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Abstract: To increase manufacturing flexibility and system understanding in pharmaceutical
development, the FDA launched the quality by design (QbD) initiative. Within QbD, the design space
is the multidimensional region (of the input variables and process parameters) where product quality
is assured. Given the high cost of extensive experimentation, there is a need for computational
methods to estimate the probabilistic design space that considers interactions between critical
process parameters and critical quality attributes, as well as model uncertainty. In this paper
we propose two algorithms that extend the flexibility test and flexibility index formulations to
replace simulation-based analysis and identify the probabilistic design space more efficiently.
The effectiveness and computational efficiency of these approaches is shown on a small example and
an industrial case study.
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1. Introduction

To increase manufacturing flexibility, process robustness, system understanding, and to prevent
the shortage of critical medicines due to unreliable quality in pharmaceutical development and
manufacturing, the FDA launched the quality by design (QbD) initiative [1]. Later, the concept of
the design space was characterized as “the multidimensional combination and interaction of input
variables (e.g., material attributes) and process parameters that have been demonstrated to provide
assurance of quality” [2]. On one hand, the design space offers operational flexibility for industries
to continuously improve performance as long as the combination of input variables and process
parameters fall within the approved design space [3]; on the other hand, the design space provides
regulatory agencies with a convenient tool to monitor the compliance of a pharmaceutical production
process [4].

The design space is identified by the limits of acceptability of critical quality attributes (CQAs).
In a conventional approach, four steps are carried out to find such a design space [4,5]. The first step is
to perform extensive experiments to determine the relationships between the process parameters and
the CQAs.

The second step is to assess the impact of the process parameters on the CQAs (through design
of experiments analysis) and select the process parameters that have a medium/high impact on the
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CQAs. The third step involves the employment of response surface modeling and optimization to
establish a design space graphically. The final step is to run confirmatory experiments to verify the
design space that will be submitted to the regulatory agency for assessment and approval. A few recent
industrial applications of such a traditional method have been reported by Kumar et al. (2014) [6] and
Chatzizaharia and Hatziavramidis (2015) [7].

However, establishing the design space with this approach has significant disadvantages.
Pharmaceutical processes are expensive and associated raw materials may be costly. Furthermore,
extensive experimentation is time consuming. Therefore, there are limits on the number of experiments
that can be performed in practice. Recently, data-driven approaches like Bayesian methods [8] and
multivariate statistical techniques such as PCA and PLS [3,5,9] have been used to better manage the
extent of these costs, however, these techniques require significant, high quality data [10]. Alternatively,
we can use mechanistic models that intrinsically contain relationships between process parameters,
uncertain variables, and critical quality attributes. This model-based approach allows for more
informative and targeted experiments to be performed during design space formulation.

In a model-based approach we consider process parameters θp which include both design
decisions and fixed process decisions that do not change during operation (e.g., reactor dimensions,
feed conditions). Assuming deterministic system behavior, the deterministic design space can be
easily found by performing simulations over the space of these process parameters and checking the
critical quality attributes at each of these points. However, uncertainty in model parameters plays an
important role and cannot be ignored. Uncertain model parameters θm (e.g., kinetic rate constants,
heat transfer coefficients) are typically estimated by maximum-likelihood or Bayesian techniques
based on experimental data. In addition to point estimates of the parameters, such approaches
provide an estimate of the distribution of those uncertain model parameters (e.g., covariance matrix).
The uncertainty arising from this estimation propagates to uncertainty in the acceptability of the
CQAs [4]. Accounting for this uncertainty, the probabilistic design space captures the region in
the process parameter space where product quality is assured within a given probability over the
uncertain parameters.

One approach to determine the probabilistic design space is through Monte-Carlo simulation.
The space of process parameters is first discretized (e.g., a fine uniform grid), and for each point in
the process parameter space an ensemble of simulations is performed using sampled values for the
uncertain model parameters. For every sampled simulation, the CQAs can be checked, recording
success or failure and, over the entire ensemble, the probability that the CQAs are acceptable can
be computed for each particular point in the process parameter space. This approach and similar
sample-based approaches have been shown to be effective [11–14], however, they are computationally
expensive since simulations are performed for each sample in the Monte-Carlo simulations for
every point in the discretized process parameters. There is a need for approaches with improved
computational efficiency to address larger uncertainty and process parameter spaces.

The concept of the design space in the pharmaceutical industries is very similar to flexibility
analysis [15] from the chemical process industry. They share a similar goal of quantifying the
operational flexibility for manufacturers. Halemane and Grossmann (1983) [16], Swaney and Grossmann
(1985) [17,18], and Grossmann and Floudas (1987) [19] introduced multi-level optimization formulations
to assess flexibility of chemical processes. The flexibility test formulation maximizes the violation of
the inequality constraints over a predetermined region in the uncertain parameters. This provides
a check of whether or not operation and product quality constraints are satisfied over the entirety
of that region [16,19,20]. The flexibility index formulation extends the idea and solves for this
region directly. It seeks to find the largest hyperrectangle in the space of the uncertain parameters
where the set of inequality constraints is guaranteed to be satisfied [17,18]. Solving these multi-level
optimization problems can be very challenging, and early work focused on algorithms for improving
efficiency by assuming that the worst-case behavior occurred at vertices of the parameter space [16–18].
An active-set strategy was later proposed that could identify solutions at points that were not necessarily



Processes 2019, 7, 96 3 of 20

vertices [19,21]. This approach replaced the inner problem (over the control variables) with explicitly
first-order optimality conditions and was globally valid only under certain problem assumptions.
This limitation was later overcome with an approach that guaranteed global optimality in the general
non-convex case (through relaxation) [15].

For a linear system with model parameter uncertainty, a stochastic flexibility index formulation
that exploits the probabilistic structure of the problem is presented by Pistikopoulos and Mazzuchi
(1990) [22]. Extensions and variations of the flexibility test and flexibility index formulations have
been proposed that optimize over both the design and the operations. One example is a two-level
formulation that optimizes a certain process performance metric (such as the production rate or
the profit) while maximizing the flexibility region for a given design. Many researchers have made
significant contributions to the solution to such a problem, including Mohideen et al. (1996) [23],
Bahri et al. (1997) [24], Bernardo and Saraiva (1998) [25], and Samsatli et al. (2001) [26].

