.0	29.8	29.8	29.8
C_2H_6	kmol/hr	0.0	0.0	1.3	1.3	0.0
C_2H_4	kmol/hr	0.0	0.0	4.2	4.2	0.1
C ₂ H ₂	kmol/hr	0.0	0.0	0.1	0.1	0.0
CARBON	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	5.1	5.5	0.0	0.0	0.0
O2	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.7	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.3	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.1	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	0.0	0.0	0.0	0.0	0.0
СО	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂	kg/hr	0.0	0.0	101.6	101.6	101.6
CH ₄	kg/hr	0.0	0.0	477.7	477.7	477.7
C_2H_6	kg/hr	0.0	0.0	38.2	38.2	0.2
C_2H_4	kg/hr	0.0	0.0	117.5	117.5	3.4
C ₂ H ₂	kg/hr	0.0	0.0	1.6	1.6	0.0
CARBO-01	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	92.7	99.6	0.0	0.0	0.0
O2	kg/hr	0.0	1.2	0.0	0.0	0.0
NaOH	kg/hr	26.1	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	30.8	0.0	0.0	0.0
HCOONa	kg/hr	0.0	4.9	0.0	0.0	0.0
Mole Flows	kmol/hr	5.8	5.9	85.7	85.7	80.3
Mass Flows	kg/hr	118.8	136.5	736.7	736.7	583.0
Volume Flow	cum/hr	0.09	0.1	69.2	32.5	28.9
Temperature	°C	25	28	28.4	-115	-125
Pressure	bar	31	31	31	31	31

Material		Demethanizer	PSA outlet	PSA outlet	Heated PSA	Recycling stream
		bottom product	stream-H2	stream to be	outlet stream	after the expansion
		_	removal	recycled	prior to recycling	_
Mole flow						
CO ₂	kmol/hr	0.0	0.0	0.0	0.0	0.0
СО	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂	kmol/hr	0.0	7.9	42.5	42.5	42.5
CH ₄	kmol/hr	0.0	0.0	29.8	29.8	29.8
C_2H_6	kmol/hr	1.3	0.0	0.0	0.0	0.0
C_2H_4	kmol/hr	4.1	0.0	0.1	0.1	0.1
C ₂ H ₂	kmol/hr	0.1	0.0	0.0	0.0	0.0
CARBON	kmol/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	0.0	0.0	0.0	0.0	0.0
O2	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0	0.0
Mass flow						
CO ₂	kg/hr	0.0	0.0	0.0	0.0	0.0
СО	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂	kg/hr	0.0	16.0	85.6	85.6	85.6
CH ₄	kg/hr	0.0	0.0	477.7	477.7	477.7
C_2H_6	kg/hr	38.0	0.0	0.2	0.2	0.2
C_2H_4	kg/hr	114.0	0.0	3.4	3.4	3.4
C_2H_2	kg/hr	1.6	0.0	0.0	0.0	0.0
CARBO-01	kg/hr	0.0	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	0.0	0.0	0.0	0.0	0.0
O2	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH	kg/hr	0.0	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0	0.0
Mole Flows	kmol/hr	5.4	7.9	72.4	72.4	72.4
Mass Flows	kg/hr	153.7	16.0	567.0	567.0	567.0
Volume Flow	cum/hr	0.4	3.2	24.9	57.9	998.1
Temperature	°C	-8	-125	-125	25	-107
Pressure	bar	31	31	31	31	1

Table S7. Streams mass flow, composition, temperature and pressure conditions; two-step process (continued).

