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Abstract: Dendrimers are branched organic macromolecules with successive layers of branch units
surrounding a central core. The molecular topology and the irregularity of their structure plays
a central role in determining structural properties like enthalpy and entropy. Irregularity indices
which are based on the imbalance of edges are determined for the molecular graphs associated with
some general classes of dendrimers. We also provide graphical analysis of these indices for the above
said classes of dendrimers.
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1. Introduction

Algebra, topology, geometry and combinatorics are the main branches of mathematics which
are employed to study the symmetries and irregularities of the structures of different substances.
Dendrimers have consistently attracted the attention of both chemists as well as pure mathematicians
because of the complexities of the underlying molecular graphs. Dendrimers are highly branched,
star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are constituted by main
parts: A central core, an internal part called ‘branch’, and an exterior surface with functional surface
groups. The varied combination of these components yields products of different shapes and sizes
with shielded interior cores that are ideal candidates for applications in both biological and materials
sciences. Some recent applications include drug delivery, gene transfection, catalysis, energy harvesting,
photo activity, molecular weight and size determination, rheology modification, and nanoscale science
and technology [1–3]

Graphs can be used to study theoretical and computational aspects of dendrimers. Recently this
approach has proved remarkable in relating properties of substances with involved structural
parameters [4–7]. Topological indices are used here as major ingredients [7–14]. Some nanotubes,
modified electrodes, chemical sensors, micro- and macro-capsule, and colored glasses can be designed
using nanostar dendrimers. The structure of polymer molecules in a plane depends on the adjacency
of their units. For detailed insight, see [1–3,14–18] and references therein. Figure 1 shows the spatial
arrangements of NS1[1], NS1[2] polypropylenimine octaamin dendrimers in plane. The recursive
nature of these dendrimers is evident from this figure. Graph theoretic models of these dendrimers
can potentially be used in fractals.
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Figure 1. 𝑁𝑆 [1] and 𝑁𝑆 [2] polypropylenimine octaamin dendrimers. 

In Figure 1, 𝐺  shows the structure of polypropylenimine octaamin dendrimers 𝑁𝑆 [𝑝] when p 
= 1, and 𝐺  represents the structure of 𝑁𝑆 [𝑝] when p = 2. 

The next object will be polypropylenimine octaamin dendrimer 𝑁𝑆2[𝑝]. Figure 2 is a graph 
theoretical representation for this dendrimer. 

 

Figure 2. 𝑁𝑆 [𝑝] polypropylenimine octaamin dendrimers. 

The third object of interest is the 𝑁𝑆3[𝑝], also known as polymer dendrimer. Figure 3 shows the 
molecular structure of this dendrimer. 

Figure 1. NS1[1] and NS1[2] polypropylenimine octaamin dendrimers.

In Figure 1, G1 shows the structure of polypropylenimine octaamin dendrimers NS1[p] when
p = 1, and G2 represents the structure of NS1[p] when p = 2.

The next object will be polypropylenimine octaamin dendrimer NS2[p]. Figure 2 is a graph
theoretical representation for this dendrimer.
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Figure 2. 𝑁𝑆 [𝑝] polypropylenimine octaamin dendrimers. 

The third object of interest is the 𝑁𝑆3[𝑝], also known as polymer dendrimer. Figure 3 shows the 
molecular structure of this dendrimer. 

Figure 2. NS2[p] polypropylenimine octaamin dendrimers.

The third object of interest is the NS3[p], also known as polymer dendrimer. Figure 3 shows the
molecular structure of this dendrimer.
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avoid the use of quantum mechanics, as has been done recently in most of the cases, see [7–14]. 
Important tools which are used for this purpose are structural and functional polynomials. These 
tools use structural parameters as inputs and the outputs are the key information that is used to 
determine properties of the material under discussion. Certain properties of matters like standard 
enthalpy, toxicity, entropy as well as reactivity and biological mechanics are theoretically based on 
these tools [4–6]. Estrada related the atom bond connectivity index with energies of the branched 
alkanes in [9]. Some applications of indices in pharmacy are given in [10] and in Quantitative 
structure activity analysis in [11]. 

