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Abstract: Design and control of hyperbranched (HB) polymer architecture by way of reactor operation
is key to a successful production of higher-valued HB polymers, and it is essential in order to clarify
the fundamental structural characteristics formed in representative types of reactors. In this article,
the irreversible step growth polymerization of AB2 type monomer is investigated by a Monte Carlo
simulation method, and the calculation was conducted for a batch and a continuous stirred-tank
reactor (CSTR). In a CSTR, a highly branched core region consisting of units with large residence times
is formed to give much more compact architecture, compared to batch polymerization. The universal
relationships, unchanged by the conversion levels and/or the reactivity ratio, are found for the
mean-square radius of gyration Rg2, and the maximum span length LMS. For batch polymerization,
the g-ratio of Rg2 of the HB molecule to that for a linear molecule conforms to that for the random
branched polymers represented by the Zimm-Stockmayer equation. A single linear equation
represents the relationship between Rg2 and LMS, both for batch and CSTR. Appropriate process
control in combination with the chemical control of the reactivity of the second B-group promises to
produce tailor-made HB polymer architecture.

Keywords: hyperbranched; Monte Carlo simulation; radius of gyration; span length; continuous
stirred-tank reactor

1. Introduction

Hyperbranched (HB) polymers are specialty polymeric materials, possessing compact architecture,
a vast number of end groups that can be functionalized, and specific space inside the molecule.
A wide variety of potential applications have been and are being developed [1]. The HB polymers
are macromolecules in between deterministic linear chains and dendrimer structures [2], and their
properties are influenced significantly by their detailed branched architecture. The prediction and
control of HB architecture is essential to produce higher quality polymers, which opens up a challenging
field for the chemical engineers to develop novel production processes.

Basic chemical reaction engineering textbooks emphasize the importance in clarifying the
fundamental chemical behavior in three representative reactor types; batch reactor, plug flow reactor
(PFR), and continuous stirred-tank reactor (CSTR) [3]. Ideally, a PFR is equivalent to a batch reactor by
changing the reaction time to the residence time. In this article, the differences in branched architecture
formed in a batch reactor and a CSTR are considered.

For the synthesis of HB polymers consisting of tri-branched monomeric units, the two major
chemical methods used are step growth polymerization of AB2-type monomer and self-condensing
vinyl polymerization (SCVP). The former is a classical synthetic route originally considered by
Flory [4], but recent development in polymer chemistry has made it possible to change the chemical
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reactivity of the second B group freely [5], and has established the chemical control method for the
branching frequency.

Figure 1 shows the reaction scheme of the step growth polymerization of AB2 type monomer,
considered in this article. In the figure, T is the terminal unit with both B’s being unreacted, L is the
linearly incorporated unit with one of two B’s being reacted, and D is the dendritic unit in which both
B’s have reacted. The reaction rate constant, kT is for the reaction between an A group and a B group in
T, while kL is for the reaction between A and B in L. The reactivity of the second B group is represented
by the reactivity ratio, r defined by:

r = kL/kT (1)
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molecule is allowed. Because smaller rings have a better chance of being formed [11], the effect on 
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Figure 1. Reaction scheme for the step growth polymerization of AB2 type monomer.

The magnitude of r can be changed from 0 to infinity at will [5] by using appropriate chemical
systems. For instance, it is possible to produce HB polymers with 100% degree of branching (DB,
the exact definition will be given shortly), but the quasi-linear polymer can also be produced even with
DB = 1, as illustrated earlier [5]. Process control in combination with chemical control is needed to
synthesize well-designed HB polymers.

In this theoretical study, the branched molecular architecture is investigated by using a Monte
Carlo (MC) simulation method proposed earlier for a batch reactor [6,7] and for a CSTR [8,9]. In the
MC simulation, the structure of each HB polymer can be investigated, and any desired structural
information could be extracted. Figure 2 shows an example of HB polymer generated in the present
MC simulation for a CSTR. In Figure 2, FP means the focal point unit that possesses an unreacted A
group. Note that in the ring-free model employed in this article, there is only one unit in a molecule
that bears unreacted A group.
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Figure 2. Schematic representation of a hyperbranched (HB) polymer molecule generated in the present
Monte Carlo (MC) simulation for a continuous stirred-tank reactor (CSTR). The tri-branched clusters
are shown by the red closed curves, and the T units with a star show the end units for the maximum
span length.

