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Abstract: It is difficult to manually process and analyze large amounts of data. Therefore, to solve a
given problem, it is easier to reach the solution by studying the data obtained from the environment
of the problem with computational intelligence methods. In this study, pool boiling heat flux was
estimated in the isolated bubble regime using two optimization methods (genetic and artificial bee
colony algorithm) and three machine learning algorithms (decision tree, artificial neural network,
and support vector machine). Six boiling mechanisms containing eighteen different parameters in
the genetic and the artificial bee colony (ABC) algorithms were used to calculate overall heat flux
of the isolated bubble regime. Support vector machine regression (SVMReg), alternating model
tree (ADTree), and multilayer perceptron (MLP) regression only used the heat transfer equation
input parameters without heat transfer equations for prediction of pool boiling heat transfer over a
horizontal tube. The performance of computational intelligence methods were determined according
to the results of error analysis. Mean absolute error (MAE), root mean square error (RMSE), and mean
absolute percentage error (MAPE) error were used to calculate the validity of the predictive model in
genetic algorithm, ABC algorithm, SVMReg, MLP regression, and alternating model tree. According
to the MAPE error analysis, the accuracy values of MLP regression (0.23) and alternating model
tree (0.22) methods were the same. The SVMReg method used for pool boiling heat flux estimation
performed better than the other methods, with 0.17 validation error rate of MAPE.

Keywords: boiling; computational intelligence techniques; heat flux; optimization

1. Introduction

Pool boiling processes are important heat transfer mechanisms in many engineering
applications [1], especially in chemistry, mechanical engineering processes, refrigeration,
gas separation, etc. [2]. The formation and removal of vapor bubbles from the solid–liquid interface
can be explained by boiling. In the literature, boiling heat transfer studies can be divided into two
groups: (1) flow boiling; and (2) pool boiling [3,4]. Boiling allows the transfer of large amounts
of heat energy at low-temperature differences. The boiling event has a wide range of applications.
The major areas of application include nuclear power plants, rocket motors, refrigeration industry,
boilers, steam power units, process industry, and evaporators. Although many investigations are
reported on the boiling mechanism, the physical mechanism of boiling has not yet been fully elucidated,
even in the case of running water [5]. Many investigators have improved correlation for calculating
boiling heat flux [6]. These correlations are calculated for nucleate pool boiling heat flux to nearly
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50% error [7–10]. Nowadays, many investigators study optimization and ANN for heat transfer
prediction [11–14]. Das and Kishor studied the heat transfer coefficient in pool boiling of distilled
water. They compared the results of the zero-order adaptive fuzzy model and adaptive neuro-fuzzy
inference system (ANFIS function) [15]. Swain and Das used the computational intelligence methods
for the flow boiling heat transfer coefficient [16]. Barroso-Maldonado et al. studied cryogenic forced
boiling. They compared ANN to three conventional correlations [17].To calculate heat transfer in fluids,
some researchers have developed models using computational fluid dynamics [18,19].

In recent years, many researchers have studied the optimization of the heat transfer of the pool
boiling [1,20,21]. Many researchers have predicted heat flux with computational intelligence methods.
Table 1 depicts the conditions under which the boiling heat transfer is calculated, the algorithms used
in heat flux estimation, which error measures are used to determine the accuracy of the predictive
models and the error analysis results. There are generally two types of computational intelligence
methods: (1) white-box techniques; and (2) black-box techniques. Optimization techniques, such as
genetic and ABC, are white-box techniques, while artificial intelligence techniques, such as ANN, DT,
and MLP, are black-box techniques.

In this study, the pool boiling heat flux was calculated by optimizing semi-empirical correlations.
Then, heat flux estimation was realized using computational intelligence methods considering the
parameters used in the calculation of conventional correlations. These methods were also compared
with well-known correlations. To the authors’ best knowledge, this study contributes to the heat flux
estimation for pool boiling literature by using black-box techniques for the first time.