In this paper, we propose flexibility test and flexibility index formulations within two algorithms
to compute the probabilistic design space with improved computational efficiency over traditional
Monte-Carlo approaches based on exhaustive simulation. In the first approach, process parameters θp

are still discretized and, for each fixed point on the process parameter grid, the Monte-Carlo simulations
are replaced with a flexibility index formulation. The flexibility index formulation computes a region
in the uncertainty space over which the inequalities (e.g., acceptability of the CQAs) are guaranteed to
be satisfied. To extend this to the probabilistic design space one could employ sample-based approaches
or chance constraints (which would increase complexity and computational effort). Instead, we overlay
simple statistical testing with the flexibility analysis and solve for the largest region in θm that satisfies
the CQAs and then determine the probability that a realization of θm will lie in this region. We further
propose a second approach that pushes these ideas further by solving for the probabilistic design space
in θp directly. We extend the flexibility test formulation to include a statistical confidence constraint on
the uncertain parameters and a hyperrectangle constraint on the process parameters. This approach
removes the need to discretize the process parameters and reduces computational time significantly,
however, it produces more conservative results since the relative dimensions (but not the size) of the
design space is fixed. The results of both of these approaches are validated against the Monte-Carlo
sampling approach [4].

The rest of this article is organized as follows. In Section 2, we describe the Monte-Carlo approach
from [4], provide background on the flexibility test and flexibility index problems, and then present
the proposed approaches for computing the probabilistic design space with extensions to the flexibility
analysis concepts. In Section 3, we demonstrate the approach on a small case study as well as the
industrial Michael addition reaction case provided by the Eli Lilly and Company [27]. These case
studies are used to compare the effectiveness of the new approaches with the Monte-Carlo simulation
based approach. Discussions and conclusions are presented in Section 4.

2. Problem Formulation and Solution Approach

In this section, we will first describe the probabilistic design space problem and the Monte-Carlo
solution approach (from [4]). We will then briefly introduce the concept of the flexibility test and
flexibility index formulations and introduce the two proposed approaches to compute the probabilistic
design space more efficiently.

2.1. Probabilistic Design Space

Recall that θp are the process parameters; these are the process design variables and processing
decisions that are fixed during operation (e.g., fixed temperatures, pressures, or feed conditions), and θm

are the uncertain parameters in the mechanistic model (e.g., reaction rate constants, heat transfer
coefficients). It is assumed that the uncertain model parameters have been estimated (e.g., from
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experimental data), and that nominal values and the covariance matrix are available. Using this
notation, the model for the process is given by,

h(θp, x, θm) = 0

where x are the internal state variables computed from the model. The critical quality attributes (CQAs)
can be represented by the set of inequalities,

g(θp, x, θm) ≤ 0.

With these definitions, the deterministic design space is the region in θp over which the CQAs
are satisfied while using nominal values for the uncertain parameters. The probabilistic design space
considers uncertainty in the model parameters. It is characterized as the region in θp over which the
CQAs are satisfied with a given probability, where this probability is computed over the distribution
of the uncertain parameters. Note that the characterization of the probabilistic design space in García
Muñoz et al. (2015) [4] does not include adjustable control action to increase the size of the probabilistic
design space. For some pharmaceutical processes there is minimal online measurement and control of
the CQAs, and the process is instead carried to completion, followed by testing of the final product.
Furthermore, while traditional flexibility test and index formulations solve directly for “optimal”
control values, the underlying control laws may not be easy to implement in practice. Therefore,
consistent with the definition in García Muñoz et al. (2015) [4], we assume that any online control is
included directly in the model equations and not available for the optimization.

2.2. Probabilistic Design Space using Monte-Carlo

The Monte-Carlo approach for determining the probabilistic design space is shown below in
Algorithm 1 [4]. Let Θp be the set of discretized points for the process parameters θp (usually over
a uniform grid). For each of the points in this grid, the uncertain parameters are sampled, and the
ensemble of simulations is performed. The CQAs are checked for each of these simulations, and the
probability of acceptable operation is computed based on the fraction of samples for which the CQAs
are satisfied.

Algorithm 1 Monte-Carlo Probabilistic Design Space Determination

1: Discretize the process parameter space (Θp = {θi
p ∀ i})

2: for each θi
p do

3: Monte-Carlo Sampling
4: Generate samples for uncertain parameters (θ j

m ∼ N (θ̄m, C))
5: for each θ

j
m do

6: Perform the simulation: solve h(θi
p, x, θ

j
m) = 0 for xij

7: Check the CQAs (i.e., are all g(θi
p, xij, θ

j
m) ≤ 0)

8: Compute probability that CQAs are satisfied for θi
p

9: Generate the probability map over all points θi
p ∈ Θp

This approach is effective at determining the probabilistic design space. The grid can be made
arbitrarily fine through discretization of the process parameters, and the sampling step has no
restriction on the distribution of the uncertain parameters. However, the number of simulations
that need to be performed is equal to the number of process parameter discretizations (i.e., grid points
in θp) times the number of samples used in the Monte-Carlo step. Because of this, the computational
cost of the approach can be prohibitive.

The major computational overhead of the Monte-Carlo approach described above is related to
the large number of simulations performed due to the discretization of the process parameter space
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in step 1 and the Monte-Carlo sampling in step 3. In this paper, we propose two approaches that
make use of optimization-based flexibility concepts, and in the next section, we provide background
information on the flexibility test and flexibility index formulations, followed by a presentation of our
approaches for determining the probabilistic design space.

2.3. Flexibility Test and Flexibility Index Background

The flexibility test formulation is an approach to verify that a set of inequality constraints
(e.g., feasibility with respect to the CQAs) are satisfied over the entirety of a prespecified range
of the uncertain parameters. The formulations are typically written as multi-level programming
problems. The flexibility test problem is shown below [16,20].