2. Preliminaries and Notations 

In this part we lay out some basic material and notations which will be used throughout the 
article. All graphs will be connected. We fix the symbol G for a simple connected graph, V for the set 
of vertices of G, E for the set of edges, du and dv are the degrees of vertices u and v, respectively. 
Topological index is an invariant of the graph that preserves the structural aspects of the graph. A 
degree based topological index is based on the end degrees of edges. A graph is said to be regular if 
every vertex of the graph has the same degree. A topological invariant is called irregularity index if 
the index vanishes for a regular graph and is non-zero for a non-regular graph. Regular graphs have 
been investigated a lot, particularly in mathematics. Their applications in chemical graph theory came 
to be known after the discovery of nanotubes and fullerenes. Paul Erdos emphasized the study of 
irregular graphs for the first time in history in [22]. At the Second Krakow Conference on Graph 
Theory (1994), Erdos officially posed an open problem about determination of the extreme size of 

Figure 3. NS3[p] polymer de ndrimer.

The above three families have been used a lot recently for their theoretical properties. De et al.
in [14], computed the F-index of nanostar dendrimers, Siddiqui et al. computed the Zagreb indices for
different nanostar dendrimers in [15], and Madanshekaf computed the Randi index for some different
classes of nanostar dendrimers in [16,17]. Munir, et al. computed M-polynomial and related indices of
these nanostar dendrimers in [18], titania nanotubes in [19], polyhez nanotubes in [20] and circulant
graphs in [21].

In the current article, we are interested in imbalance-based irregularity indices of the above
discussed families of three dendrimers. We use techniques from combinatorics and graph theory
to avoid the use of quantum mechanics, as has been done recently in most of the cases, see [7–14].
Important tools which are used for this purpose are structural and functional polynomials. These tools
use structural parameters as inputs and the outputs are the key information that is used to determine
properties of the material under discussion. Certain properties of matters like standard enthalpy,
toxicity, entropy as well as reactivity and biological mechanics are theoretically based on these
tools [4–6]. Estrada related the atom bond connectivity index with energies of the branched alkanes
in [9]. Some applications of indices in pharmacy are given in [10] and in Quantitative structure activity
analysis in [11].

2. Preliminaries and Notations

In this part we lay out some basic material and notations which will be used throughout the article.
All graphs will be connected. We fix the symbol G for a simple connected graph, V for the set of vertices
of G, E for the set of edges, du and dv are the degrees of vertices u and v, respectively. Topological
index is an invariant of the graph that preserves the structural aspects of the graph. A degree based
topological index is based on the end degrees of edges. A graph is said to be regular if every vertex of
the graph has the same degree. A topological invariant is called irregularity index if the index vanishes
for a regular graph and is non-zero for a non-regular graph. Regular graphs have been investigated a
lot, particularly in mathematics. Their applications in chemical graph theory came to be known after
the discovery of nanotubes and fullerenes. Paul Erdos emphasized the study of irregular graphs for the
first time in history in [22]. At the Second Krakow Conference on Graph Theory (1994), Erdos officially
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posed an open problem about determination of the extreme size of highly irregular graphs of given
order [23]. Since then, the irregular graphs and the degree of irregularity have become the basic open
problem of graph theory. A graph in which each vertex has a different degree than other vertices
is known as a perfect graph. Authors in [24], proved that no graph is perfect. The graphs lying in
between are called quasi-perfect graphs in which each, except two vertices, have different degrees [25].
A simplified way of expressing the irregularity is the irregularity index. Irregularity indices have
been studied recently in a novel way [26,27]. The first such irregularity index was introduced in [28].
Most of these indices used the concept of imbalance of an edge defined as imballuv = |du− dv|, [25–27].
The Albertson index, AL (G), was defined by Alberston in [29] as AL(G) =

∑
UV∈E|du − dv|. In this

index, the imbalance of edges is computed. The irregularity index IRL(G) and IRLU(G) is introduced
by Vukicevic and Gasparov, [30] as IRL(G) =

∑
UV∈E|lndu − lndv|, and IRLU(G) =

∑
UV∈E

|du−dv |
min(du,dv)

.
Recently, Abdoo et al. introduced the new term “total irregularity measure of a graph G”, which is
defined as [31–33] IRRt(G) = 1

2
∑

UV∈E|du − dv|. Recently, Gutman et al. introduced the σ (G) irregularity
index of the graph G, which is described as σ(G) =

∑
UV∈E(du − dv)

2 in [34]. The Randic index itself is

directly related to an irregularity measure, which is described as IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2

in [35]. Further irregularity indices of similar nature can be traced in [34] in detail. These

indices are given as IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣, IRLF(G) =
∑

UV∈E
|du−dv |√
(dudv)

, LA(G) = 2
∑

UV∈E
|du−dv |
(du+dv)

,

IRD1 =
∑

UV∈E ln{1 + |dv − dv|}, IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

, and IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2
.