This article is aimed at establishing the most fundamental characteristics of HB polymers formed
based on the ideal chemical kinetics, and the non-idealities, such as cyclization and shielding [10] are
not considered. Both cyclization and shielding depend heavily on the 3D architecture, and it is of
prime importance to establish the ideal architecture first. As for the cyclization, only one ring per
molecule is allowed. Because smaller rings have a better chance of being formed [11], the effect on the
global architecture of large polymers, which is of major interest in this article, may not be significant.
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On the other hand, the shielding effect depends on the crowding of the 3D architecture, and inferences
on crowding could be obtained from the present type of structural investigation.

One of the most simple and fundamental information of the HB architecture is the degree of
branching (DB). The DB of an HB polymer was originally defined by [12]:

DB =
T + D

P
=

2D + 1
P

(2)

where P is the degree of polymerization (total number of units in a polymer molecule), i.e., P = T + D
+ L. Note that every time the L-type unit is converted to D, the number of T units increases by one,
and therefore, the relationship, T = D + 1 always holds true for any HB architecture, as long as the ring
formation through the intramolecular reaction between the focal point A group and the unreacted B
group in the same molecule is neglected.

When there are no L units, such as for the perfect dendron, DB = 1. With the definition given by
Equation (2), however, DB cannot go down to 0 because linear polymer structure always possesses one
T unit at its tail. To avoid this problem, at the same time, to make balanced comparison with the HB
polymers synthesized via SCVP in which the focal point is always the L-type, the following definition
for the DB was proposed [6].

DB =


2D/(P− 2) when FP isL, with P > 3
2(D− 1)/(P− 3) when FP is D, with P > 3
0 for P ≤ 3

, (3)

where FP means the focal point. In this article, DB defined by Equation (3) is used. For the case of the
HB polymer shown in Figure 2, P = 27, D = 10, and the FP is the D-type, the DB is calculated to be
DB = (2)(9)/(24) = 0.75. Obviously, the DB of large polymers, i.e., with P >> 1, is given by DB � 2D/P,
in either type of definition.

Figure 3 shows the relationship between the values of DB and P for batch polymerization with
r = 1 when the conversion of A group is xA = 0.9. The figure was prepared using the unpublished data
obtained in the investigation reported earlier [6]. In the figure, each red dot shows a pair of values,
DB and P, for each polymer molecule generated in the MC simulation. The circular symbols with a
blue line show the average DB within each intervals of P, which shows the expected DB for the given
P-value, DB(P). The DB-value converges to DBinf, as the degree of polymerization P increases, i.e.,
for large polymers. On the other hand, the black broken line shows the magnitude of average DB of the
whole reaction system. It is clearly shown that the values of DB are distributed around DBinf, rather
than the average DB of the whole system, and DBinf is larger than the average DB. These characteristics
hold true irrespective of the magnitude of reactivity ratio r, not only for a batch reactor [7] but also
for a CSTR [8,9]. In this article, the HB architecture of large polymers, for which DB(P) has reached a
constant value DBinf, is investigated in detail, both for a batch reactor and a CSTR.

An interesting characteristic of DBinf is that the magnitude of DBinf is essentially kept constant,
irrespective of the conversion level for a given reactivity ratio r, both for a batch reactor [6,7] and
for a CSTR [8,9]. Note that the average DB of the whole reaction system increases with conversion,
but DBinf does not change. The value of DBinf can be estimated by the reactivity ratio r, as shown in
Figure 4. Obviously, DBinf = 1 for the cases with r =∞, both for batch and CSTR, but the value of DBinf

for a CSTR is always larger than that for a batch reactor, as long as r is finite. Incidentally, analytic
relationship between DBinf and r was established previously [6,7], and a smooth curve was drawn
for batch polymerization in Figure 4. On the other hand, a general equation for a CSTR has not been
reported, and five data points reported in the earlier publication [9] were plotted and connected.
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Based on the structural information shown in Figure 2, it is possible to determine the 3D size,
represented by the mean-square radius of gyration under the unperturbed condition,

〈
s2

〉
0
. One of the

methods used to determine the value of
〈
s2

〉
0

is the Wiener index (WI) [13]. The WI is related with〈
s2

〉
0

through the following relationship [14],〈
s2

〉
0

l2
=

WI
N2 , (4)

where l is the random walk segment length, and N is the number of such segments in the polymer
molecule. N is related with P through N = P/u, where u is the number of monomeric units in a segment.
In the previous investigation [6–9], as well as the present article, u = 1 is used. Define Rg2 by the
following equation,