χ (d) = max
ϑ∈T

min
z

max
k∈K

gk (d, x, z, ϑ)

s.t. hl (d, x, z, ϑ) = 0 l ∈ L

zL ≤ z ≤ zU

ϑL ≤ ϑ ≤ ϑU

The formulation assumes fixed values for the design variables d. These include traditional design
decisions (e.g., reactor dimensions) and any processing decisions that are fixed during operation
(e.g., feed concentrations). The equality constraints hl represent the system model, and the inequality
constraints gk represent the feasibility constraints, capturing product quality requirements or other
operational constraints. The variables x represent state variables for the system, and z are control
variables. The uncertain model parameters are given by ϑ (e.g., reaction rate constants).

Given a particular fixed design d and specified bounds on the uncertain parameters ϑ, this
formulation finds the point in ϑ that maximizes the violation of the inequality constraints. Note that
the optimal value may be negative (i.e., there is no violation). Therefore, if the value of χ (d) ≤ 0,
then the design is feasible with respect to the inequalities over the entire uncertainty range. In the
traditional treatment, the inner formulation is maximizing over ϑ (i.e., finding the worst-case value for
the feasibility constraints gk over the uncertain parameters) while minimizing over the control variables
z since they can be adjusted during operation to satisfy (as well as possible) the feasibility constraints.

The flexibility index problem extends this idea and, instead of testing over a given region,
directly finds the largest region in the parameter space over which the set of inequality constraints are
guaranteed to be satisfied. The flexibility index problem is shown below [17–19,21]:

F (d) =max δ

s.t. χ (d) = max
ϑ∈T

min
z

max
k∈K

gk (d, x, z, ϑ) ≤ 0

s.t. hl (d, x, z, ϑ) = 0 l ∈ L

zL ≤ z ≤ zU

ϑN − δ∆ϑ− ≤ ϑ ≤ ϑN + δ∆ϑ+

δ ≥ 0

Given a feasible nominal parameter value ϑN , this formulation seeks to find the largest value
of δ where the feasibility constraints are still satisfied. In the formulation above, the flexibility index
region is characterized as a hyperrectangle in ϑ with scaled deviations ∆ϑ+, ∆ϑ−, although other
representations of this constraint can be used.

Both formulations shown above are particularly challenging because they contain a multi-level
optimization problem, which are difficult to solve directly. Floudas and Grossmann (1987) [21] and
Grossmann and Floudas (1987) [19] proposed an active-set strategy based on the idea that ϕ (d, ϑc) =

min
z

max
k∈K

gk (d, x, z, ϑ) = 0 holds at the solution to the flexibility index problem, and F is given by the
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smallest δ to the boundaries of the feasible region (ϕ (d, ϑ) = 0). With this approach, the flexibility
index formulation is transformed into a mixed-integer minimization problem that selects the set of
active constraints gk. Their reformulation handles the inner minimization over z by incorporating the
first-order optimality conditions (KKT conditions) of this inner problem directly as constraints in the
formulation. This reformulation for the flexibility index problem is given below,

F (d) =min δ

s.t. hl (d, x, z, θ) = 0 l ∈ L

sk + gk (d, x, z, θ) = 0 k ∈ K

∑
k

λk
∂gk
∂x

+ ∑
l

ηl
∂hl
∂x

= 0

∑
k

λk
∂gk
∂z

+ ∑
l

ηl
∂hl
∂z

= 0

∑
k

λk = 1

∑
k

yk = nz + 1

λk − yk ≤ 0 k ∈ K

sk −U (1− yk) ≤ 0 k ∈ K

θN − δ∆θ− ≤ θ ≤ θN + δ∆θ+

λk, sk ≥ 0, yk ∈ {0, 1} k ∈ K

δ ≥ 0

where nz is the number of control variables, sk are non-negative slack variables, λk and ηl are Lagrange
multipliers, and yk are binary variables indicating which constraints gk are active.

In this paper, we are applying the flexibility test and the flexibility index problems to compute the
probabilistic design space as described in García Muñoz et al. (2015) [4]. As discussed earlier, their
treatment of the probabilistic design space does not consider optimization of the control action to
increase the size of the design space. Therefore, it is assumed that there are no controls, or that the
control behavior is included explicitly in the model equations. As shown in Floudas (1985) [20] and
Grossmann et al. (2014) [28], applying the active-set approach to the flexibility test problem for the
case where nz = 0 gives a formulation shown with Equations (1)–(7) below.

χ (d) = max
u,x,ϑ,s,y

u (1)

s.t. hl (d, x, ϑ) = 0 l ∈ L (2)

sk + gk (d, x, ϑ)− u = 0 k ∈ K (3)

sk −U (1− yk) ≤ 0 k ∈ K (4)

∑
k∈K

yk = 1 (5)

ϑL ≤ ϑ ≤ ϑU (6)

yk ∈ 0, 1, sk ≥ 0 k ∈ K (7)

This results in a mixed-integer nonlinear programming (MINLP) problem. The new variable u
is introduced to represent the largest value of the constraints gk. Equation (5) ensures that only one
of the constraints will be selected. The big-M constraint, Equation (4), along with the bound on sk
ensure that sk = 0 for the selected constraint, and that u is equal to the corresponding gk. Therefore,
at the solution, the objective function will return the largest possible value across all the constraints
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gk. Again, if χ(d) ≤ 0 at the solution, then the region defined by ϑL and ϑU is acceptable to the
inequality constraints.

This formulation is significantly easier to address since it does not include the inner minimization
over z (i.e., does not include the KKT conditions as constraints). Furthermore, the number of
inequalities gk is generally small and, more importantly, only one gk needs to be selected. Therefore,
this problem is solved efficiently by explicit enumeration of the binary variables (yk) [28]. Even with
these simplifications, however, the solution remains challenging since these problems must be solved
to global optimality.

Applying the active-set strategy to the flexibility index problem in the special case where nz = 0
produces a similar transformation as shown below in Equations (8)–(15).

