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Abstract: Background: The gut microbiota is a heterogeneous group of microbes that is spatially
distributed along various sections of the intestines and across the mucosa and lumen in each section.
Understanding the dynamics between the spatially differential microbial populations and the driving
forces for the observed spatial organization will provide valuable insights into important questions
such as the nature of colonization of the infant gut and different types of inflammatory bowel disease
localized in different regions of the intestines. However, in most studies, the microbiota is sampled only
at a single site (often feces) or from a particular anatomical site of the intestines. Differential oxygen
availability is putatively a key factor shaping the spatial organization. Results: To test this hypothesis,
we constructed a community genome-scale metabolic model consisting of representative organisms
for the major phyla present in the human gut microbiome. By solving step-wise optimization
problems embedded in a dynamic framework to predict community metabolism and integrate the
mucosally-adherent with the luminal microbiome between consecutive sections along the intestines,
we were able to capture (i) the essential features of the spatially differential composition of obligate
anaerobes vs. facultative anaerobes and aerobes determined experimentally, and (ii) the accumulation
of microbial biomass in the lumen. Sensitivity analysis suggests that the spatial organization depends
primarily on the oxygen-per-microbe availability in each region. Oxygen availability is reduced
relative to the ~100-fold increase in mucosal microbial density along the intestines, causing the switch
between aerobes and anaerobes. Conclusion: The proposed integrated dynamic framework is able
to predict spatially differential gut microbiota composition using microbial genome-scale metabolic
models and test hypotheses regarding the dynamics of the gut microbiota. It can potentially become
a valuable tool for exploring therapeutic strategies for site-specific perturbation of the gut microbiota
and the associated metabolic activities.

Keywords: gut microbiome; genome-scale metabolic model; spatial heterogeneity; multi-scale
modeling

1. Background

The human gut microbiota has been shown to be extremely influential in human health.
It participates in various aspects of the human physiology, ranging from energy metabolism, immune
response, bile acid metabolism, intestinal function and integrity, bone homeostasis to brain function
and nerve system [1]. The gut microbiota has been implicated in the onset of a number of diseases.
These include the inflammatory bowel disease (IBD), obesity, non-alcoholic fatty liver, type 2 diabetes

Processes 2019, 7, 394; doi:10.3390/pr7070394 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0002-7707-656X
https://orcid.org/0000-0003-0050-4965
http://dx.doi.org/10.3390/pr7070394
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/7/7/394?type=check_update&version=2


Processes 2019, 7, 394 2 of 20

and colorectal cancer [2]. Unraveling the interactions between gut microbes and drug metabolism
(e.g., [3–6]) is becoming a significant factor in evaluating drug efficacy and toxicity [7]. It is therefore
important to identify the factors that shape the composition of the gut microbiome and its function.
Out of these factors, diet, from which the primary nutrients for the gut microbiome originate, has been
widely studied [8–13] and while very important, it is not the sole determinant factor [14]. Other
factors, such as host genotype [15], age, geographical location [16], circadian cycle [17] and history
of antibiotic treatments [18,19], have also been assessed. While a large amount of gut microbiome
studies have relied on comparing only the fecal microbiome or the microbiome in a particular section
of the intestines, multiple studies have shown that the microbiome varies not only longitudinally
along the intestines, but also radially between the mucosal surface and the lumen in each section of the
intestines [12,20–24]. The spatially differential microbiome is likely the result of the differences in the
biochemical, as well as physical properties of different intestinal anatomical sites, such as nutrient and
oxygen concentrations [22], pH, and mucus viscosity [25].

To systematically analyze the impact of these properties on the spatial organization of the gut
microbiome, a computational model integrating both the dynamics of bacterial growth and the spatial
characteristics of the intestines is needed. Genome-scale metabolic models can predict the growth and
metabolism of bacteria given the nutrients available using flux balance analysis (FBA) [26,27] and can
be integrated into dynamic frameworks to describe biomass production and changes in metabolite
concentrations over time through dynamic flux balance analysis (dFBA) [28,29]. The approach has
been extensively applied to microbial communities [30–35], in particular gut microbiota [36–44] and
integrated with dynamic frameworks [45–48] and spatiotemporal elements [49–53] (reviewed in
references [54–56]). In this study, we analyzed the impact of the differential oxygen availability on the
mucosal adherent microbiota and the luminal microbiota and their compositions. They were modeled
as two distinct communities that are able to exchange metabolites and microbial biomass in each
section of the intestines (see Figure 1A). Consecutive sections are connected by the flow of the luminal
contents including microbes. Using this framework, microbiota compositions with a surprising high
level of agreement with experimentally captured distributions of obligate anaerobes and facultative
anaerobes were predicted [22–24]. This alludes to the possibility of using computations to predict the
effect of perturbations on the spatially distributed microbial composition in the intestines.