2. Pool Boiling Mechanisms in Isolated Bubble Regime Region

The boiling process occurs when the temperature of the solid surface to which the liquid contacts
exceeds the saturation temperature corresponding to the pressure of the liquid. Boiling process is
described visually in Figure 1. In Figure 1, the pipe diameter and length are 21 mm and 105 mm,
respectively. The experimental heat flow is about 10–80 kW/m2. Four different materials, copper,
brass, aluminum, and steel, are used as heater surface. The surface roughness is 30–360 mm and the
conditions are atmospheric pressure. The vessel of the boiling volume is 0.003 m3. Water and ethanol
were used for a boiling liquid. As seen in Figure 1, the first bubble was boiled in the boiling core in
the isolated bubble regime. However, the bubble did not reach the free surface. In an isolated bubble
regime, the boiling core was analyzed for boiling the pool on a horizontal tube heater [20].

Figure 1. The schematic problem description.
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In the region of the isolated vapor bubble, the vapor bubbles do not emerge on the fluid surface
and become condensed again by condensation. Although the temperature difference between the fluid
and the surface is low in this region, the amount of heat transferred is very high. According to the
Fazel study [20], the isolated bubble regime had six mechanisms (microlayer evaporating, transient
conduction, bubble super-heating, sliding bubbles for transient conduction, radial forced convection,
and natural convection). The model used for optimization in the study is a semi-empirical model that
estimates heat flux by a Genetic Algorithm [20]. Fazel’s model, although improved at the isolated
bubble regime region, has the following limitations: (1) the heat transfer is one dimensional; (2) bubbles
are adopted in a spherical shape; (3) tThe heater temperature is constant; (4) bubbles are isolated,
i.e., there are no bubble interactions; and (5) the physical properties do not change [20]. The boiling
heat transfer model as the sum of the six mechanisms is written below.

Microlayer evaporating equation [22]:

hmic =
π
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d3ρνh f g
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A

f (1)
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Bubble super-heating equation [20]:
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Sliding bubbles for transient conduction equation [20]:
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Radial rorced convection equation [20]:
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hrad f = hrP4
N
A
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4
d2(1− P0)(Tw − Tb) (12)

Natural convection equation [23,24]:

hNc = αNccNc(Tw − Tb) (13)
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2
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cnc= 1−c1−c2−c4 (15)
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c4 = P0(c3 − c2) (19)

The above equations and experimental data were taken from Fazel’s work (see the article for
more details) [20]. The pool boiling heat transfer is affected by many parameters that are easily
obtained from correlations given in the literature: the wall temperature (Tw), evaporation temperature
(Tb), bubble departure diameter (d), bubble frequency (f), nucleation site density (NA), latent heat
vaporization (h f g), liquid density ($l), vapor density ($v), liquid heat capacity (Cpl), vapor heat capacity
(Cpv), dynamic viscosity µ , Prandtl number (Pr), liquid thermal conductivity (kl), Grashoff number
(Gr), and vapor thermal conductivity (kv). These parameters are used to calculate the pool boiling
heat flux (q/A). q/A is the total of the six mechanisms of heat flux equations. These parameters are
available for computational intelligence technique as well.

Table 1. The predictive models of heat flux in the literature.

Conditions Data Method Error Analysis Result Reference

Round tube uniform heat oscillation 513 ANN MSE 0.2 Kim et al. [25]
Down-stream conditions, Vertical round tube 513 ANN MSE 0.25 Kim et al. [26]
PWR steady-state 60 SVM R² 0.65 He and Lee [27]
Concentric-tube open thermosiphon 381 SVM RMSE 0.067 Cai [28]
Bubble column reactors 366 SVR AARE 7.05% Gandhi and Joshi [29]
Steam-water flows in pipes 3000 ANN MSE 0.75 Nafey [30]
Wall insulation surface 342 ANN RMSE 0.0631 Najafi and Woodbury [31]
Vertical smooth tube 368 MLP R² 0.992 Balcilar et al. [32]
Mini-Channel 319 ANN R² 0.998 Parveen et al. [33]

3. Computational Intelligence Methodology

In a mathematical approach, most optimization methods investigate the places where the function
is zero and the places where the derivative is zero. The derivative calculation is not always an easy task.
Many of the technical problems can be formulated to find their roots. However, some optimization
methods fail to find these roots. Another challenge in optimization is determining whether a result is a
global or local solution. Such problems are solved either by a linear approach or by limiting the bounds
of the optimization domain. In this study, five different computational intelligence methodologies
were selected to estimate pool boiling heat transfer in isolated bubble regime.
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3.1. Genetic Algorithm

Genetic Algorithm is the first and most known of the evolutionary calculation algorithms.
To understand the terminology of the genetic algorithm (GA), it is necessary to understand natural
selection. When observing the world, natural selection comes to the fore in events. The enormous
organisms and complexity of these organisms are the subject of investigation and research. It can be
questioned why organisms are like this and how they come to this stage. The level of adaptation and
suitability has become a sign of long-term survival in the world. The process of evolution is a great
algorithm that allows the most appropriate life conditions. If an organism has the intelligence and
ability to change the environment, the global maximum can be achieved in life [34]. This algorithm
externalizes the process of natural selection in which pertinent individuals are selected for reproduction
to produce progeny of the next generation. General flow chart of the genetic algorithm is given in
Figure 2.