F (d) = min
δ,x,θ,s,y

δ (8)

s.t. hl (d, x, θ) = 0 l ∈ L (9)

sk + gk (d, x, θ) = 0 k ∈ K (10)

sk −U (1− yk) ≤ 0 k ∈ K (11)

∑
k

yk = 1 (12)

θN − δ∆θ− ≤ θ ≤ θN + δ∆θ+ (13)

sk ≥ 0, yk ∈ {0, 1} k ∈ K (14)

δ ≥ 0 (15)

For a thorough description of the flexibility index formulation and the active-set approach,
see [15,19,20]. In the subsections that follow, we will show how Equations (1)–(7) and Equations (8)–(15)
can be adapted within two algorithmic frameworks to compute the probabilistic design space.

2.4. Flexibility Index Formulation in θm

In this section, we present our first approach for determining the probabilistic design space using
a flexibility index formulation. The flexibility index problem is formulated over the uncertain model
parameters θm, replacing the Monte-Carlo simulations in Algorithm 1. With this approach, a flexibility
index problem is solved for each discretized point in the process parameter space. Although this still
requires solving an optimization problem for each of these discretized points, significant computational
performance improvement is possible.

This flexibility index formulation is a direct application of Equations (1)–(7) where the process
parameters θp are treated as fixed design variables (i.e., d ≡ θp) and the uncertainty is captured by
uncertain model parameters θm (i.e., ϑ ≡ θm) as shown below Equations (16)–(23).

F
(

θi
p

)
= min

δm ,θm ,x,s,y
δm (16)

s.t. hl
(
θp, x, θm

)
= 0 l ∈ L (17)

sk + gk
(
θp, x, θm

)
= 0 k ∈ K (18)

sk −U (1− yk) ≤ 0 k ∈ K (19)

∑
k∈K

yk = 1 (20)

θ̄m − δm∆θ−m ≤ θm ≤ θ̄m + δm∆θ+m (21)

δm ≥ 0 (22)

yk ∈ 0, 1, sk ≥ 0 k ∈ K. (23)
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The formulation above is solved for each of the discretized process parameter points θi
p ∈ Θp

(i.e., θi
p is fixed), and the formulation is solved directly for δm to determine the size of the region in θm

for each of these points. Since only one gk needs to be selected, as discussed earlier, this problem is
solved efficiently by explicit enumeration of the binary variables (yk) [28]. Therefore, the problem is
solved as a sequence of NLP problems corresponding to each selection of gk.

Equation (21) characterizes the flexibility region as a hyperrectangle constraint over the uncertain
parameters θm. Such a hyperrectangle is centered at the nominal point with sides proportional to the
expected deviations, ∆θ+m and ∆θ−m . However, such a formulation fails to account for the correlation
between those uncertain model parameters. If we consider the case that θm follows a multivariate
normal distribution with the mean θ̄m and the covariance matrix Σθm , we obtain Equation (24) below.(

θm − θ̄m
)TΣ−1

θm

(
θm − θ̄m

)
≤ δm (24)

This ellipsoidal constraint can be used to replace the hyperrectangle constraints with a joint
confidence region for θm. Although this constraint introduces nonlinearity, it is a convex constraint in
θm. Given that the covariance matrix Σθm is positive semidefinite, Equation (24) may be transformed
using an LDL transformation [29]. In our experience, this transformation improves the numerical
behavior of these models. Generalization of Equation (24) with an LDL transformation is shown below:

Σ−1
θm

= LDLT (25)

qT =
(
θm − θ̄m

)T LD1/2 (26)

qTq ≤ δm (27)

Flexibility index formulations should be written with Equation (21) or (24) (but not both).
This formulation provides a flexibility region over which the constraints are always guaranteed

to be satisfied. It remains to provide a link back to the probabilistic design space. One approach would
be to modify the formulation and consider the use of chance constraints for gk. However, this would
significantly increase complexity and computational effort required to solve the problem. Therefore,
we instead take the flexibility region obtained by Equations (16)–(23), and overlay a statistical test
based on our knowledge of the mean and covariance of the uncertain parameters, and directly compute
the probability that any realization of θm will lie within the region defined by δm (hyperrectangle or
ellipsoid). For the elliptical flexibility region, the cumulative density function (CDF) of the chi-square
distribution can be used to calculate the probability directly. However, if we use the hyperrectangle
constraint, we still need to integrate the probability density function over θm with upper and lower
boundaries. Note that this is a simple determination of the probability that a realization from a
particular multi-variate normal will lie in the given hyperrectangle, and can be efficiently approximated
through sampling.

The overall approach is described in Algorithm 2 below.

Algorithm 2 Probabilistic Design Space with Flex. Index in θm

1: Discretize the process parameter space (Θp = {θi
p ∀ i})

2: For hyperrectangle region, use Equation (21). Choose ∆θ−m and ∆θ+m
3: For ellipsoidal region, use Equation (24). The relative scale is set by Σθm

4: for each θi
p do

5: Solve Flexibility Index Problem, Equations (16)–(23)
6: Solve for δm using θp = θi

p and Equation (21) or Equation (24)
7: Compute prob. that θm will lie in the region identified by δm

8: Generate the probability map over all points θi
p ∈ Θp



Processes 2019, 7, 96 9 of 20

This algorithm is a direct application of the flexibility index formulation to replace the Monte-Carlo
simulations. In step 6, Equations (16)–(23) must be solved globally to guarantee a valid flexibility
region. As discussed above, enumeration is used and the solution is found by solving a series of
nonlinear programming (NLP) problems, each with a single yk = 1. It should be noted that if a local
solver is used, the optimization may solve to a local minimum, resulting in a δm that is larger than the
global minimum. Unfortunately, this means that the region returned could be larger than the true
flexibility region unless a global minimum is found. In the case studies below, we will show results
with both local and global solvers for this step.