Futher details are given in [28–46]. Recently authors computed irregularity indices of a nanotube [47].
Recently Gao et al. computed irregularity measures of some dendrimer structures in [48] and molecular
structures in [49]. Actually, the authors computed only four irregularity measures for some classes
of dendrimers in [48]. These structures are used as long infinite chain macromolecules in chemistry
and related areas. Hussain et al. computed these irregularity measures for some classes of benzenoid
systems in [50].

3. Main Results

In this part, we give our main theoretical results.

Theorem 1. Let NS1[p] be the polypropylenimine octaamin dendrimers, then the irregularity indices of NS1[p] are:

1. IRDIF(NS1[p]) = 1.5
(
2p+1

)
+ 22.3372p

− 22.334

2. IRR(NS1[p]) = 2p+1 + 22(2p) − 22

3. IRL(NS1[p]) = 0.69314718
(
2p+1

)
+ 10.070961 (2p)− 10.070961

4. IRLU(NS1[p]) = 2p+1 + 15(2p) − 15
5. IRLF(NS1[p]) = 0.7071068(2p+1) + 10.334278(2p) − 10.334278
6. σ(NS1[p]) = 2p+1 + 30(2p) − 30
7. IRLA(NS1[p]) = 0.6667(2p) + 9.6(2p) − 9.6

8. IRD1 = 0.69314
(
2p+1

)
+ 14.098(2p) − 14.098

9. IRA(NS1[p]) = 0.085786432(2p+1) + 0.950245633(2p) − 0.9502456337
10. IRGA(NS1[p]) = 0.06036(2p+1) + 0.8610954(2p) − 0.8610954
11. IRB(NS1[p]) = 0.171528753(2p+1) + 3.557593539(2p) − 3.557593539
12. IRRt(NS1[p]) = 12(2p) − 11

Proof. In order to prove the above theorem we have to consider Figure 1.

We can see that the edges NS1[p] admit the following partition in Table 1. �
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Table 1. Edge partition of NS1[p] polypropylenimine octaamin dendrimers.

Edge Type (du, dv) Number of Edges

(1,2) 2p+1

(1,3) 4 (2p
− 1)

(2,2) {12× 2p
− 11}

(2,3) 14 (2p
− 1)

Now, using above Table 1 and definitions we have:

1. IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣
IRDIF(NS1[p], x, y) = 2p+1

∣∣∣ 2
1 −

1
2

∣∣∣+ 4(2p
− 1)

∣∣∣ 3
1 −

1
3

∣∣∣+ {12× 2p
− 11}

∣∣∣ 2
2 −

2
2

∣∣∣+ 14(2p
− 1)

∣∣∣ 3
2 −

2
3

∣∣∣
= 2p+1

∣∣∣ 2
1 −

1
2

∣∣∣+ 4(2p
− 1)

∣∣∣ 3
1 −

1
3

∣∣∣+ 14(2p
− 1)

∣∣∣ 3
2 −

2
3

∣∣∣.
2. IRR(G) =

∑
UV∈E imb(e)

IRR(NS1[p], x, y) = 2p+1
|2− 1|+ 4(2p

− 1)|3− 1|+ {12× 2p
− 11}|2− 2|+ 14(2p

− 1)
= 2p+1 + 4(2p

− 1)|2|+ 14(2p
− 1).

3. IRL(G) =
∑

UV∈E|lndu − lndv|

IRL(NS1[p], x, y) = 2p+1
|ln2− ln1|+ 4(2p

− 1)|ln3− ln1|+ {12× 2p
− 11}|ln2− ln2|+ 14(2p

− 1)|ln3− ln2|
= 2p+1

|ln2|+ 4(2p
− 1)|ln3|+ 14(2p

− 1)
∣∣∣ln 3

2

∣∣∣.
4. IRLU(G) =

∑
UV∈E

|du−dv |
min(dudv)

IRLU(NS1[p], x, y) = 2p+1 |2−1|
1 + 4(2p

− 1) |3−1|
1 + {12× 2p

− 11} |2−2|
2 + 14(2p

− 1) |3−2|
2

= 2p+1 + 8(2p
− 1) + 7(2p

− 1).

5. IRLF(G) =
∑

UV∈E
|du−dv |√
(dudv)

IRLF(NS1[p], x, y) = 2p+1 |2−1|
√

2
+ 4(2p

− 1) |3−1|
√

3
+ {12× 2p

− 11} |2−2|
√

4
+ 14(2p

− 1) |3−2|
√

6

= 2p+1
√

2
+

8(2p
−1)
√

3
+

14(2p
−1)
√

6
.