2. Results

2.1. A dynamic Framework for Simulating Spatially Differential Gut Microbiota Metabolism

A dynamic model was assembled for simulating the spatial distribution of gut microbes along
the intestines. The intestine was divided into seven sections according to anatomical considerations:
proximal, middle and distal small intestine; cecum, and; proximal, middle and distal large intestine.
There are two distinct communities defined in each section of the intestines: the mucosal microbiota
adherent to the mucus layer and the luminal microbiota residing in the intestinal lumen. Figure 1A
shows five processes being modeled (marked by roman numerals) and Figure 1B describes the
corresponding simulation procedure. In each section of the intestines, the simulation was performed
for a period of time equal to the retention time of the luminal contents. The initial luminal contents in
each section are equal to the luminal contents at the end of the simulation for the previous intestinal
section (including the microbes in the lumen), or the nutrients from the diet for the first section (Step I).
In addition to the nutrients available in the luminal contents, oxygen diffused from intestinal epithelial
cells is available to the microbiota (Step II, see Oxygen availability in Materials and Methods). The
luminal microbiota changes over time and its growth was modeled using a previous procedure [45]
(Step III, see Luminal microbiota in Materials and Methods). During the simulation, the mucosal
microbiota was assumed to be relatively stable along the time-course of the experiment and was
modeled using the SteadyCom framework [43] (Step IV, see Mucosal microbiota in Materials and
Methods). Shedding from the mucosal microbiota also contributed to the increase in the luminal
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microbial biomass (Step V, see Connecting the luminal and mucosal microbiota in Materials and
Methods). In each section of the intestines, the microbial community metabolic network consisting of
representative species of the gut microbiota is identical for both the mucosal and luminal microbiota
(including obligate anaerobes, facultative anaerobes and aerobes; see Metabolic models and nutrients
available in Materials and Methods). The described algorithms and dynamics however allow for the
simulation of microbiota abundance profiles that are location-specific.
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Figure 1. Proposed dynamic framework for predicting the mucosal and luminal microbiota along
various sections of the intestines. (A) Five processes being modeled in each section: (I) the luminal
contents at the beginning of the simulation for each section are equal to the luminal contents at the end
of the simulation for the previous section. Metabolites in the luminal contents shared freely by the
mucosal and luminal microbiota, (II) oxygen diffused from intestinal epithelial cells to the mucus layer
and further to the lumen, (III) the metabolism and abundance profile of the luminal microbiota predicted
using DMMM, (IV) the metabolism and abundance profile of the mucosal microbiota predicted using
SteadyCom, (V) newly produced mucosal microbial biomass shed into the lumen and becoming luminal
biomass. (B) The corresponding simulation procedure. The luminal and mucosal microbiota in each
section use the same copy of community metabolic network structure consisting of the organisms listed
in Table 1.

2.2. Overview of the Simulation Results

1000 simulations were performed using the default set of parameters from Tables 2–4 in which the
total oxygen flux available was constant while the oxygen flux available to the luminal microbiota
decreased as the luminal content progressed along the intestines (Figure 2). Interestingly, the simulation
results (see Figure 2) showed changes in the composition of obligate anaerobes vs. aerobes and
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facultative anaerobes in both the mucosal and luminal microbiota that are strikingly similar to
the experimental results in reference [24]. From sensitive analysis of the parameters in the model,
the oxygen-per-mucosal-biomass availability rtotal

oxygen / Xtotal
muc that largely varies along the intestines,

was found to be the most significant determinant of the spatial distribution. Perturbations in the
oxygen-related parameters that are small compared to the experimentally observed variation in the
mucosal biomass density had no qualitative impact on the distribution. These results are described in
detail in the following subsections.
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Figure 2. Simulated microbial abundance (lines) compared with experimentally determined microbial
abundance (circles, from reference [24]) at various sections of the intestines in terms of facultative
anaerobes vs obligate anaerobes. (A) Abundance profile for the mucosal microbiota. (B) Abundance
profile for the luminal microbiota. (C) Relative increase in the luminal microbial biomass. The geometric
mean of the luminal microbial biomass for all simulated time points in the first intestinal section (SI.P)
was taken as the reference level. The shaded regions and the error bars in all plots represent one
standard deviation. The markers at the bottom show the time intervals for which simulations of the
corresponding intestinal sections were performed. SI.P, SI.M and SI.D stand for proximal, middle and
distal small intestine respectively. Cec stands for cecum. LI.P, LI.M and LI.D stand for proximal, middle
and distal large intestine, respectively.

2.3. Mucosal Microbiota

For the mucosal microbiota, aerobes and facultative anaerobes (E. coli and C. glutamicum in
the model) have relatively high abundance in the small intestine, close-to-zero abundance in cecum
and proximal large intestine and a rebound in the middle and distal large intestines (Figure 2A).
The simulation results recapitulated the trend and suggested that the primary factor shaping the
abundances for aerobes and facultative anaerobes vs. obligate anaerobes in the mucosal microbiota
was the large difference in biomass density in different sections of the intestines (100-fold increase in
both the cecum and the proximal large intestine compared to other sections, Table 1). Because the total
oxygen available to the community was kept constant, the oxygen available per gram of dry weight
of microbes decreases with increasing total biomass density from the middle small intestine to the
proximal large intestine. The abundance of aerobes or facultative anaerobes therefore consequently
decreases. Because the magnitude difference in biomass density is large (100-fold), this trend was likely
to hold unless the change in oxygen supplied reached a similar magnitude in the cecum or proximal
large intestines compared to other sections (more discussion in ‘Sensitivity of parameters’).