Once the optimal value for δm is obtained, the probability in step 7 is computed directly or through
sampling depending on which region is used (i.e., Equation (21) or (24)). Note also that we expect
this approach to produce a more conservative representation of the probabilistic design space since it
restricts the relative shape of the region in θm when solving the flexibility index problem. While there
are no points inside the hyperrectangle or ellipsoid that are infeasible, the actual feasible region need
not follow this specific shape, and there could be points outside the region that remain feasible with
respect to the inequalities. The Monte-Carlo approach would be able to include these points. This will
be discussed further in the case studies.

2.5. Flexibility Test Formulation in θp

Our second proposed approach is based on iterative solution of an extended flexibility test
formulation. The major benefit of this approach is that the flexibility test formulation is written over
both θp and θm, and it solves for the probabilistic design space directly, thereby removing the need to
discretize the process parameters altogether. Consider the extended flexibility test formulation shown
below with Equations (28)–(36).

χ
(

δr
p

)
= max

u,θp ,x,θm ,s,y
u (28)

s.t. hl
(
θp, x, θm

)
= 0 l ∈ L (29)

sk + gk
(
θp, x, θm

)
− u = 0 k ∈ K (30)

sk −U (1− yk) ≤ 0 k ∈ K (31)

∑
k∈K

yk = 1 (32)

θ̄m − δm∆θ−m ≤ θm ≤ θ̄m + δm∆θ+m (33)(
θm − θ̄m

)TΣ−1
θm

(
θm − θN

m

)
≤ δm (34)

θ̄p − δr
p∆θ−p ≤ θp ≤ θ̄p + δr

p∆θ+p (35)

yk ∈ 0, 1, sk ≥ 0 k ∈ K (36)

As with the previous formulation, this problem can be written with Equation (33) or (34) for
θm (but not both). When solving the formulation, both δp = δr

p and δm are fixed. While δp is to be
determined, δm is pre-calculated to ensure that θm remains in the a region with a cumulative probability
that agrees with the desired confidence level pc (pc = 0.85 in this paper). The use of the flexibility test
formulation simplifies the optimization since there is no multi-level problem to solve. However, we still
want to know the largest value of δp over which the constraints g are satisfied.Our goal in this approach
is to select a value for δp that provides the largest region possible. That is the maximum constraint
violation is close to zero while still being negative. Here, we choose a simple bisection approach,
although other iteration strategies could be considered. With this approach, the discretization of the
process parameter space is replaced with a sequence of flexibility test problems to solve for δ∗p.

This approach is described in Algorithm 3 below.
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Algorithm 3 Probabilistic Design Space with Flex. Test in θp

1: If choosing hyperrectangle Equation (33) on θm
2: set ∆θ−m and ∆θ+m for desired relative dimensions
3: If choosing ellipsoidal Equation (34) the relative scale is set by Σθm
4: Compute δm based on desired confidence and selection of shape with Equation (33) or (34)
5: Select tolerance εtol
6: Choose θ̄p, ∆θ−p , and ∆θ+p
7: Let iteration counter r = 1
8: Initialize δL

p and δU
p for the bisection

9: Let δr
p =

(
δL

p + δU
p

)
/2

10: Solve Extended Flexibility Test Problem, Equations (28)–(36) for χ
(

δi
p

)
11: if χ

(
δr

p

)
> 0 then

12: Let δU
p = δr

p
13: else
14: if

∣∣∣χ (δr
p

)∣∣∣ ≤ εtol then
15: done: solution is δ∗p = δr

p
16: else
17: Let δL

p = δr
p

18: Let r = r + 1 and return to 9

In step 5, the desired tolerance must be selected. The algorithm is written to only converge when
the χ(δi

p) < 0, so this tolerance is a measure of the distance “inside” the feasibility constraints. For our
case studies, this tolerance was set to 1× 10−5. In step 6 one must select the nominal point and the
relative dimensions of the hyperrectangle for the probabilistic design space in θp. This will have a major
impact on the size and shape of the final design space. If the physics of the problem are reasonably
well understood, then it is often possible to select a nominal point well within the known acceptable
region and scale the relative dimensions effectively. In pharmaceutical manufacturing, the relative
dimensions are based on routine process parameter variability in equipment [30]. Otherwise, some
exploration of the space will need to be performed. In step 8, δL

p and δU
p must be selected so that

χ(δL
p ) < 0 and χ(δU

p ) > 0 (i.e., the solution is bracketed).
While this approach can be significantly more computationally efficient since the probabilistic

design space is computed directly, there are a couple of drawbacks. As discussed in the previous
approach, Algorithm 2, we expect the probabilistic design space to be more conservative since θm

is constrained by a hyperrectangle or ellipsoid. We expect it to be even more conservative since we
are also restricting the shape of the probabilistic design space in θp to be that of a hyperrectangle.
The convenience of a hyperrectangle is useful in providing simple bounds on the process parameters
that can be used in the manufacturing batch record to indicate the region around a nominal point that
is safely in the design space. When a process parameter falls outside this hyperrectangle, then the full
probabilistic design space can be used to determine if the CQAs are still met. Furthermore, Algorithm 2
does not provide a full probability map, but rather a region that is acceptable over a single given value
of probability or confidence. In the case studies that follow, Algorithms 2 and 3 will be compared with
results from and computational effort required by the Monte-Carlo approach in Algorithm 1.

3. Case Studies

In this section, we compare the results and computational performance of the proposed algorithms
for determining the probabilistic design space on two examples. All problems were modeled using
Pyomo [31,32], a Python-based optimization modeling environment, and solved using either IPOPT

(version 3.11.7) [33] as a local solver or “BARON” (version 16.12.7) [34–36] as a global solver. All timing
results were obtained on a 24 core (Intex Xeon E5-2697—2.7 GHz) server with 256 GB of RAM running
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Red Hat Enterprise release 6.10. The case studies include one small example for illustrative purposes
and an industrial example based on the Michael Addition reaction. For each of these case studies,
we compute the probabilistic design space using all three approaches: Algorithm 1, Algorithm 2 and
Algorithm 3.