Figure 2. Genetic algorithm steps.

3.2. ABC Algorithm

ABC algorithm is the modeling of bees food search mechanisms. The bees live in colonies.
The bees colony includes three groups of bees: onlookers, scouts, and employed bees. Some of the
colony consists of employed artificial bees and the others contain onlookers. For each food source,
there is solely an employed bee [35,36]. Figure 3 shows the main steps for the ABC algorithm. In this
study, the ABC algorithm and the GA algorithm were used with the same mathematical model and
bounds; however, their configurations were different. Both algorithm configurations are shown in
Table 2.

Table 2. Configuration of both algorithms.

Genetic ABC

Number of variable 6 6
Bounds [0 0.1 0.1 0.1 0.1 0.1] & [1 5 5 5 3 4] [0 0.1 0.1 0.1 0.1 0.1] & [15 5 5 3 4]
Population type double vector
Population size 150 150
Creation function uniform
Fitness scaling top
Mutation function adaptive feasible
Crossover constraint dependent
Migration forward
Hybrid function none
Stopping criteria default
Generations 50 50
Stall test average change
Others default
Use random states from previous run sign
User function evaluation in serial
Run time 30 30
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The optimization model was based on 18 parameters: (1) q/A; (2) Tw; (3) Tb; (4) d; (5) NA; (6) f;
(7) $l ; (8) $v; (9) h f g; (10) Cpl ; (11) kl ; (12) kv; (13) Cpv; (14) µl ; (15) µv; (16) Gr; (17) Prandtl; and (18) Ra
roughness. Some of these parameters were obtained from experiments: (1) Tw; (2) Tb; (3) d; (4) NA;
(5) Ra; and (6) f. The rest of the datasets were obtained from an EES package program: (1) $l ; (2) $v;
(3) h f g; (4) Cpl ; (5) kl ; (6) kv; (7) Cpv; (8) µl ; (9) µv; and (10) Prandtl. If these datasets were used as
the input parameter, for the computational intelligence algorithms, boiling heat flux (q/A) could be
estimated. The boiling fluid thermophysical properties were evaluated at the arithmetic mean of the
saturated fluid and heater surface temperature, Tf defined by Equation (20).

Tf =
Tw + Tb

2
(20)

Figure 3. ABC algorithm steps.

3.3. Support Vector Machine Regression

Support vector networks, which are a variety of universal feeder networks, were developed
by Vapnik and Cortes [37] to classify data and are generally referred to as support vector machines
(SVM) in the literature. The SVM-based model for regression is called the support vector regression
(SVMReg) [38]. SVR uses not only empirical risk minimization but also the principle of structural risk
minimization, which is intended to reduce the upper limit of the generalization error, compared to
traditionally controlled learning methods of neural networks. Thanks to this principle, the SVR has
good generalization performance for previously untested test data using the learned input–output
relationship during the training phase. Consider the expression vector xs ∈ Rn for the problem of
approach to a continuous-valued function. The expression D = {(xs, ys) |s ∈ {1, 2, ..., N}}, which is
a set of N numbers, indicating the ys ∈ R output (target) value. The aim of the regression analysis
is to determine a mathematical function to accurately predict the desired (target) outputs (ys ∈ R).
The regression problem can be classified as linear and nonlinear regression problems. Since the
problem of nonlinear regression is more difficult to solve, SVMReg is mainly developed for the
solution of nonlinear regression problem [39]. To solve the nonlinear regression problem, the SVM
carries the training data in the “i” input space ϕ(x)Rn → Rm(m > n) to the higher-dimensional space
{(ϕ(xs), ys) |s ∈ {1, 2, ..., N}} with the help of a nonlinear function and applies linear regression in
this space. In this case, the mathematical representation of the linear function obtained to find the best
regression is as follows [39]:

f (x, w) =
N

∑
s=q

ws ϕ(xs) + b = wT ϕ(x) + b (21)

where w ∈ Rm represents the model parameter vector and b ∈ R represents the deviation term in
the vertical axis. Thus, the linear regression obtained by the inner product between ω and ϕ(x) in
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the higher-dimensional space corresponds to the nonlinear regression in the input space (Figure 4).
The objective function of the SVR, which performs linear regression in high-dimensional space,
is usually composed of a ε-insensitive loss function and minimization of the parameters representing
the model in Equation (22).

min
w∈Rw ,b∈R

J(w, b) =
1
2

N

∑
s=1
‖w‖2 + C

N

∑
s=1

Lε(ys, f (xs)) (22)

Figure 4. Using the nonlinear function ϕ(.) mapping training examples in the input space to a high
dimension where they are linear.

Here, the first term ‖w‖2/2 represents the square of the Euclidean norm of the model parameters,
the second term Lε(ys, f (xs)) is the experimental error (loss) function, and the C ∈ R+ is a positive
constant number. The task of C is to maintain a balance between the experimental error and the
extreme compatibility of the model with the training data. Small C values give more importance to
the optimization problem in contrast to the experimental error, while the higher C values give more
importance to the reduction of experimental education error than the norm of ω [39]. SVM regression
computational intelligence method was used to create a predictive model of q/A values calculated by
experimental data. This method was done with the SMOreg toolbox in WEKA 3.8.3. WEKA is open
source software. There are many algorithms in this software, which include classification, estimation
and clustering rules. It is necessary to define the kernel function to be used for a classification to be
performed by SVM and optimum parameters of this function [40]. The most widespread used radial
basis function (RBF) kernels in the literature are presented together with formulas and parameters in
Equation (23). Batch size is 1000. “C” is 200.0. Filter type is standardized.

K(x.y) = e−γ‖(x−xi)‖2
(23)

3.4. Multilayer Perceptron

Artificial intelligence has been brought to science through long-term studies to model the human
brain. Then, the artificial neural networks (ANN) method was developed by means of these studies.
The ANN technique achieved reliable results in nonlinear equation solutions and its use has become
increasingly widespread over time. In the ANN method, models with a multi-layer perceptron (MLP)
are generally used for classification and regression approaches. The software application of the MLP
neural networks is used in the algorithm development phase and in cases where parallel-low delay
approaches are not required. In many applications in the literature, rapid data processing, and low
delays are required by the ANN method. To supply this need, MLP is used as an ANN method
consisting of multiple neural layers in a feed-through network. The MLP consists of three or more
layers consisting of one inlet, one outlet, and one or more hidden layers. Because the MLP is a fully
connected network, each neuron contained in each layer is associated with the next layer with a
certain weight value. The MLP method uses a controlled learning method called backpropagation.
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In MLP, the weight function is defined in the training phase of the neural network [41]. As a middle
layer, six hidden layers were created and the best solutions were tried by changing the number of
intermediate layers. The structure of the generated MLP model is given in Figure 5.

Prediction of q/A values with MLP was done using WEKA 3.8.3 software. The MLP network
structure used for estimation of q/A is shown in Table 3.

Figure 5. MLP structure.

Table 3. The Network structure of MLP.

Network Structure of MLP Regression

Number of Secret Layers 3
Number of Neurons in Layers 6-6-1
Weight Ratings Random
Activation Function Softplus
Transfer Function Tangent Sigmoid Transfer
Learning Function Backpropagation
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3.5. Alternating Decision Tree

Decision trees, which are a strong regression method, have a clear concept description for a
dataset. The decision tree learning method is a popular method because of its fast data processing
capability and because it produces successful performance predictive models [42,43]. The alternative
decision tree (ADTree) method consists of decision nodes and prediction nodes. Each action in the
decision nodes indicates the result. The prediction nodes contain a single number value. The ADTree
method always contains prediction nodes, which consist of both root and leaves. When regression or
classification is done by the ADTree method, the paths of all decision nodes and prediction nodes are
monitored [44]. In the ADTree method, the learning algorithm must be 1 <= i <= n. In this expression,
n is provided via a sample (xi; yi).xi. In this sample, xi indicates an attribute value indicating the vector
and yi indicates the target value. For this dataset, when a different vector x is entered, this model
is used to estimate the value corresponding to the y value. The purpose of the ADTree model is to
minimize the error between the actual value and the estimated value. The ADTree method uses the
basic algorithm of incremental regression by using the advanced stepwise additive model at the stage
of learning additive model trees [45]. If a model consisting of k base model is created,