Rg2 =
WIu=1

N2 , (5)

where WIu = 1 is the value of WI when u = 1. Rg2 is the value of
〈
s2

〉
0

normalized by the squared

monomer-unit length, and is proportional to
〈
s2

〉
0
, at least for large polymers, P >> 1. Note that Rg2 is

equal to the value of u
〈
s2

〉
0
/l2, which is unchanged irrespective of the magnitude of u, as long as the

number N of steps is large enough.
Figure 5 shows the expected Rg2 of the polymer molecule whose degree of polymerization is P for

batch polymerization with the reactivity ratio, r = 1. As shown in the figure, the relationship between
Rg2 and P does not change with the progress of conversion, xA [6,7]. The curve moves to smaller Rg2,
as the reactivity ratio r is increased [7]. However, even with r =∞ for which DB = 1, Rg2 is much larger
than that for the perfect dendron [7], which is shown by the black curve in Figure 4. For large polymers,
the power law Rg2 ~ P0.5 is valid, irrespective of the magnitude of r [6,7]. The power exponent, 0.5 is
the same as for the random branched polymers, represented by the Zimm-Stockmayer equation [15].
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In this article, the universal relationship concerning Rg2, that is independent of r, will be reported, and
the relationship with the Zimm-Stockmayer equation will be discussed quantitatively.
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For a CSTR, the variance of Rg2 for large polymers is quite large. It is not perfectly clear, but the
relationship between Rg2 and P does not change significantly, even when the steady state conversion
level is changed [8,9]. It was clearly demonstrated that a CSTR produces polymers with much smaller
Rg2 compared with batch polymerization, even when the value of DBinf is deliberately set to be the
same for both types of reactors [8]. In this article, the reason for obtaining much more compact
architecture in a CSTR is explored by considering the properties of the largest tri-branched cluster
in a polymer molecule. The tri-branched clusters are shown by the group of D units surrounded by
the red closed frames in Figure 2, and the largest cluster for this example consists of six units. Note
that although the focal point unit is the D type, it is connected to only two other units and it is not
considered as a tri-branched unit. A universal relationship concerning Rg2, independent of the steady
state conversion level, will also be reported for a CSTR.

Another structural information investigated in this article is the maximum span length, LMS. Here,
the span length refers to the distance in the monomeric units [16], and LMS is equivalent to the longest
end-to-end distance [17]. In the case of HB polymer shown in Figure 2, LMS = 12, which is the distance
between the units with a star. There are two routes having LMS = 12, starting from the unit with a
star to the unit with star 1 or 2. Interesting universal relationships will be reported for the magnitude
of LMS.

In this article, the HB architecture formed in a batch and a CSTR is compared and discussed,
by investigating the properties of the largest tri-branched cluster, and the magnitudes of Rg2 and LMS.
For Rg2 and LMS, the universal relationships are sought. Note that the universal relationships reported
so far for Rg2 are with respect to the conversion level, and they change with the reactivity ratio r. In this
article, further unification is explored.

2. Methods

The MC simulation method proposed earlier for batch polymerization [6,7], and that for a
CSTR [8,9] were used to determine the branched architecture, as shown in Figure 2. This MC simulation
method is based on the random sampling technique [18,19], and the polymer molecules were selected
from the final product on a weight basis. The whole molecular architecture of each selected molecule
was reconstructed by strictly following the history of branched structure formation. By generating
a large number of polymer molecules in the simulation, the statistical properties were determined
effectively. In the present investigation, the structural properties of large sized polymer molecules are
highlighted, and 104 polymer molecules with P > 50 were collected to determine statistically valid
estimates. The reactivity ratios investigated were r = 0.5, 1, 2, 5, and∞.
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For a CSTR, the polymerization behavior at steady state is fully described by the reactivity ratio
r and the dimensionless number ξ, sometimes referred to as the Damköhler number for the second
order reaction, defined by:

ξ = kT[A]0t, (6)

where [A]0 is the initial concentration of A group, or equivalently, the initial monomer concentration,
and t is the mean residence time [3]. The HB polymer shown in Figure 2 was generated for a CSTR
with the condition, r = 2 and ξ = 0.35. The conversion of A group, xA increases with ξ. To set the value
of ξ corresponds to fixing the steady state conversion level, xA.