The approach described in Algorithm 1 is used to provide a basis for comparing the computed
probabilistic design space and the computational performance. The process parameters are first
discretized as described later for each of the individual case studies. Then, for each discretized point,
1000 samples over θm are taken according to a known variance-covariance matrix. As described in
the algorithm, for each of these samples, the model is simulated, and the fraction of samples that
have acceptable values for the CQAs are recorded for each discretized point. The results are then
interpolated to create a map of the probabilistic design space.

The approach described by Algorithm 2 replaces the Monte-Carlo sampling but still requires
discretization of the process parameters. For all case studies, the process parameters are discretized
using the same points as in Algorithm 1 to enable effective comparison. For each of these discretized
points, the flexibility index problem is solved as described in the algorithm. Results are shown using
both the hyperrectangle connstraint, Equation (21), and the ellipsoidal constraint, Equation (24). For the
case of the hyperrectangle, the ∆θ−m and ∆θ+m values are chosen to be the standard deviations of the
corresponding uncertain parameters θm. For each discretized point, once the optimal δm is found
and the size of the flexibility region in θm is identified, we compute the corresponding probability
that a realization of θm will lie in this region. With these numbers for each discretized point, the
probability map in θp can be generated and compared with that of the Monte-Carlo approach. Results
are shown using both the local solver IPOPT and the global solver BARON. However, recall that the
use of a local solver on these formulations, although faster, provides no guarantees, and it is possible
that the probabilistic design space could be overestimated.

The approach described in Algorithm 3 is used to solve for the probabilistic design space in θp

directly. Again, results are included for this approach using both the hyperrectangle Equation (33) and
the ellipsoidal Equation (34) for θm. For these studies, the value of δm value was fixed to correspond to a
confidence level of 0.85. For Equation (33), this value was determined iteratively, and for Equation (34),
the inverse chi-square distribution was used. The values for ∆θ−p and ∆θ+p are chosen to approximately
scale δp between 0 and 1, and a convergence tolerance of εtol = 1× 10−5 was used. As with the
previous approach, results are shown using both the local solver IPOPT and the global solver BARON.

3.1. Case Study 1: Simple Reaction

We first consider a simple reaction case provided by Chen et al. (2016) [27]. The reaction kinetics
may be described as such:

A + B
k1−→ C (37)

C
k2−→ D + E (38)

where A is 3-chlorophenyl-hydrazonopropane dinitrile, B is 2-mercaptoethanol, and the
intermediate product C is formed during reaction. The reaction product is D, 3-chlorophenyl-
hydrazonocyanoacetamide, with byproduct E, ethylene sulfide. The reaction rates ri may be calculated
by the following equations:

r1 = k1cAcB (39)

r2 = k2cc (40)
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The uncertain parameters θm for this study are the two rates constants (i.e., θm = {k1, k2}).
The estimated value for the rate constants is k̂ = [0.31051, 0.026650] and the related variance-covariance
matrix given by:

Covki
=

[
1.4409× 10−4 3.27× 10−6

3.27× 10−6 8.45× 10−6

]
(41)

In this case, all the reaction rates ri and component molar concentrations ci are state variables.
The mass balance of a steady state CSTR is given by:

0 = F0
i − Fi + V =

(
c0

i − ci

)
+ τ ∑

j
νijrj (42)

where F0
i and Fi are the inlet and outlet molar flow rates, νij are the stoichiometric coefficients, rj are

reaction rates, and τ is the residence time. Using the reactions in Equations (37) and (38), we may write
the following equations.

c0
A − cA + τ (−r1) = 0 (43)

c0
B − cB + τ (−r1) = 0 (44)

c0
C − cC + τ (r1 − r2) = 0 (45)

c0
D − cD + τ (r2) = 0 (46)

c0
E − cE + τ (r2) = 0 (47)

In this study, the initial concentrations
{

c0
A, c0

B, c0
C, c0

D, c0
E
}

are set to be
{

0.53, 0.53RB|A, 0, 0, 0
}

mol/L. The probabilistic design space is computed over RB|A (the ratio of the concentration of B to A in
the feed) and the residence time τ. That is θp = {RB|A, τ}. The process parameter space is discretized
with RB|A ranging from 4 to 6, and the residence time τ ranging from 350 to 550 s, with 11 and 21
points respectively.

The feasibility of process operation is determined by the CQAs represented with the following
inequality constraints:

cD

c0
A − cA

≥ 0.9⇒ 0.9c0
A − 0.9cA − cD ≤ 0 (48)

cD
cA + cB + cC

≥ 0.2⇒ cA + cB + cC − 5.0cD ≤ 0 (49)

The first equation states that the yield of product D must be greater than 90%. The second
equation states that the ratio of the concentration of D to the concentration of unreacted species must
be greater than 0.2.

For Equations (28)–(36), the model equations h are represented with Equations (39)–(40)
and (43)–(47), and the CQAs are represented with Equations (48) and (49).

All timing results for Case Study 1 are shown in Table 1. Generating the probabilistic design space
takes over 45 min using the Monte-Carlo approach and requires significantly more computational
effort because of the large number of required simulations. The approaches in Algorithms 2 and 3
are significantly faster taking a little over 35 s and approximately 3 s respectively (using the global
solver BARON). The approach using Algorithm 3 is significantly faster, however, recall that it restricts
the shape of the probabilistic design space in θp to a hyperrectangle as will be seen in the figures
later. While results with the local solver IPOPT are faster again (by about a factor of 2), recall that
the local solver cannot provide guarantees that the size of the probabilistic design space may be
overestimated. For this simple test case, we do not see significant differences in computational timing
when formulating Equations (16)–(23) and Equations (28)–(36) with either the hyperrectangle or the
ellipsoid constraint.
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Table 1. Timing results for Case Study 1 (in seconds).

Approach IPOPT (Local) BARON (Global)

Algorithm 1 2745.3 –
Algorithm 2 with Equation (21), 14.2 35.4
Algorithm 2 with Equation (24), 13.0 37.8
Algorithm 3 with Equation (33), 0.767 1.26
Algorithm 3 with Equation (34), 0.865 3.63

Figure 1 shows the probabilistic design space generated by Algorithm 1.