Fk(~x) =
k

∑
j=1

f j(~x) (24)

the error squared on a progressive state,

n

∑
i=1

(Fk(~xi)− yi)
2 (25)

is minimized through n training samples.
As input data for the all regression analysis model, the following were used: (1) Tw; (2) Tb; (3) d;

(4) NA; (5) f; (6) $l ; (7) $v; (8) h f g; (9) Cpl ; (10) kl ; (11) kv; (12) Cpv; (13) µl ; (14) µv; (15) Gr; (16) Prandtl;
and (17) Ra roughness values. Boiling heat flux (q/A) was used as output data.

All numerical method errors were calculated for MAE, MAPE, and RMSE. All error calculation
methods are shown in Table 4.

Table 4. Some error equations.

Accuracy Criteria Formulas Parameters

MAE |P1−A1|+ ...+|Pn−An|
n

P: Predicted Value

A: Actual Value

n: Total Estimated Value

RMSE
√

(P1−A1)2+ ...+(Pn−An)2

n

P: Predicted Value

A: Actual Value

n: Total Estimated Value

MAPE
P
∑
p

∣∣∣ dp−zp
dp

∣∣∣× 100
P

d: Predicted Value

z: Actual Value

P: Total Estimated Value

The test dataset is used to determine the generalization capability of the generated tree for a
new dataset. A test data coming from the root of the tree enters the tree structure created with the
training dataset. This new data tested in the root is sent to a lower node according to the test result.
This process is continued until it reaches a specific leaf of the tree. There is only one way or a single
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decision rule from root to every leaf [46]. The working principle of the decision tree method, which is a
computational intelligence method, is simply shown in Figure 6. Figure 6 shows a simple tree structure
consisting of four-dimensional attribute values of three classes. In the Figure 6, the xi parameter shows
the values of the attribute. The parameters a, b, c, and d show the threshold values in tree branches.
Parameters A, B, and C show the class label values [47].

Figure 6. A decision tree structure consisting of three classes with four-dimensional property space.

4. Results

Five different computational intelligence methods were applied to predict pool boiling heat
transfer phenomena. Genetic and ABC algorithms are both white-box algorithms, in which the internal
structure, design, and implementation of the item being tested are known to the tester. All parameters
required for algorithms were obtained from Fazel [20]. The black-box technique is the opposite of the
white-box technique and its algorithms cannot be changed. They can only be partially modified for the
prediction, for example the learning rate, momentum, batch size, and Figure 7 shows the predicted
output of the SVMReg. In the figure, it can be seen that the predicted output of the SVMReg and
experimental data are mostly in agreement.

Figure 7. The SVMReg forecast.

Figure 8 shows a comparison of the black-box techniques to white-box techniques. The apsis
is the experimental results, and the ordinates are the predicted models. The figure shows that both



Processes 2019, 7, 293 11 of 16

algorithms predictions were nearby the 0.25 mean absolute percentage error of the actual result.
MLP and Alternating tree had unequal distributions, whereas SVMReg prediction was slightly more
stable than the others. Therefore, its mean absolute percentage error was less than all other methods.
SVMReg model performed better than the other methods.

Figure 8. The comparison of black-box techniques to white-box techniques.

Seventeen attributes (1275) were used for analysis. An attribute q/A (75) was selected to be used
as the solution class. In this study, the ten-fold cross-validation technique was applied to process
the data with less error rate in machine learning algorithms. Cross-validation is a technique used in
model selection to better estimate the error of a test in a machine learning model. In cross-validation,
the training data are divided into subsets. A subset is used for training, and the remaining sets are
used for validation. This process is repeated for all subsets in a crossway. This is done for k presets.
In the literature, ten-cross validation can be seen in many articles [33,48]. Data are divided into k
pieces of equal length and evaluated k times. The mean absolute error (MAE), root mean squared error
(RMSE) and mean percentage error (MAPE) are shown in Table 5.

Table 5. Error rates for all methods.