For a CSTR, it was found that the weight-average molecular weight cannot reach the steady state
for large t cases [8,9], and similar behavior was also reported for the SCVP [20,21] which is another
route to synthesize HB polymers. The upper limit ξ-values above which the weight-average molecular
weight cannot reach the steady state for a given reactivity ratio r was shown graphically in the earlier
publication [9]. For example, the upper limit value of ξ is ξUL = 0.5 for r = 1, and ξUL = 0.25 for r =∞.
In the present investigation, the MC simulations were conducted for the cases with ξ ≤ ξUL.

The WI was calculated for each polymer molecule generated in the MC simulation, by setting up
the distance matrix, {dij}, where dij is the distance in the number of monomeric units between the ith
and jth unit. The WI when u = 1 is given by [13,14]:

WIu=1 =
1
2

P∑
i=1

P∑
j=1

di j. (7)

The maximum span length, LMS was determined by finding the largest value of dij in the
distance matrix.

The statistical properties of various types of clusters in HB polymers were determined from the
structural information, shown in Figure 2.

3. Results and Discussion

3.1. Largest Cluster of Tri-Branched Units

A CSTR produces much more compact HB polymers, compared with batch polymerization,
as reported earlier [8,9]. First, the reason for this is explored by considering the size of the largest
tri-branched cluster.

Figure 6 shows the relationship between the number of units PLC belonging to the largest cluster
and the number P of units in the polymer molecule (degree of polymerization). Each dot shows a
set of values for each polymer molecule generated in the MC simulation. For a CSTR, the cases with
ξ = ξUL are shown in the figure, while xA = 0.95 for batch polymerization. General characteristics
were the same for the other reaction conditions. For a CSTR, the largest cluster size PLC increases
with P, and a very large tri-branched cluster exists in a large polymer molecule. On the other hand,
the size of the largest cluster does not increase significantly for batch polymerization, except for r =∞.
With r =∞, all units other than the peripheral T units and a focal point are tri-branched units, and the
largest cluster size is essentially proportional to P with PLC ≈ 0.5P. Except for r =∞, the existence of a
large cluster of tri-branched units is an important characteristic of polymers formed in a CSTR, while a
large number of small-sized clusters are formed in batch polymerization. It is reasonable to consider
that the dimension is smaller for the HB polymers formed in a CSTR. The cases with r = ∞ will be
discussed later, and consider the properties of various types of clusters for the cases with the reactivity
ratio, r ≤ 5 first.
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The largest tri-branched cluster consists of units whose residence times are different. In the case of
the HB polymer shown in Figure 2, the largest tri-branched cluster consists of six units, and in general,
the residence time of each unit is different. This kind of detailed information cannot be obtained in
experiments, but can be determined in a straightforward manner in the present MC simulation method.

The average residence time of the units belonging to the largest tri-branched cluster is calculated,
and is plotted as a red dot in Figure 7. In the same figure, the average residence time of all units in
each polymer molecule, as well as that of the peripheral T units, is also shown. Here, the residence
time is represented by the dimension residence time defined by [3]:

θ = t/t. (8)
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The average residence time approaches a constant value for all three types of units, as the molecular
weight (MW) of the polymer increases. The constant value for each type of units decreases as the
ξ-value, or equivalently, as the conversion level increases. At steady state for a given value of ξ,
the convergent residence time shown by the black line is large for the largest cluster (red), which
means that the largest cluster tends to be formed by connecting the units with larger residence times.
On the other hand, the peripheral T units consist of units with smaller residence times. It would be
reasonable to consider that there exists a gradient in the residence time distribution of units within
an HB polymer. The core cluster of tri-branched region consists of units with large residence times,
and the residence time of the units decreases toward the peripheral T type units. This tendency in
the residence time distribution would be the reason for forming a compact architecture in a CSTR,
compared with batch polymerization.

For the cases with r = ∞, a higher order tri-branched cluster is considered to differentiate the
structure formed in batch and CSTR. Define the second order tri-branched cluster as a group of
tri-branched units with all three bonds being connected to the tri-branched units, as shown by the
regions enclosed by the blue broken curves in Figure 8. The largest group is named as the largest
tri-branched cluster of the second order, and the number of units in such a group is represented by
PLC,2. In the present example shown in Figure 8, PLC,2 = 2.
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Figure 8. Example of the hyperbranched polymer architecture generated in the present MC simulation
for a CSTR with r =∞ and ξ = 0.2. The tri-branched clusters of the first order are represented by the
groups enclosed by the red broken curves, while the tri-branched clusters of the second order by the
blue broken curves. For this polymer, P = 43, D = 21, and DB = 1.