Regarding the lower abundance of aerobes or facultative anaerobes in the proximal small intestine
in the simulation compared to the experimental results, this deviation may be due to additional oxygen
not accounted for in the simulation that originates from the diet in the luminal content when it entered
into the small intestine from the stomach. Additionally, the mucosal aerobes or facultative anaerobes
predicted in the simulation do not reflect the experimental increase in abundance in the distal large
intestine compared to the middle large intestine. This could be due to the possible underestimation of
oxygen diffusivity in the middle large intestine compared to the distal large intestine. In the distal colon,
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oxygen diffusion into solid stool is expected to decrease and therefore more oxygen was constrained
to the mucus layer [24]. In the simulation, the mucosal microbiota in the middle and distal large
intestines can respectively consume 95% and 100% of all available oxygen. The 5% increase in oxygen
availability to the mucosal microbiota in the distal large intestine in the model is not sufficient to
cause the additional increment in the abundance of aerobes or facultative anaerobes when there is a
simultaneous 20% increase in total biomass density in the distal large intestine (from the experimental
data).

2.4. Luminal Microbiota

For the luminal microbiota, the simulation results captured the general trend of decrease in the
abundance of aerobes or facultative anaerobes along the intestines and the close-to-zero abundance
in the large intestine (Figure 2B). This is the result of the combined effect of both decreasing oxygen
available to the luminal microbiota due to the decreasing diffusivity along the intestines and the
increasing total biomass in the lumen. Both of these factors lead to a decrease in the oxygen available
per gram dry weight of bacteria. The growth rates of aerobes or facultative anaerobes gradually
decrease and are finally outcompeted by obligate anaerobes in the large intestine. Another interesting
observation is that the relative increase in the luminal microbial biomass can be predicted by the
simulation (Figure 2C). This supports the hypothesis revealed by the model that the increase in
microbial biomass in the lumen is contributed to by both the growth of the luminal microbiota and the
microbes detached from the mucosal microbiota.

2.5. Inconclusive Firmicutes-to-Bacteroidetes Ratio

While the abundances predicted for aerobes and anaerobes were conserved across randomized
uptake parameter simulations, the abundances predicted for Bacteroidetes and Firmicutes did not follow
a unique trend (large standard deviations in Figure 3). The Firmicutes-to-Bacteroidetes ratio is known
to be variable and may depend on host-specific factors [57]. The inconclusive abundance predictions
for Bacteroidetes and Firmicutes may echo their intrinsic variability. Alternatively, the present model
is not sufficient to predict at this level of granularity. Note that we only considered B. thetaiotamicron
for the phylum Bacteroidetes, F. prausnitzii and E. rectale for Firmicutes, E. coli for Proteobacteria and
C. glutamicum for Actinobacteria. Including more microbes such as representatives from Lactobacillales
and Bifidobacterium may improve prediction fidelity. Despite its simplicity, the model was sufficient in
predicting the change in aerobes and anaerobes in the gut microbiota.
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Figure 3. Simulated relative abundance profiles for the four phyla Bacteroidetes, Firmicutes,
Actinobacteria and Proteobacteria in the gut community model. Relative abundances for Bacteroidetes
and Firmicutes (A) on the mucus layer and (B) in the lumen. Relative abundances for Proteobacteria and
Actinobacteria (C) on the mucus layer and (D) in the lumen. The shaded regions in all plots represent
one standard deviation. The markers at the bottom show the time intervals for which simulations of
the corresponding intestinal sections were performed. SI.P, SI.M and SI.D stand for proximal, middle
and distal small intestine respectively. Cec stands for cecum. LI.P, LI.M and LI.D stand for proximal,
middle and distal large intestine, respectively.

2.6. Sensitivity of Parameters

Parameters Xtotal
muc , rtotal

oxygen α
lum
oxygen, and LBk

OUR were varied according to the entries in Tables 2–5
and the oxygen simulations section. Simulations were repeated for 200 sets of uptake bounds
randomly selected from the first simulation. Varying Xtotal

muc (i.e., the biomass density of the mucosal
microbiota) changed the model prediction most significantly (Figure 4). Setting Xtotal

muc uniformly at a low
(10−6 gdw/gram), medium (10−5) or high (10−4) level yields results not consistent with the experimental
observations. Varying the other three parameters regarding oxygen availability and uptake by aerobes,
rtotal

oxygen, αlum
oxygen and LBk

OUR, though changing the model predictions quantitatively, did not significantly
change the overall trends (Figures 5–7). Among the three parameters, a 2-fold increase and decrease in
the total oxygen available rtotal

oxygen respectively caused relatively more significant quantitative changes
(Figure 5).



Processes 2019, 7, 394 7 of 20
Processes 2018, 6, x FOR PEER REVIEW  7 of 20 

 

 

Figure 4. Varying the biomass density of the mucosal microbiota 𝑋𝑚𝑢𝑐
𝑡𝑜𝑡𝑎𝑙 as detailed in Table 2. (A) 

Default, experimental values, ranging from ~10−6 to ~10−4. (B) Test 1, constantly 10−6 gdw g−1. (C) Test 

2, constantly 10−5 gdw g−1. (D) Test3, constantly 10−4 gdw g−1. 