Model Name MAE RMSE MAPE

Genetic Algorithm [20]. 5.1924 6.4435 0.26
ABC algorithm [21]. 4.9519 5.23758 0.25
MLP. 3.5131 4.6221 0.23
SVMReg 2.2716 4.0026 0.17
Alternating Tree Model 3.3826 4.2818 0.22

Instant heat flux has to be estimated in pool boiling. This requirement is mainly for determining
the boiling heat transfer coefficient. Figure 9 depicts the results of the well-known correlations and
computational intelligence techniques used in the study. It is clearly seen that the computational
intelligence techniques performed better than the correlations developed. Especially, SVMReg
predicted q/A error rate with a MAPE nearby 0.17. This error rate was the minimum value presented
in this study. In this analysis, some parameters were obtained as a result of experiments. The other
parameters were obtained from EES. However, they could make better predictions than the many
correlations used today for the development of data. In the near future, computational intelligence
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techniques can be used more in predicting the heat transfer of boiling phenomena. Some researchers
supported this view in their works [49–51].

Figure 9. Comparison of some well-known correlation and computational intelligence techniques.

In this study, heat flux estimation was performed using computational intelligence methods
during boiling in the isolated bubble regime region. After this study, these methods of computational
intelligence can be tried in the boiling zone, where the steam bubble flows to the surface of the fluid,
for the transition to boiling, and in the film boiling. In addition, these methods can be tried to estimate
the heat transfer coefficient in boiling heat transfer. It is thought that these methods will be successful in
estimating the heat transfer coefficient. Thus companies that produce heat exchangers for the industry
could benefit from these algorithms in their heat exchanger capacity estimation. The prediction results
obtained by these algorithms were found to be better than those obtained with the known correlations.

5. Conclusions

The novelty of this study was to predict the boiling heat flux of a pool by using
black-box techniques. Pool boiling heat transfer was predicted with computational intelligence
techniques. These computational intelligence methods were Genetic algorithms, ABC algorithms,
SVM, DT, and MLP. The predicted heat flux was compared to some well-known correlations.
The white-box techniques performance (Genetic and ABC) was limited to the used empirical model,
whereas predictions made by black-box techniques (SVM, DT, and MLP) were more successful.
Validation error (MAPE) rate of the models were: GA, 0.26; ABC, 0.25; MLP, 0.23; DT, 0.22; and SVM,
0.17. SVMReg was proposed as the best of the models used in the study to predict the heat transfer
phenomenon in pool boiling. This study also showed the basics of how to use computational
intelligence techniques in engineering calculation programs. By making an addendum to engineering
equation solvers such as EES, the ability to use computational intelligence techniques can be improved,
more data can be obtained with different boiling techniques, and less erroneous predictive models can
be obtained using different computational intelligence methods.
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Abbreviations

The following abbreviations are used in this manuscript:

A Area (m2)
AARE Average Absolute Relative Error
ADTree Alternative Decision Tree
ANN Artificial neural network
C Batch size
c1 The particular area engaged by the bubbles over heater surface area
c2 The particular area engaged by the sliding bubbles over heater surface area
c3 The particular area over the area at which transient heat conduction takes
c4 Various of c3 and c2

Cp Heat capacity
DT Decision tree
E The relative error (%)
f The frequency of bubble separation (Hz)
Gr Dimensionless Grashoff number
h Heat flux watt per square metre (W m−2)
h f g Specific heat of vaporization (J kg−1)
k Thermal conductivity (W m−1 K−1)
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean squared error
MLP Multilayer perceptatron
NA Nucleation site density
Nc Natural convection
Nu The Nusselt number
P Optimization parameter
q/A Sum of heat flux (W m−2)
RBF Radial basis function
Re Reynolds number
RMSE Root mean square error
SVM Support vector machine
SVR Support vector regression
T Temperature (K)
Greek symbols
$ Density (kg m−3)
µ Viscosity (kg m−1s−1)
ω Pearson width parameters
γ Kernel dimension
Subscripts or superscripts
ls Sliding length (m)
b Bulk
bb Bubble super-heating
d The diameter of bubble separation (m)
v Vapor
l Liquid
mic Micro-layer evaporation
OD Heater outside diameter (m)
rad f Radial forced convection
s Saturation temperature
th Thermocouple location
trns Transient conduction
w Wall
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