Figure 9 shows the relationship between PLC,2 and P for batch and CSTR with r =∞. For a CSTR,
ξ = ξUL = 0.25, and xA = 0.95 for batch polymerization. In the case of a CSTR, PLC,2 increases with P,
and therefore, a very large tri-branched cluster of the second order exists in a large polymer molecule.
On the other hand, it does not increase significantly for batch polymerization, which means a large
number of smaller-sized tri-branched clusters of the second order are formed. The smaller Rg2 obtained
for a CSTR could be understood from the significant differences in the magnitude of PLC,2.

Figure 10 shows the average residence times for various types of units, as a function of P. Again,
the average times of each type of units reach constant values for large polymers. The largest tri-branched
cluster of the second order consists of units having very large residence times, while the units with
smaller residence times tend to be the peripheral T units. There seems to exist a gradient in residence
time distribution from the core region to the peripheral units. In a CSTR, a large core tri-branched
cluster region is formed, which makes the architecture much more compact, compared with batch
polymerization, also for the case with r =∞.

In this section, it was shown that the branched architecture can be controlled by the residence
time distribution. To form a core region is key to produce compact architecture. Obviously, the slow
monomer addition method [22–24] is another way to form a core region to obtain compact architecture.
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On the other hand, if one needs looser structure, the core formation should be avoided. The structural
control by using the tanks-in-series process was also discussed previously [25].
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3.2. Radius of Gyration and Maximum Span Length

Both Rg2 defined by Equation (5) and the maximum span length LMS exemplified in Figure 2 are
the characteristic factors describing the spatial size of an HB polymer. In this section, the universal
relationships concerning Rg2 and LMS are explored both for a batch (Section 3.2.1) and a CSTR
(Section 3.2.2).

3.2.1. Batch Polymerization

Figure 11 shows the MC simulation results for the relationship between Rg2 and P with r = 1
at xA = 0.95. Each red dot represents a set of Rg2 and P, generated in the MC simulation. Note that
the data were collected for P > 50 to clarify the statistical properties of large polymers, where DB(P)
has reached a constant value, DBinf. Blue circular symbols show the averages within ∆P fractions,
and therefore, the blue line connecting these points represents the expected Rg2-value for a given P.

Figure 12 shows the expected Rg2-values that correspond to the blue curve in Figure 11 for various
combinations of the reactivity ratio r and conversion xA. The curve for the expected Rg2-value does not
change with the conversion level xA, and becomes smaller as the reactivity ratio r increases, as already
reported earlier [6,7].
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The contraction parameter, the ratio g of mean-square radius of gyration of the branched molecule
to that for a linear molecule is given by [15]:

g =

〈
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〉
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sameP
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Rg2
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, (9)

where the subscript “br” is for the branched polymer, and “lin” is for linear polymer. Note that Rg2 is
the defined by Equation (5), and therefore:

Rg2
lin =

P
6

. (10)

Figure 13 shows the relationship between g and DBinfP/2. The value of DBinf is a constant for a
given reactivity ratio, and the value of DBifP/2 is equal to the average number nb of branch points per
molecule for large polymers. Note that DB = 2D/P for large polymers, and nb= DBinfP/2. Because the
Rg2-value for a given P, as well as the magnitude of DBinf, is the same at any conversion level xA,
the calculated results for xA = 0.95 with various r’s are shown in Figure 13. All points fall on a single
curve, showing a universal relationship, independent of xA and r.

For the random branched polymers, the g-ratio is represented by the following Zimm-Stockmayer
equation [15]:

g =
[
(1 + nb/7)

1
2 + 4nb/9π

]− 1
2
. (11)

where nb is the average number of branch points per molecule.
Figure 14 shows the comparison with the Zimm-Stockmayer equation by using nb = DBinfP/2,

which shows an excellent fit. It is suggested that the HB architecture formed in a batch polymerization
is random branch, irrespective of the magnitude of reactivity ratio, r. In batch polymerization,
the probability that a randomly selected unit from the final product is the D type unit is the same for all
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units [6,7], and therefore, it is reasonable to obtain HB polymers with random branched architecture.
On the other hand, in the case of a CSTR, the probability for a randomly selected unit from the final
product being the D type unit is larger for the units with longer residence time, leading to a nonrandom
branched architecture, as discussed in the previous section.
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Figure 14. Comparison with the Zimm-Stockmayer equation.