0 2 4 6 9 12 15 18

time (h)

0

0.25

0.5

0.75

1
re

la
ti
v
e

 a
b

u
n

d
a

n
c
e

M ucosal m icrobiota

facultative anaerobes

obligate anaerobes

0 2 4 6 9 12 15 18

time (h)

0

0.25

0.5

0.75

1

re
la

ti
v
e

 a
b

u
n

d
a

n
c
e

Lum inal m icrobiota

0 2 4 6 9 12 15 18

time (h)

1

10
1

10
2

10
3

re
la

ti
v
e

 i
n

c
re

a
s
e

Lum inal m icrobial biom ass

0 2 4 6 9 12 15 18

time (h)

0

0.25

0.5

0.75

1

re
la

ti
v
e

 a
b

u
n

d
a

n
c
e

0 2 4 6 9 12 15 18

time (h)

0

0.25

0.5

0.75

1

re
la

ti
v
e

 a
b

u
n

d
a

n
c
e

0 2 4 6 9 12 15 18

time (h)

1

10
1

10
2

10
3

re
la

ti
v
e

 i
n

c
re

a
s
e

0 2 4 6 9 12 15 18

time (h)

0

0.25

0.5

0.75

1

re
la

ti
v
e

 a
b

u
n

d
a

n
c
e

0 2 4 6 9 12 15 18

time (h)

0

0.25

0.5

0.75

1

re
la

ti
v
e

 a
b

u
n

d
a

n
c
e

0 2 4 6 9 12 15 18

time (h)

1

10
1

10
2

10
3

re
la

ti
v
e

 i
n

c
re

a
s
e

0 2 4 6 9 12 15 18

time (h)

0

0.25

0.5

0.75

1

re
la

ti
v
e

 a
b

u
n

d
a

n
c
e

0 2 4 6 9 12 15 18

time (h)

0

0.25

0.5

0.75

1

re
la

ti
v
e

 a
b

u
n

d
a

n
c
e

0 2 4 6 9 12 15 18

time (h)

1

10
1

10
2

10
3

re
la

ti
v
e

 i
n

c
re

a
s
e

S
I.P

S
I.M S

I.D C
ec

LI
.P

LI
.M

LI
.D

S
I.P

S
I.M S

I.D C
ec

LI
.P

LI
.M

LI
.D

S
I.P

S
I.M S

I.D C
ec

LI
.P

LI
.M

LI
.D

A

B

C

D

Figure 4. Varying the biomass density of the mucosal microbiota Xtotal
muc as detailed in Table 2. (A) Default,

experimental values, ranging from ~10−6 to ~10−4. (B) Test 1, constantly 10−6 gdw g−1. (C) Test 2,
constantly 10−5 gdw g−1. (D) Test3, constantly 10−4 gdw g−1.
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Figure 5. Varying the total oxygen available to the gut microbiota rtotal
oxygen as detailed in Table 3. (A)

Default, 1.6 × 10−6 mmol h−1g−1. (B) Test 1, 0.8 × 10−6 mmol h−1g−1. (C) Test 2, 3.2 × 10−6 mmol h−1g−1.
(D) Test 3, uniformly decreasing from 1.6 × 10−6 to 1.12 × 10−6 mmol h−1g−1. (E) Test 4, uniformly
decreasing from 1.6 × 10−6 to 0.64 × 10−6 mmol h−1g−1.
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Figure 6. Varying the fraction of the total oxygen available to luminal microbiota αlum
oxygen as detailed in

Table 4. (A) Default, decreasing from 0.2 to 0. (B) Test 1, decreasing from 0.4 to 0. (C) Test 2, constantly
0.4. (D) Test 3, constantly 0.2. (E) Test 4, constantly 0.
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Figure 7. Varying the maximum specific oxygen uptake rates of aerobes, LBk
OUR. (A) 2 mmol gdw−1h−1,

the default value. (B) 1 mmol gdw−1h−1. (C) 5 mmol gdw−1h−1. (D) 10 mmol gdw−1h−1. (E) 20 mmol
gdw−1h−1.

The sensitivity of Xtotal
muc and rtotal

oxygen (Figures 4 and 5) supports the hypothesis that the spatial
distribution of aerobes and facultative anaerobes vs. obligate anaerobes in the gut microbiota depends
primarily on the oxygen available relative to the microbial population size. To test the impact of
oxygen-per-mucosal-biomass availability rtotal

oxygen/Xtotal
muc on the spatial distribution, rtotal

oxygen was set to
vary in the same order of magnitude as Xtotal

muc along the intestines such that rtotal
oxygen/Xtotal

muc is constant in
each intestinal section in each simulation (see Table 5 for the values). For each value of rtotal

oxygen/Xtotal
muc

tested, the relative abundances for aerobes and facultative anaerobes vs. obligate anaerobes do not
change significantly along the intestines (Figure 8). When rtotal