6. σ(G) =
∑

UV∈E(du − dv)
2

σ(NS1[p], x, y) = 2p+1(2− 1)2 + 4(2p
− 1)(3− 1)2 + {12× 2p

− 11}(2− 2)2 + 14(2p
− 1)(3− 2)2

= 2p+1 + 16(2p
− 1) + 14(2p

− 1) .

7. IRLA(G) = 2
∑

UV∈E
|du−dv |
(du+dv)

IRLA(NS1[p], x, y) = 2
[
2p+1 |2−1|

(2+1) + 4(2p
− 1) |3−1|

(3+1) + {12× 2p
− 11} |2−2|

(2+2) + 14(2p
− 1) |3−2|

(3+2)

]
= 2

[
2p+1 |2−1|

(2+1) + 4(2p
− 1) |3−1|

(3+1) + 14(2p
− 1) |3−2|

(3+2)

]
.

8. IRD1 =
∑

UV∈E ln{1 + |dv − dv|}

IRD1(NS1[n], x, y) = 2p+1ln{1 + |2− 1|}+ 4(2p
− 1)ln{1 + |3− 1|}+ {12× 2p

− 11}ln{1 + |2− 2|}+ 14(2p
− 1)ln{1 + |3− 2|}

= 2p+1ln{1 + |2− 1|}+ 4(2p
− 1)ln{1 + |3− 1|}+ 14(2p

− 1)ln{1 + |3− 2|}.
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9. IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2

IRA(NS1[p], x, y) = 2p+1
(

1
√

2
−

1
√

1

)2
+ 4(2p

− 1)
(

1
√

3
−

1
√

1

)2
+ {12× 2p

− 11}
(

1
√

2
−

1
√

2

)2
+ 14(2p

− 1)
(

1
√

3
−

1
√

2

)2

= 2p+1
(

1
√

2
−

1
√

1

)2
+ 4(2p

− 1)
(

1
√

3
−

1
√

1

)2
+ 14(2p

− 1)
(

1
√

3
−

1
√

2

)2
.

10. We have IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

IRGA(NS1[p], x, y) = 2p+1ln |2+1|
2
√

2
+ 4(2p

− 1)ln |3+1|
2
√

3
+ {12× 2p

− 11}ln |2+2|
2
√

4
+ 14(2p

− 1)ln |3+2|
2
√

6
= 2p+1ln |2+1|

2
√

2
+ 4(2p

− 1)ln |3+1|
2
√

3
+ 14(2p

− 1)ln |3+2|
2
√

6
.

11. IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2

IRB(NS1[p], x, y) = 2p+1
(√

2−
√

1
)2
+ 4(2p

− 1)
(√

3−
√

1
)2
+ {12× 2p

− 11}
(√

2−
√

2
)2
+ 14(2p

− 1)
(√

3−
√

2
)2

= 2p+1
(√

2−
√

1
)2
+ 4(2p

− 1)
(√

3−
√

1
)2
+ 14(2p

− 1)
(√

3−
√

2
)2

.

12. IRRt(G) = 1
2
∑

UV∈E|du − dv|

IRRt(NS1[p], x, y) = 1
2

[
2p+1
|2− 1|+ 4(2p

− 1)|3− 1|+ {12× 2p
− 11}|2− 2|+ 14(2p

− 1)|3− 2|
]

= 1
2

[
2p+1 + 4(2p

− 1)|2|+ 14(2p
− 1)

]
.

The following Table 2 shows the values of these irregularity indices for some test values of
parameter p.

Table 2. Irregularity indices for NS1[p] polypropylenimine octaamin dendrimers.

Irregularity Indices p = 1 p = 2 p = 3 p = 4 p = 5

IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣ 28.340 79.014 180.335 383.005 788.344
AL(G) =

∑
UV∈E|du − dv| 26 74 170 362 746

IRLU(G) =
∑

UV∈E
|du−dv |

min(du,dv)
19 53 121 257 529

IRLU(G) =
∑

UV∈E
|du−dv |√
(dudv)

13.1627 36.6596 83.6536 177.6415 365.6174

IRF(G) =
∑

UV∈E(du − dv)
2 34 98 226 482 994

IRLA(G) = 2
∑

UV∈E
|du−dv |

(du+dv)
12.268 34.136 77.872 165.344 340.288

IRD1 =
∑

UV∈E ln{1 + |dv − dv|} 16.870 47.839 109.776 233.650 481.398

IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2
1.2934 3.5370 8.0243 16.9988 34.9479

IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

1.1025 3.0661 6.9934 14.8480 30.5571

IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2
4.2437 12.0450 27.6476 58.8528 121.2632

IRRt(G) = 1
2
∑

UV∈E|du − dv| 13 37 85 181 373

Now we proceed to irregularity indices of NS2[p].