Material		Purge stream	Deethanizer feed	Deethanizer	Deethanizer
				bottom product	top product
Mole flow					
CO ₂	kmol/hr	0.0	0.0	0.0	0.0
СО	kmol/hr	0.0	0.0	0.0	0.0
H ₂	kmol/hr	2.1	0.0	0.0	0.0
CH ₄	kmol/hr	1.5	0.0	0.0	0.0
C_2H_6	kmol/hr	0.0	1.3	0.9	0.3
C_2H_4	kmol/hr	0.0	4.1	0.0	4.1
C ₂ H ₂	kmol/hr	0.0	0.1	0.0	0.1
CARBON	kmol/hr	0.0	0.0	0.0	0.0
H ₂ O	kmol/hr	0.0	0.0	0.0	0.0
O2	kmol/hr	0.0	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0	0.0
Mass flow					
CO ₂	kg/hr	0.0	0.0	0.0	0.0
СО	kg/hr	0.0	0.0	0.0	0.0
H ₂	kg/hr	4.3	0.0	0.0	0.0
CH ₄	kg/hr	23.9	0.0	0.0	0.0
C_2H_6	kg/hr	0.0	38.0	27.7	10.3
C_2H_4	kg/hr	0.2	114.0	0.0	114.0
C ₂ H ₂	kg/hr	0.0	1.6	0.2	1.4
CARBO-01	kg/hr	0.0	0.0	0.0	0.0
H ₂ O	kg/hr	0.0	0.0	0.0	0.0
O2	kg/hr	0.0	0.0	0.0	0.0
NaOH	kg/hr	0.0	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0	0.0
Mole Flows	kmol/hr	3.6	5.4	0.9	4.5
Mass Flows	kg/hr	28.3	153.7	28.0	125.7
Volume Flow	cum/hr	50	1.8	0.1	4.5
Temperature	°C	-107	-35	-18	-37
Pressure	bar	1	15	15	15

Table	S7. Streams mass flo	w, composition,	temperature and	pressure conditions: two-step	p process (continued).
					/ F=======(=============================

Material		Purifier feed	Purifier bottom product	Purifier top product
Mole flow				
CO ₂	kmol/hr	0.0	0.0	0.0
СО	kmol/hr	0.0	0.0	0.0
H ₂	kmol/hr	0.0	0.0	0.0
CH_4	kmol/hr	0.0	0.0	0.0
C_2H_6	kmol/hr	0.3	0.3	0.0
C_2H_4	kmol/hr	4.1	0.2	3.9
C ₂ H ₂	kmol/hr	0.1	0.1	0.0
CARBON	kmol/hr	0.0	0.0	0.0
H ₂ O	kmol/hr	0.0	0.0	0.0
O2	kmol/hr	0.0	0.0	0.0
NaOH	kmol/hr	0.0	0.0	0.0
NaOH(aq)/22%wt	kmol/hr	0.0	0.0	0.0
Na ₂ CO ₃	kmol/hr	0.0	0.0	0.0
HCOONa	kmol/hr	0.0	0.0	0.0
Mass flow				
CO ₂	kg/hr	0.0	0.0	0.0
СО	kg/hr	0.0	0.0	0.0
H_2	kg/hr	0.0	0.0	0.0
CH_4	kg/hr	0.0	0.0	0.0
C_2H_6	kg/hr	10.3	10.3	0.0
C_2H_4	kg/hr	114.0	4.6	109.4
C ₂ H ₂	kg/hr	1.4	1.4	0.1
CARBO-01	kg/hr	0.0	0.0	0.0
H ₂ O	kg/hr	0.0	0.0	0.0
O2	kg/hr	0.0	0.0	0.0
NaOH	kg/hr	0.0	0.0	0.0
NaOH(aq)/22%wt	kg/hr	0.0	0.0	0.0
Na ₂ CO ₃	kg/hr	0.0	0.0	0.0
HCOONa	kg/hr	0.0	0.0	0.0
Mole Flows	kmol/hr	4.5	0.6	3.9
Mass Flows	kg/hr	125.7	16.2	109.5
Volume Flow	cum/hr	75.1	0.0	53.2
Temperature	°C	-67	-96	-104
Pressure	bar	1	1	1

Table S7. Streams mass flow, composition, temperature and pressure conditions; two-step process (continued).

3.2 *Heat integration*

Eight hot and four cold process streams can be integrated to reduce the external hot and cold utility demand. The supplied and targeted temperatures, the temperature intervals and the energy content of these streams are presented in Table S8.

Streems	No/Trues	Actua	1	Interval		CP	ΔН	Total domand
Streams	No/Type	temperat	temperature		ture	СГМ		i otai demand
		°C		°C		kW/°C	kW	kW
		Tsup	\mathbf{T}_{targ}	Tsup	Ttarg			
T-203/Condenser	1/Hot	-92	-125	-97	-130	5.1	-173	
T-203/Reboiler	2/Cold	-8	-7	-3	-2	112.0	160	118
T-204/Condenser	3/Hot	-37	-38	-42	-43	44.8	-63	(Liot utility)
T-204/ Reboiler	4/Cold	-18	-17	-13	-12	56.2	71	(FIOT utility)
T-205/Condenser	5/Hot	-104	-105	-109	-110	145.0	-116	
T-205/Reboiler	6/Cold	-97	-96	-92	-91	225.2	113	
HEX-201	7/Hot	116	25	111	20	1.0	-92	
HEX-202	8/Hot	116	25	111	20	0.9	-81	707
HEX-203	9/Hot	120	25	115	20	0.8	-80	
HEX-204	10/Hot	117	25	112	20	0.8	-77	(Cold Utility)
HEX-205	11/Hot	28	-115	23	-120	0.8	-114	
HEX-212	12/Cold	-125	25	-120	30	0.7	104	

Table S8. Process streams available for heat integration in the two-step plasma-assisted ethylene production process.