oxygen/Xtotal
muc was 10-fold higher than the

default value in the proximal small intestine, facultative anaerobes had an average relative abundance
of about 75% (Figure 8A). When rtotal

oxygen/Xtotal
muc was equal to the default value in the proximal small

intestine, the relative abundance of facultative anaerobes remained at about 10% (Figure 8B), similar to
the proximal small intestine simulated under the default condition (Figure 2). As the value was further
decreased, close to or smaller than that in the cecum and proximal large intestine, obligate anaerobes
dominated (Figure 8C–E). The sensitivity analysis results suggested that the observed large variation in
the total mucosal microbial density across various intestinal sections (up to 100-fold difference, Table 1)
in conjunction with the comparatively small variation in the oxygen level is the primary factor shaping
spatial distribution of aerobes and facultative anaerobes vs. obligate anaerobes.
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Figure 8. Varying the total oxygen available to the gut microbiota rtotal
oxygen such that the oxygen-per-

mucosal-biomass availability rtotal
oxygen/Xtotal

muc remains constant along the intestines in each simulation as
detailed in Table 4. (A) 2.4 mmol gdw−1h−1. (B) 0.24 mmol gdw−1h−1, same as the default value in the
proximal small intestine. (C) 0.024 mmol gdw−1h−1. (D) 0.0024 mmol gdw−1h−1, close to the default
value in the proximal large intestine. (E) 0.00024 mmol gdw−1h−1.

3. Discussion

3.1. A Dynamic Model Capturing the Spatial Distribution of Aerobes vs Anaerobes

In this study, the established SteadyCom and DMMM microbial metabolism modeling frameworks
were used in tandem to predict the steady-state mucosal microbiota and the dynamic luminal microbiota
respectively at each time step given the nutrients available. We integrated the algorithms into a
population dynamic model by connecting the microbial abundances in the mucosal and luminal
microbiota across the intestines. Although the species-level predictions were inconclusive possibly
due to the simplified community model consisting of only five microbial species, the model was able
to capture the spatial distribution of aerobes and facultative anaerobes vs obligate anaerobes based
on the experimental microbial density on the mucus layer and the estimated oxygen consumption
rate only [23,24]. The study found that Actinobacteria and Proteobacteria were only present in the
luminal and mucosal microbiota in the small intestine, and the mucosal microbiota in the middle and
distal large intestine, which is captured qualitatively by our model (Figure 2A–B). This suggests that
the genome-scale metabolic modeling approach can reasonably predict oxygen-dependent microbial
growth given the nutrients available, which has been demonstrated in previous studies on single
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organisms [58,59]. The model dynamics assume that the shedding of mucosal microbiota in addition to
the luminal microbial growth is an important parameter shaping the luminal microbiota. The predicted
accumulation of luminal microbial biomass as a consequence of the hypothesis was similar to the
experimental distribution of the luminal microbial biomass. The hypothesis could potentially represent
an important interaction between the mucosal and luminal microbiota and is worth further study.
The integrated dynamic model could become a valuable tool for exploring therapeutic strategies for
site-specific perturbation of the gut microbiota and the associated metabolic activities. For example,
perturbing the microbial density on the mucus layer at a site upstream can possibly reshape the
microbial abundance at a site downstream.

3.2. Parameters Regarding Oxygen Availability and Uptake

Oxygen availability and uptake was modeled by testing three parameters rtotal
oxygen, αlum

oxygen and
LBk

OUR instead of directly modeling oxygen diffusion. There are two reasons for this. (1) More physical
and kinetic parameters are required. (2) Varying the three oxygen-related parameters currently tested
is sufficient to determine the possible behavior of the model. We have estimated the parameters based
on the experimental value of microbial oxygen uptake rate and other experimental values reported
previously (see SI Methods). Under the present setting, the total oxygen flux available to the microbes
for uptake, which changes only among the sections of the intestines, can be regarded as the average
oxygen flux available to the microbes over time (mmol h−1) in a certain section of the intestines.

3.3. Potential Future Extension of the Model

The proposed model connecting the steady-state mucosally adherent microbiota and the transient
luminal microbiota along various sections of the intestines presents a foundational framework
for simulating the gut microbiome dynamics and opens room for refinement and improvement.
For example, the model can be further refined by explicitly integrating COMETS [49] or BacArena [52]
to model the oxygen, metabolite and microbial cell diffusion processes on the mucus layer and in
the lumen if more time-course data of oxygen diffusion and stratified microbial abundance data are
available in the future, instead of simply using average oxygen consumption rates as in the current
model. In addition to oxygen diffusion, another study reported that in addition to some aerobes
and facultative anaerobes, asacharolytic bacteria were also found to be uniquely present in mucosal
samples [22]. Their ability to metabolize more proteinaceous substrates such as mucus glycoprotein
was suggested to explain this observation, as also simulated in silico previously [52]. The current
simulation setting was not able to capture this due to the fact that the metabolic environment in the
lumen and on the mucus layer was assumed to be the same except for the oxygen availability, because
our aim was to test the impact of oxygen alone. A higher resolution of the microbiome dynamics can
be obtained using site-specific metabolic environments and community models encompassing a large
number of species.