Figure 1. Probabilistic design space for Case Study 1 using Algorithm 1. (orange: p ≥ 0.85; green:
0.7 ≤ p < 0.85; red: 0.5 ≤ p < 0.7).

The results for the optimization-based flexibility methods are shown in Figure 2, and it includes
results for both Algorithm 2 and Algorithm 3, shown for the hyperrectangle and the ellipsoid constraint
with both the local solver IPOPT and the global solver BARON.

(a) Hyperrectangle region, local solver. (b) Ellipsoid region, local solver.

(c) Hyperrectangle region, global solver. (d) Ellipsoid region, global solver.

Figure 2. Probabilistic design space for case study 1 using the flexibility approaches. The colors (orange:
p ≥ 0.85; green: 0.7 ≤ p < 0.85; red: 0.5 ≤ p < 0.7; white: p < 0.5) represent the probability map
produced by Algorithm 2, and the black rectangle is the probabilistic design space determined by
Algorithm 3 with a confidence level of 0.85.
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The colored map shows the probabilistic design space obtained using Algorithm 2, and the black
rectangle shows the space identified by Algorithm 3 (generated with a single confidence level of 0.85).
In this case study, it was known that the upper left corner of the design space corresponded to the “safe”
operating region with respect to the CQAs, and the values for θ̄p, ∆θ−p , and ∆θ+p could be effectively
selected a priori. Also, since the shape of the probabilistic design space itself is also rectangular, the
differences between the regions from Algorithm 2 and Algorithm 3 are not dramatic. These differences
can be more pronounced with other case studies. For this case study, the probabilistic design space
identified is similar using both the hyperrectangle and ellipsoid constraints, and the regions identified
with the local and global solver are also very similar.

As expected, if we compare these results with the results from Algorithm 1 shown in Figure 1,
we see that the design space from the flexibility-based methods is indeed more conservative. Consider
results from Algorithm 2. While there are minor differences with respect to RB|A, the lower value for τ

corresponding to a confidence level of 0.85 is approximately 375 for the Monte-Carlo approach and
425 for the flexibility-based approaches. This is because the shape of the flexibility region in θm is
restricted. Consider a single point in the process parameter space. Figure 3 shows the results of 1000
simulations (from the Monte-Carlo approach), where the green points are feasible with respect to the
CQAs, and red points are not. On this figure, we are also showing the hyperrectangle and ellipsoid
generated with Algorithm 2. We can immediately see the impact of restricting the shape. Because
of the constraints, the acceptable region for the CQAs in θm is not symmetric, and the Monte-Carlo
approach is able to identify acceptable points that the flexibility-based approaches are not.

Figure 3. For case study 1, flexibility index produces a more conservative region than Algorithm 1.
Green points are feasible, red points are not feasible. This figure demonstrates both ellipsoid and
hyperrectangle regions are more conservative at τ = 400.0 and R = 5.0.
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3.2. Case Study 2: Michael Addition Reaction

In this section, we consider an industrial case provided by the Eli Lilly and Company—the
Michael addition reaction [27] with kinetics described in the following equations:

AH + B
k1−→ A− + BH+ (50)

A− + C
k2−→ AC− (51)

AC−
k3−→ A− + C (52)

AC− + AH
k4−→ A− + P (53)

AC− + BH+ k5−→ P + B (54)

where AH (Michael donor) and C (Michael acceptor) are starting materials, B is a base, BH+, A− and
AC− are reaction intermediates, and P is the product. Reaction rates ri are defined as follows:

r1 = k1cAHcB (55)

r2 = k2cA−cC (56)

r3 = k3cAC− (57)

r4 = k4cAC−cAH (58)

r5 = k5cAC−cBH+ (59)

The rate constants ki are the uncertain model parameters (i.e., θm = {k1, k2, k3, k4, k5}), and these
rate constants have estimated values,

k̂ =
[

49.7796 8.9316 1.3177 0.3109 3.8781
]

and the multivariate normal variance-covariance matrix given by:
1.005 −3.428× 10−4 −1.006× 10−3 −1.523× 10−3 2.718× 10−3

−3.428× 10−4 0.412 7.951× 10−4 −3.937× 10−3 2.364× 10−3

−1.006× 10−3 −7.951× 10−4 3.224× 10−3 1.466× 10−3 −2.400× 10−3

−1.523× 10−3 −3.937× 10−3 1.466× 10−3 2.746× 10−3 −4.102× 10−3

2.718× 10−3 2.364× 10−3 −2.400× 10−3 −4.102× 10−3 7.148× 10−3

 (60)

Using a CSTR mass balance over the reactions, Equations (50)–(54), we may write the
following equations:

c0
AH − cAH + τ (−r1 − r4) = 0 (61)

c0
B − cB + τ (−r1 + r5) = 0 (62)

c0
C − cC + τ (−r2 + r3) = 0 (63)

c0
A− − cA− + τ (r1 − r2 + r3 + r4) = 0 (64)

c0
AC− − cAC− + τ (r2 − r3 − r4 − r5) = 0 (65)

c0
BH+ − cBH+ + τ (r1 − r5) = 0 (66)

c0
P − cP + τ (r4 + r5) = 0 (67)

In this study, the initial concentrations
{

c0
AH , c0

B, c0
C, c0

BH+ , c0
A− , c0

AC−
, c0

P

}
are set to be

{0.3955, 0.3955/R, 0.25, 0, 0, 0, 0} mol/L respectively, where R is the molar ratio between the feed
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concentration of AH and B. The process parameters include the molar ratio R and the residence time τ

(i.e., θp = {R, τ}). These process parameters are discretized with R from 10 to 30, and τ from 400 to
1400 min, with 21 and 11 points respectively.

Feasible process operation is determined by the following two CQA constraints:

c0
C − cC − cAC−

c0
C

≥ 0.9⇒ cC + cAC− − 0.1× c0
C ≤ 0 (68)

cAC− ≤ 0.002 (69)

The first constraint states that the conversion of feed C must be greater than 90%, and the second
states that the concentration of AC− in the outlet must be less than 0.002 mol/L.