The process streams heat balances and the problem table algorithm involved in the pinch analysis for the two-process are presented in Table S9. Hot utility of 12.4 kW should be added to balance the heat cascade. The pinch temperature is at -92°C.

Temperature	Streams overlapping							ΔT	ΣCPm	ΔH	S/D ¹	Unb C. ²	B C. ³				
°C												°C	kW/°C	kW		kW	kW
115																	Add: 12.4
												3	-0.8	-2.5	Surplus		
112										1						2.5	15.0
	_											1	-1.7	-1.7	Surplus		
111	_															4.2	16.6
	_											81	-3.6	-289.6	Surplus		
30	-															293.8	306.3
	-											7	-2.9	-20.2	Surplus		
23	-															314.0	326.4
	-											3	-3.7	-11.0	Surplus		
20	-						V	V	♥							325.0	337.4
	-											22	-0.1	-2.2	Surplus		
-2	-															327.2	339.6
	-											1	111.9	111.9	Deficit		
-3																215.3	227.7
	-											9	-0.1	-0.9	Surplus		
-12	-															216.2	228.6
	-											1	56.1	56.1	Deficit		
-13	_															160.1	172.5
	_											29	-0.1	-2.9	Surplus		
-42	-															163.0	175.4
	-											1	-44.9	-44.9	Surplus		
-43												40	0.1	1.0	6 1	207.9	220.3
01												48	-0.1	-4.8	Surplus	010 5	005 1
-91												4	005 1	005 1		212.7	225.1
													225.1	225.1	Deficit	10.4	0.0
-92																-12.4	0.0

a far tha tammarat we intervale and problem table algorithm of th + hale Table CO LL

3.3 Electric power and energy requirements

Table S10. Electric power demand distribution over the different process steps involved in the two-step process.

Electricity demand	kW	Source
CH4 compress/Cooling	467	Simulation
CH₄ expansion/Cooling	-127	Simulation
CH4 feed	7	Simulation
Water feed	2	Simulation
Compression 1 stage	88	Simulation
Compression 2 stage	92	Simulation
Compression 3 stage	96	Simulation
Compression 4 stage	87	Simulation
Compression 5 stage	3	Simulation
Recycle expansion	-79	Simulation
Plasma reactor	1910	1642 kJ/mol ethylene [2]
Total	2545	kW
Specific energy demand	836,69	kJ/kg ethylene
	23	kWh/kg ethylene
Hot utility demand	-	kgH2O/kg ethylene

3.4Profit margin

Table 511. Protit margin of the two-step process as function of the electricity price.											
Ethylene price	Electricity price	Electricity cost	Raw material cost	Ethylene production cost	Profit Margin						
USD/ton	USD/MWh	USD/ton	USD/ton	USD/ton	USD/kg						
1200	100	2324	383	2707	-1507						
1200	50	1162	383	1545	-345						
1200	25	581	383	964	236						
1200	20	465	383	848	352						
1200	15	349	383	732	468						
1200	10	232	383	616	584						
1200	5	116	383	499	701						

Ethylene production cost=Specific energy demand × electricity price + Specific gas demand × gas price

Specific gas demand=(Volumetric shale gas feed/mass of ethylene produced)

Profit margin=Ethylene price - ethylene production cost

Break-even electricity price=35 USD/MWh

Figure S1. One-step demethanizer temperature profiles at reflux ratios of 0.1, 0.8, 2 and 3. The column temperature profile remains practically constant for reflux ratios >0.8.

References

- 1. Scapinello, M.; Delikonstantis, E.; Stefanidis, G.D. Direct methane-to-ethylene conversion in a nanosecond pulsed discharge. *Fuel* **2018**, *222*, 705–710.
- 2. Delikonstantis, E.; Scapinello, M.; Stefanidis, G.D. Low energy cost conversion of methane to ethylene in a hybrid plasma-catalytic reactor system. *Fuel Process. Technol.* **2018**, *176*, 33–42.