4. Materials and Methods

4.1. Metabolic Models and Nutrient Availability

The genome-scale metabolic models (GSMs) for five organisms encompassing representative
species in the four major phyla among gut microbes were used as proxies for the gut microbiota in
each copy of the community metabolic model (Table 1). The GSM models used were all validated
and curated in previous publications (see Table 1). The biomass reactions were standardized for
community simulation [60]. In particular, a model for Corynebacterium glutamicum was used because
Corynebacterium was the only Actinobacteria that was found to be present consistently in mucosal
samples and absent in the majority of stool samples in a previous study [22]. Each microbe-specific
GSM model within the simulated gut microbiota accounts for all known metabolic reactions carried out
by the organism. An aggregate reaction, known as the biomass reaction, represents the accumulation of
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the metabolites required for growth in their experimentally measured proportions. Pseudo steady-state
in metabolism is assumed for each organism resulting in the equal production and consumption of
each intracellular metabolite. A community model is formed from multiple organisms by allowing
them to compete for or cross-feed metabolites. The nutrients available to the community are defined
based on the chemical composition of a mouse chow diet minus the absorption of nutrients by the
host (see Table S1 for the detailed estimation). Generally, 99% of carbohydrates, 95% of fatty acids,
95% of amino acids, and 0% of dietary fiber are absorbed by the host, as estimated previously [43,61].
Metabolites are free for exchange between the mucosal and luminal microbiota, except for oxygen.

Table 1. Organisms in the community model.

Organism Phylum Ref.

Bacteroides thetaiotaomicron (B. thetaiotaomicron) Bacteroidetes [36,38]
Eubacterium rectale (E. rectale) Firmicutes [39]

Faecalibacterium prausnitzii (F. prausnitzii) Firmicutes [62]
Escherichia coli (E. coli) Proteobacteria [63]

Corynebacterium glutamicum (C. glutamicum) Actinobacteria [64]

4.2. Mucosal Microbiota

The mucosal microbiota is assumed to reach steady-state due to the complete microbial colonization
and the relatively stable composition observed [65]. As a result, we used the SteadyCom formulation [43]
to predict the composition of the microbial community:

maxµs
muc (1)

subject to ∑
j∈Jk

Sk
i jV

k
j = 0 ∀i ∈ Ik, k ∈ K (2)

LBk
jX

k
≤ Vk

j ≤ UBk
jX

k
∀ j ∈ Jk, k ∈ K (3)

Vk
biomass = µmucXk

∀k ∈ K (4)

ui − ei +
∑
k∈K

Vk
exk(i)

= 0 ∀i ∈ Icom (5)

uO2 = rtotal,s
oxygen

(
1− αlum,s

oxygen

)
(6)∑

k∈K

Xk = Xtotal,s
muc (7)

µ, Xk, ei ≥ 0 ∀i ∈ Icom, k ∈ K (8)

Vk
j is free ∀ j ∈ Jk, k ∈ K (9)

where the superscript s represents intestinal section s, K is the set of all organisms (index k), Ik is the set
of all metabolites in organism k (index i), Icom is the set of all community metabolites shared among the
organisms, Jk is the set of all reactions in organism k (index j). j = exk(i) is the exchange reaction for
community metabolite i of organism k. For exchange reactions, the convention is that positive flux
represents the export of the metabolite from the organism to the community and negative represents
the uptake of a metabolite by an organism from the community.

The decision variables are described as follows: Xk is the biomass for organism k, in gram dry
weight (gdw). µs

muc is the growth rate of the mucosal microbiota in section s, in h−1. ei is the export
flux of community metabolite i, in mmol h−1. Vk

j is the aggregate flux of reaction j for organism k, in
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mmol h−1. In particular, Vk
biomass is the biomass production rate, which together with the rates for other

macromolecular productions in the model, has the unit of gdw h−1.
The parameters are described as follows: Sk

i j is the stoichiometry of metabolite i in the reaction

j of organism k. LBk
j and UBk

j are the lower and upper bound for the specific rate of reaction j of

organism k, in mmol gdw−1h−1, respectively. ui is the inflow of the community metabolite i, in mmol
h−1. ui = ci/∆tmuc in the simulation except for oxygen, where ci is the concentration of metabolite I
and ∆tmuc is the step size of time for successive simulation of the mucosal microbiota. rtotal,s

oxygen is the

total oxygen flux from the epithelial cells. αlum,s
oxygen is the fraction of oxygen flux available to the luminal

microbiota after the consumption by the mucosal microbiota. Xtotal,s
muc is the total microbial biomass

in the mucosal microbiota and has a different value for each section of the intestines based on the
experimental biomass density for the mucosal microbiota [24]. Additional alternative sets of values
were tested to examine the effect of this parameter on the simulations (Table 2).