The value of DBinf for a given r can be calculated analytically [6,7], and Figure 4 shows the
calculated results graphically. Therefore, the value of Rg2 can be determined by using Equation (11) in
a straightforward manner, without conducting the MC simulation, for any combination of r and xA.

Next, consider the maximum span length, LMS. Figure 15 shows the MC simulation results for
the relationship between LMS and P with r = 1 and xA = 0.95 for batch polymerization. Each red dot
represents a set of LMS and P, generated in the MC simulation. Blue circular symbols show the averages
within ∆P fractions, and the blue line connecting these points represents the expected LMS-value for a
given P.
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Figure 16 shows the expected LMS-value for a given P, corresponding to the blue curve in Figure 15,
for various combinations of the reactivity ratio r and conversion xA. The curve for the expected
LMS-value does not change with the conversion level xA, and is a function of the reactivity ratio r.
The qualitative tendency is quite similar to Rg2.
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Figure 17 shows the expected value of LMS/P for a given DBinfP/2. Because the LMS-value for a
given P, as well as the magnitude of DBinf, is the same at any conversion level xA, the calculated results
for xA = 0.95 with various r’s are shown in Figure 17. Note that the value of DBinfP/2 is equal to the
average number of branch points per molecule for large polymers. All data points fall nicely on the
same universal curve, as in the case of Rg2.
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Figure 17. Universal relationship between LMS/P and the number of branch points in a polymer,
DBinfP/2 for batch polymerization.

Both Rg2 and LMS show a similar universal relationship, as shown in Figures 13 and 17. Now,
consider the relationship between Rg2 and LMS.

Figure 18a shows the relationship between Rg2 and LMS for r = 1 and xA = 0.95, which shows a
linear relationship. The blue line with circular symbols shows the expected Rg2 for a given LMS.
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Figure 18. Relationship between Rg2 and LMS for batch polymerization with r = 1. (a) Raw data (red
dots) and the averages within ∆LMS, i.e., the expected Rg2-values, at xA = 0.95. (b) Expected Rg2 for a
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Figure 18b shows the expected Rg2 at various conversion levels for r = 1. The plotted points
shown by the blue circular symbols are the same as those in Figure 18a. The relationship is essentially
unchanged by the conversion level, and the relationship fits reasonably well with:

Rg2 = 0.18LMS + 1. (12)

Figure 19 shows the expected Rg2 for a given LMS, for various combinations of xA and r. A linear
relationship seems to hold for any value of r. The black straight line shows the linear relationship
given by Equation (12). Although a slight discrepancy is observed in the cases of r = 5 and ∞ for
large polymers, the data points are well correlated with Equation (12). Equation (12) is the universal
relationship between Rg2 and LMS, applicable to any combination of r and xA in batch polymerization.
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combinations of r and xA. (a) r = 0.5, (b) r = 2, (c) r = 5, and (d) r =∞.

For the SCVP, the relationship, Rg2 = 0.18 LMS + 0.6 was reported both for a batch and a CSTR [26].
The proportional coefficient, 0.18 is the same as Equation (12), and the constant term is very close.

For linear polymers, LMS is equal to P, and the following equation is valid for large polymers:

Rg2 = LMS/6 � 0.167LMS. (13)

Note that Rg2 is the mean-square radius of gyration when each monomeric unit is considered as
the random walk segment.

In the case of linear polymers, there is no contribution to Rg2 other than its own chain with
P = LMS. In the HB polymers, the chains other than the largest span chain can make a contribution
to increase the Rg2-value. The increase in the coefficient from 0.167 to 0.18 could be considered as
showing the degree of contribution from the other chains to the magnitude of Rg2.

For the perfect dendrons, on the other hand, the numerical calculation results are shown in
Figure 20, and the relationship for large LMS-values is given by:

Rg2 = 0.5LMS − 2. (14)

The proportionality coefficient changes from 0.167 for linear polymers to 0.5 for perfect dendrons,
and the HB polymers comes in between these two extremes. The value of 0.18 for the HP polymers is
closer to linear polymers, rather than that for perfect dendrons, which shows that the magnitude of Rg2
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is still mainly determined by the maximum span chain, and the contribution of the other chains is not
very significant. The exact physical meaning of the magnitude of coefficient is still an open question.
However, the linear relationship found here is of great interest.