The model equations h are represented with Equations (55)–(59) and (61)–(67), and the CQAs are
represented with Equations (68) and (69).

The timing results for this case study can be found in Table 2.

Table 2. Timing results for Case Study 2 (in seconds).

Approach IPOPT (Local) BARON (Global)

Alg. 1 6116.2 –
Alg. 2 with Equation (21), 16.3 203
Alg. 2 with Equation (24), 18.0 –
Alg. 3 with Equation (33), 1.26 21.7
Alg. 3 with Equation (34), 1.65 245.3

Here we see similar results as with the first case study. The flexibility-based methods are
significantly faster than the Monte-Carlo approach. As before, Algorithm 3 was about an order
of magnitude faster than Algorithm 2. However, here we also see one of the challenges of the global
optimization approaches. For the ellipsoidal constraint with Algorithm 2, BARON failed to converge
for a small number of points, and therefore, timing results are not reported for this case. When using
BARON with the ellipsoidal constraint in Algorithm 3, the gap did not close within the specified time
limit on two iterations of the bisection method. However, when the maximum allowed time was
reached for these two points, both the upper and lower bounds on the objective value were negative,
signifying operational feasibility. The LDL transformation of the ellipsoid constraint was used in both
formulations during global optimization.

The probabilistic design space generated from the Monte Carlo procedure and from the
flexibility-based approaches is shown in Figure 4. As with case study 1, this figure includes results for
both Algorithm 2 and Algorithm 3. Since BARON did not solve with the ellipsoidal constraint using
Algorithm 2, this figure also includes the Monte-Carlo results in the subfigure (d).

As before, comparing the computed probabilistic design space, we see that Algorithm 2 is more
conservative than the Monte-Carlo approach. Here, however, we see the more significant differences
between the flexibility-based methods. The rectangular region produced by Algorithm 3 correctly lies
inside the probabilistic design space produced by Algorithm 2. But, since the actual probabilistic design
space is not rectangular, the rectangular region produced by Algorithm 3 significantly underestimates
the size of the region. In some applications, the region that is to be reported may be defined with
simple bounds on process parameters, and the rectangular region produced by Algorithm 3 will be
sufficient. For other applications, this underestimation may be too dramatic, and extensions of this
approach may need to be used to find a larger region (e.g., shifting the nominal point and producing
multiple overlapping rectangles).
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(a) Hyperrectangle region, local solver. (b) Ellipsoid region, local solver.

(c) Hyperrectangle region, global solver. (d) Monte-Carlo approach.

Figure 4. Probabilistic design space for case study 2 (Michael Addition) using the flexibility approaches
and the Monte-Carlo approach. The colors (orange: p ≥ 0.85; green: 0.7 ≤ p < 0.85; red: 0.5 ≤ p < 0.7;
white: p < 0.5) represent the probability map produced by Algorithm 2, and the black rectangle is the
probabilistic design space determined by Algorithm 3 with a confidence level of 0.85. The ellipsoid
region is not shown with the global solver since the global solver did not converge for those cases.

4. Discussion and Conclusions

A key component of the QbD initiative in the pharmaceutical industry is the identification of the
probabilistic design space defined as the region in the space of the process parameters over which the
critical quality attributes of the product are acceptable. Traditional Monte-Carlo approaches have been
used to compute the probabilistic design space by discretizing the process parameters and performing
simulations over hundreds (or more) of samples from the uncertain parameters.

Here, we proposed an optimization-based framework to define the probabilistic design space of
a pharmaceutical process with model uncertainty using concepts from flexibility analysis [15,19].
Specifically, we proposed two methods. The first, Algorithm 2, is a direct application of the
flexibility index formulation. This approach still discretizes the process parameters θp, but replaces
the Monte-Carlo simulations with a flexibility index formulation in the uncertain parameters θm.
The second approach solves for the probabilistic design space in θp directly, removing the need to
discretize the process parameter space as well. Both these approaches showed significant improvement
in computational performance over the Monte-Carlo approach, with Algorithm 3 being another order
of magnitude faster than Algorithm 2. While the Monte-Carlo approach can be easily run in parallel,
note that Algorithm 2 can also be run in parallel over the discretized points in θp. Given the difference
in solution time between the Monte-Carlo approach and Algorithm 3, it would take significant HPC
resources to make the Monte-Carlo approach faster.

However, the size of the probabilistic design space produced by the flexibility-based approaches
is more conservative since they restrict the shape of the confidence region in θm and, in the case of
Algorithm 3, the shape of the probabilistic design space itself. It will depend on the specific application
to determine if this trade-off is acceptable or not. Also, extensions of the flexibility test and flexibility
index approaches could be used to reduce this effect.
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Due to the problem definition, the formulations presented did not make use of online control
action to increase the size of the probabilistic design space. The flexibility test and flexibility index
formulations do provide rigorous treatment of controls [15,19,28], and future work will explore
this aspect.

With case study 2 (Michael addition reaction), the global solver did not fully converge for either
Algorithm 2 or Algorithm 3 when the ellipsoidal constraint in θm was used. While this constraint is
convex, it was presented to the solver as a sum of bilinear terms, and it is possible that solver tuning or
a straightforward outer-approximation would yield improved behavior.

As these problems become larger, performance of the global optimization step will become
the primary bottleneck. One approach to improve performance is to instead solve a relaxation of
Equations (16)–(23) or Equations (28)–(36). This will produce a design space that is more conservative,
but the relaxations could be progressively refined (e.g., piecewise outer approximation) to manage the
trade-off between the size of the design space and the computational effort of the approach.

This paper has shown that the concepts of flexibility analysis, and specifically the flexibility test
and flexibility index formulations, can be used to compute probabilistic design spaces much more
efficiently. Furthermore, there have been many advances in flexibility analysis that could be further
applied to improve scalability and reduce conservativeness when estimating the design space.
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