Equation (1) maximizes the growth rate of the community so that the predicted community
is favored by selection and can act as a reasonable estimate. Equation (2) represents the pseudo
steady-state for the intracellular metabolites of each organism. Equation (3) is the flux capacity
constraint for each reaction. Equation (4) enforces that the specific growth rate of each organism
(Vk

biomass/Xk) is identical over time. Equation (5) represents the mass balance of the community
metabolites shared by the organisms. The total export from the system (ei) is equal to the sum of the
inflow into the system (ui) and the total consumption (−ve) or production (+ve) by the community.
Equation (6) specifies the community uptake rate for oxygen. Equation (7) constrains the total amount
of the community biomass. SteadyCom imposes that the averaged specific growth rate over time of
each organism is the same. The identical growth rate averaged over time is the steady-state condition
when the mucosal microbiota is subject to dilution (due to flushing of luminal contents, shedding
of epithelial cells) at a rate assumed to be equal for each microbe (see SI Methods for the detailed
derivation and explanation).

Table 2. Sets of values tested for the mucosal biomass density Xtotal
muc .

Xtotal
muc (gdw g−1) SI.P SI.M SI.D Cecum LI.P LI.M LI.D

Default 6.75 × 10−6 2.7 × 10−6 1.5 × 10−5 1.95 × 10−4 5.25 × 10−4 7.5 × 10−6 9 × 10−6

Test 1 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6

Test 2 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5

Test 3 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

4.3. Luminal Microbiota

The microbiota composition and total biomass in the lumen are more variable and thus were
modeled to vary over time. The increase in microbial biomass in the luminal contents is driven by
two factors in the model: (1) microbes detaching from the mucosal microbiota and (2) the microbial
growth of the luminal microbiota (see Figure 1). The biomass detaching from the mucosa is equal to
the biomass produced by the mucosal microbiota as predicted by SteadyCom (µs

mucX
k,s
muc) since the total

biomass of the mucosal microbiota is assumed to be constant over time. The time-dependent growth
of the luminal microbiota was predicted using a dynamic framework for microbial communities called
Dynamic Multi-species Metabolic Modeling (DMMM) [45]:

maxvk
biomass (10)

subject to ∑
j∈Jk

Sk
i jv

k
j = 0 ∀i ∈ Ik (11)
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LBk
j ≤ vk

j ≤ UBk
j ∀ j ∈ Jk (12)

vk
exk(i)

≥ −ci/
(
Xk,s

lum∆tlum
)
∀i ∈ Icom (13)

vk
O2
≥ −rtotal,s

oxygenα
lum,s
oxygen/Xk,s

lum (14)

vk
j is free ∀ j ∈ Jk (15)

where ci is concentration of metabolite I, ∆tlum is the step size of time for successive simulation of the
luminal microbiota, and Xk,s

lum is the biomass of organism k in the lumen. Equations (11)–(12) similar to
Equations (2)–(3) represent the pseudo steady-state of intracellular metabolites and the flux capacity
constraint respectively. ci/

(
Xk,s

lum∆tlum
)

is the maximum amount available for uptake in each time-step.
The negative sign in Equation (13) is a result of defining the uptake fluxes to be negative in the model.
Equation (14) specifies the maximum oxygen uptake rate. Here the flux variable used is vk

j , which is

the specific rate of the reaction, in mmol gdw−1h−1.

4.4. Connecting the Luminal and Mucosal Microbiota

For the s-th section of the intestines (s = 1 for proximal small intestine, s = 2 for middle small
intestine and vice versa), the overall change in abundance of organism k in the luminal microbiota is
given by:

dXk,s
lum

dts & = µs
mucX

k,s
muc + µk,s

lumXk,s
lum, for ts

∈ [0, Ts], &∀k ∈ K , s = 1, 2, . . . , 7 (16)

Xk,s
lum(0)& = Xk,s−1

lum

(
Ts−1

)
, ∀k ∈ K , s = 1, 2, . . . , 7 (17)

where µs
muc and Xk,s

muc are the growth rate and biomass of organism k on the mucus layer for intestinal
section s, respectively. Similarly, µk,s

lum and Xk,s
lum denote the growth rate and biomass of organism k in

the lumen whereas ts is the time point and Ts is the retention time for intestinal section s. Equation (17)
represents the transfer of biomass in the lumen from the upstream section to the current section. The
initial microbial biomass in the luminal contents entering into the small intestine from the stomach
is assumed to be negligible, compared to the effect of the mucosal microbiota. Therefore, we have
Xk,0

lum

(
T0

)
= 0. The concentrations of metabolites in the s-th section of the intestines, cs

i , are updated by
the following population balance model:

dcs
i

dts =
∑
k∈K

(
Vk,s

exk(i)
+ Xk,s

lumvk,s
exk(i)

)
, for ts

∈ [0, Ts] , ∀i ∈ Icom, s = 1, 2, . . . , 7 (18)

cs
i (0) = cs−1

i

(
Ts−1

)
∀i ∈ Icom, s = 1, 2, . . . , 7 (19)

Here Vk,s
exk(i)

and Xk,s
lumvk,s

exk(i)
are the fluxes of the exchange of metabolite i due to organism k in the

mucosal and luminal microbiota in the s-th section of the intestines, respectively. Both terms are scaled
to the abundance of organism k. Equation (19) represents the transfer of metabolites from the upstream
section to the current section. The initial concentration profiles, c0

i

(
T0

)
, is the estimated dietary contents

available to the gut microbes. In SteadyCom the aggregate rate Vk
j (in mmol h−1) is used in order to

maintain linearity in the optimization model rather than the specific rate vk
j (in mmol gdw−1h−1) as

in DMMM.