For batch polymerization, the value of Rg2 can be determined analytically without MC simulation,
as discussed earlier. By using Equation (12), the magnitude of LMS can also be estimated in a
straightforward manner, without relying on the MC simulation.
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Figure 20. Relationship between Rg2 and LMS for perfect dendrons, when the focal point is the L-type
(red circle) and the D-type (blue cross). For both cases, the relationship is represented by Equation (14)
for large polymers.

3.2.2. CSTR

In this section, basic characteristics of Rg2 and LMS are considered, as was done in the previous
section. For a CSTR, however, the variance of Rg2 for large polymer is quite large [8,9], and it is
difficult to determine the statistically valid expected Rg2-values for large polymers. Inspired by the
universal curve shown in Figure 13, the value of g-ratio defined by Equation (9) is plotted with respect
to the number of branch points in a polymer molecule, nb. Figure 21a shows the case with r = 1 at
ξ = 0.5. In the figure, each red dot indicates a set of values for the polymer molecule generated in
the MC simulation. With this type of plot, the variance of g for large polymers is rather small, and it
is straightforward to determine the expected g-ratio for a given nb, shown by the blue curve with
circular symbols.
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Figure 21. Relationship between the g-ratio and the number nb of branch points in a polymer for a
CSTR with r = 1. (a) Each data point (red) and the expected g-value (blue), at ξ = 0.5. (b) The expected
g-ratio for ξ = 0.5, 0.45, 0.4, and 0.3.

Figure 21b shows the expected g-ratio at various values of ξ for the case with r = 1. The data
points fall on a single curve irrespective of the values of ξ, i.e., at any steady state conversion level.
The universal relationship between g and nb, unchanged by ξ, is confirmed also for the other r cases,
as shown in Figure S1 of Supplementary Materials.

Figure 22 shows how the universal curves, shown in Figure 21b and Figure S1, change with the
reactivity ratio r. Because the relationship does not change with ξ for a given r, the expected g-values
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at ξ = ξUL are shown in Figure 22. In order to magnify the small differences for smaller g-values,
the logarithmic scale plot was used for Figure 22b. Slight differences among curves are observed,
and the expected g-ratio is considered a very weak function of r. In particular, the change for r < 5 is
not very significant.
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Figure 22. Expected g-ratio and nb for the HB polymers having nb branch points in a polymer with
various reactivity ratio r for a CSTR. The plotted values are at ξUL for each r. (a) Normal scale plot, and
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In Figure 22, the g-ratio for the random branched polymers represented by the Zimm-Stockmayer
equation, Equation (11), is also shown by the red broken curve. It is clearly shown that the HB
architecture formed in a CSTR is much more compact than for the random branched polymers, i.e.,
for the HB polymers synthesized in a batch reactor.

Next, consider the maximum span length, LMS for the HB polymers formed in a CSTR. Figure 23a
shows the relationship between the weight fraction of the maximum span chain LMS/P and nb for
r = 1 with ξ = 0.5. Each red dot shows the individual data point, and the blue curve with circular
symbols shows the expected value of LMS/P for a given nb. Figure 23b shows the expected LMS/P
for various values of ξ, i.e., for different conversion levels at steady state. The expected values of
LMS/P do not change with ξ, and another universal relationship is found. The universal relationship
between LMS/P and nb, unchanged by ξ, is confirmed also for the other r cases, as shown in Figure S2
of Supplementary Materials.
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Figure 23. Relationship between LMS/P and nb for a CSTR with r = 1. (a) Each data point (red) and the
expected LMS/P (blue), at ξ = 0.5. (b) The expected LMS/P for the HB polymers having nb branch points
in a polymer with ξ = 0.5, 0.45, 0.4, and 0.3.

Figure 24 shows how the universal curve changes with the reactivity ratio r. Again, the relationship
at ξUL is shown for each reactivity ratio. Figure 24a is the normal scale plot, which shows the differences
among the curves are rather small. To enlarge the differences for smaller LMS/P-values, the logarithmic
plot is used for the y-axis of Figure 24b, and it is shown that up to r = 5, the differences are rather small,
but the curve with r = ∞ shows slightly larger LMS/P-values. Similarly with the g-ratio for a CSTR,
the value of LMS/P is a very weak function of the reactivity ratio r.
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Figure 24. Relationship between LMS/P and nb for a CSTR with various reactivity ratios. The plotted
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Finally, consider the relationship between Rg2 and LMS, as was done for batch polymerization in
Figures 18 and 19, which showed a universal relationship, represented by Rg2 = 0.18LMS + 1.