4.5. Oxygen Availability

The two separate microbiota (i.e., the mucosal and luminal microbiota) were assumed to share the
same extracellular environment for all metabolites except for oxygen. Total oxygen flux availability
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rtotal,s
oxygen from the epithelial cells and the fraction of oxygen flux available to the luminal microbiota

from the epithelial cells, αlum,s
oxygen were varied along different sections of the intestines to represent

the varying oxygen diffusivity. The values were estimated based on experimental data [24] and the
characteristics of the intestines (see supplementary methods Text S1). Various sets of values for rtotal,s

oxygen,

αlum,s
oxygen as well as the oxygen-per-mucosal-biomass availability rtotal,s

oxygen/Xtotal
muc were tested to examine the

sensitivity of the model to these parameters (Tables 3–5). The maximum specific oxygen uptake rate for
individual microbes LBk

OUR was estimated to be 2 mmol gdw−1h−1 based on experimentally reported
values [59,66,67] and the gut conditions [22]. Values ranging from 1 to 20 mmol gdw−1h−1 were also
tested. For each set of values tested, the oxygen flux available within each section of the intestines
was assumed to be constant, representing an average over time for the section. See Supplementary
Materials Text S1 for a more detailed estimation of the parameters.

Table 3. Sets of values tested for the total oxygen available rtotal
oxygen.

rtotal
oxygen

(mmol h−1g−1)
SI.P SI.M SI.D Cecum LI.P LI.M LI.D

Default 1.6 × 10−6 1.6 × 10−6 1.6 × 10−6 1.6 × 10−6 1.6 × 10−6 1.6 × 10−6 1.6 × 10−6

Test 1 0.8 × 10−6 0.8 × 10−6 0.8 × 10−6 0.8 × 10−6 0.8 × 10−6 0.8 × 10−6 0.8 × 10−6

Test 2 3.2 × 10−6 3.2 × 10−6 3.2 × 10−6 3.2 × 10−6 3.2 × 10−6 3.2 × 10−6 3.2 × 10−6

Test 3 1.6 × 10−6 1.52 × 10−6 1.44 × 10−6 1.36 × 10−6 1.28 × 10−6 1.2 × 10−6 1.12× 10−6

Test 4 1.6 × 10−6 1.44 × 10−6 1.28 × 10−6 1.12 × 10−6 0.96 × 10−6 0.8 × 10−6 0.64× 10−6

Table 4. Sets of values tested for the fraction of oxygen available to the luminal microbiota αlum
oxygen.

αlum
oxygen SI.P SI.M SI.D Cecum LI.P LI.M LI.D

Default 0.2 0.15 0.15 0.01 0.05 0.05 0
Test 1 0.4 0.3 0.3 0.05 0.1 0.1 0
Test 2 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Test 3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Test 4 0 0 0 0 0 0 0

Table 5. Sets of values tested for the oxygen-per-mucosal-biomass availability rtotal
oxygen/Xtotal

muc .

rtotal
oxygen/X

total
muc

(mmol gdw−1h−1)
SI.P SI.M SI.D Cecum LI.P LI.M LI.D

Default 0.24 0.59 0.11 0.008 0.003 0.21 0.18
Test 1 2.4 2.4 2.4 2.4 2.4 2.4 2.4
Test 2 0.24 0.24 0.24 0.24 0.24 0.24 0.24
Test 3 0.024 0.024 0.024 0.024 0.024 0.024 0.024
Test 4 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024
Test 5 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024

4.6. Simulation Parameters

In each section of the intestines, using the oxygen parameters defined and given the final simulated
luminal biomass and the remaining nutrient pool from the previous section, the growth and composition
of the two microbiota were simulated over a time period equal to the estimated transit time. The initial
biomass in the luminal contents entering into the proximal small intestine was set to zero and the
nutrient pool was set to be equal to the estimated dietary contents available to the gut microbes. At
time t, the steady-state mucosal microbiota was simulated by solving SteadyCom. The solution was
used from time t to t + ∆tmuc (∆tmuc = 30 mins). Within this time period, DMMM for simulating the
luminal microbiota was solved with a time step of ∆tlum (∆tlum = 5 mins). The solution from DMMM
and SteadyCom were used to update the total biomass of microbes in the lumen and the metabolite
concentrations in Equations. (1) and (3). Randomized uptake bounds for carbon sources were used
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in 1000 simulations to assess the sensitivity of microbial abundances at different uptake capacity of
carbon sources as performed previously. In addition, parameters Xtotal

muc , rtotal
oxygen, αlum

oxygen and LBk
OUR were

also varied (see Tables 2–4 and the subsection Oxygen availability) and simulations were repeated
for 200 sets of the uptake bounds randomly selected from the 1000 sets of uptake bounds to assess
their sensitivities.

4.7. Availability of Data and Materials

The Matlab code and example script is available at https://github.com/shjchan/spatialGut.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/7/394/s1,
Table S1: chemical composition of a chow diet, Text S1: supplementary methods.
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