Figure 25a shows the relationship between Rg2 and LMS for HB polymers formed in a CSTR
with r = 1 and ξ = 0.5, which shows a linear relationship. Figure 25b shows the expected Rg2 at
various ξ-values for r = 1. The relationship is essentially unchanged by the steady-state conversion
level. The black line represents the relationship given by Equation (11). Although a slight deviation
is observed for large values of LMS, overall agreement is satisfactory. Compared with Figure 18,
the absolute values of Rg2 and LMS are smaller for the case of CSTR, because of much more compact
architecture formed in a CSTR.
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The expected Rg2-values for various combinations of ξ and r are shown in Figure S3 of
Supplementary Materials. The universal relationship, represented by Equation (12), correlates
reasonably well, irrespective of the magnitude of ξ and r, and Equation (12) could be considered as a
universal relationship that holds for both batch and CSTR. Even though a CSTR leads to form much
more compact HB polymers, such difference in branched structure does not affect the relationship,
Rg2 = 0.18LMS + 1.

The physical meaning of the magnitude of proportionality coefficient is not clear at the present
stage, however, the proportionality coefficient, 0.18 is closer to that for linear polymers (0.167),
rather than for the perfect dendron (0.5). The perfect dendron suffers from the Malthusian packing
paradox [27] and cannot fit in the 3D space. Closer value to that for linear polymers may imply that
the structure does not suffer from the space dimensionality. In fact, the Rg2-value of the HB polymers
formed with r =∞ in a CSTR is still much larger than that for the perfect dendron [9].

For a CSTR, the value of DBinf for a given r is represented graphically in Figure 4. At least
approximately for large polymers, nb is estimated to be nb = DBinfP/2. Therefore, the magnitude of Rg2

can be estimated from Figure 22, and the value of LMS could also be estimated by using the relationship,
Rg2 = 0.18LMS + 1.
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Obviously, various non-idealities, notably the size and structural dependent reaction kinetics,
may need to be accounted for in a real system. The information concerning the 3D architecture obtained
for the present ideal condition could be used as a starting point for the discussion of such non-ideal
reaction kinetics, and the present results would provide a basis for the development of more realistic
models for the HB polymer formation.

4. Conclusions

The HB polymer architecture formed in a batch and a CSTR is investigated in detail, by using the
MC simulation method, proposed earlier [6–9]. In a CSTR, a highly branched core region consisting of
units with large residence times is formed to give much more compact architecture, compared with
batch polymerization for large polymers. The branched architecture can be controlled by the residence
time distribution.

For batch polymerization, the g-ratio, as well as LMS/P, shows a universal relationship with the
average number of branches per molecule, which is independent of conversion xA and reactivity ratio
r. The g-ratio follows the relationship given by the Zimm-Stockmayer equation [15], which shows that
the random branched structure is formed in batch polymerization.

For a CSTR, the g-ratio, as well as LMS/P, follows a universal relationship with the number of
branches in a polymer molecule, and the relationship is independent of ξ, but is a very weak function
of r.

It was found that the Rg2 is linearly correlated with LMS, represented by Rg2 = 0.18LMS + 1, both
for a batch and a CSTR, irrespective of the conversion level and reactivity ratio. The coefficient, 0.18 is
essentially the same as for an SCVP [26], and could be considered as a general characteristic of HB
polymer architecture. The coefficient is 0.167 for linear polymers, and is 0.5 for perfect dendrons.
The physical meaning of the coefficient is still not clear, but the value of 0.18 is closer to that for
the linear polymers, rather than the perfect dendron that cannot fit in the 3D space because of the
Malthusian packing paradox.

The HB polymer architecture can be controlled by the residence time distribution. Appropriate
process control in combination with the chemical control of the reactivity of the second B-group will
make it possible to produce HB polymers with well-controlled molecular architecture.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/4/220/s1,
Figure S1: Expected g-ratio for the HB polymers having nb branch points in a polymer for a CSTR with (a) r = 0.5,
(b) r = 2, (c) r = 5, and (d) r =∞, for various ξ-values, Figure S2: Relationship between LMS/P and nb for a CSTR;
(a) r = 0.5, (b) r = 2, (c) r = 5, and (d) r =∞, with various ξ-values, Figure S3: Universal relationship between Rg2

and LMS for a CSTR with various combinations of r and ξ. (a) r = 0.5, (b) r = 2, (c) r = 5, and (d) r =∞.
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