Theorem 2. Let NS2[p] be the nanostar polypropylenimine octaamin dendrimers, then the irregularity indices
of NS2[p] are:

1. IRDIF(NS2[p]) = 1.5
(
2p+1

)
+ 5(2p) − 5

2. IRR(NS2[p]) = 2p+1 + 6(2p) − 6

3. IRL(NS2[p]) = 0.6931471
(
2p+1

)
+ 2.4328(2p) − 2.4328
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4. IRLU(NS2[p]) = 2p+1 + 3(2p) − 3
5. IRLF(NS2[p]) = 0.707106(2p+1) + 2.4494897(2p) − 2.4494897
6. σ(NS2[p]) = 2p+1 + 6(2p) − 6

7. IRLA(NS2[p]) = 0.6667
(
2p+1

)
+ 2.4(2p) − 2.4

8. IRD1 = 0.6931471806(2p+1) + 4.15888302(2p) − 4.15888302
9. IRA(NS2[p]) = 0.08578644(2p+1) + 0.1010205144(2p) − 0.1010205144
10. IRGA(NS2[p]) = 0.0588915178(2p+1) + 0.1224659836(2p) − 0.1224659836
11. IRB(NS2[p]) = 0.171578(2p+1) + 0.606123086(2p) − 0.606123086
12. IRRt(NS2[p]) = 4(2p) − 3

Proof. In order to prove the above theorem, we have to consider Figure 2. We can see that the edges of
NS2[p] admit the following partition in Table 3. �

Table 3. Edge partition of nanostar polypropylenimine octaamin dendrimers.

Edge Type (du,dv) Number of Edges

(1,2) 2p+1

(2,2) {8× 2p
− 5}

(2,3) 6(2p
− 1)

We can see that the edges of NS2[p] admit the following partition in Table 3.
Now using above Table 3 and the above definitions, we have:

1. IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣
IRDIF(NS2[p], x, y) = 2p+1

∣∣∣ 2
1 −

1
2

∣∣∣+ |{8× 2p
− 5}|

∣∣∣ 2
2 −

2
2

∣∣∣+ 6(2p
− 1)

∣∣∣ 3
2 −

2
3

∣∣∣
= 2p+1

∣∣∣ 2
1 −

1
2

∣∣∣+ 6(2p
− 1)

∣∣∣ 3
2 −

2
3

∣∣∣.
2. IRR(G) =

∑
UV∈E imb(e) ∴ imb(e) = |du − dv|

IRR(NS2[p], x, y) = 2p+1
|2− 1|++{8× 2p

− 5}|2− 2|+ 6(2p
− 1)|3− 2|

= 2p+1 + 6(2p
− 1).

3. IRL(G) =
∑

UV∈E|lndu − lndv|

IRL(NS2[p], x, y) = 2p+1
|ln2− ln1|+ {8× 2p

− 5}|ln2− ln2|+ 6(2p
− 1)|ln3− ln2|

= 2p+1
|ln2|+ 6(2p

− 1)
∣∣∣ln 3

2

∣∣∣.
4. IRLU(G) =

∑
UV∈E

|du−dv |
min(dudv)

IRLU(NS2[p], x, y) = 2p+1 |2−1|
1 + {8× 2p

− 5} |2−2|
2 + 6(2p

− 1) |3−2|
2

= 2p+1 + 3(2p
− 1).

5. IRLF(G) =
∑

UV∈E
|du−dv |√
(dudv)

IRLU(NS2[p], x, y) = 2p+1 |2−1|
√

2
+ {8× 2p

− 5} |2−2|
√

4
+ 6(2p

− 1) |3−2|
√

6

= 2p+1
√

2
+

6(2p
−1)
√

6
.
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6. σ(G) =
∑

UV∈E(du − dv)
2

σ(NS2[p], x, y) = 2p+1(2− 1)2 + {8× 2p
− 5}(2− 2)2 + 6(2p

− 1)(3− 2)2

= 2p+1(2− 1)2 + 6(2p
− 1)(3− 2)2.

7. IRLA(G) = 2
∑

UV∈E
|du−dv |
(du+dv)

IRLA(NS2[p], x, y) = 2
[
2p+1 |2−1|

(2+1) + {8× 2p
− 5} |2−2|

(2+2) + 6(2p
− 1) |3−2|

(3+2)

]
= 2

[
2p+1

3 +
6(2p
−1)

5

]
.

8. IRD1 =
∑

UV∈E ln{1 + |dv − dv|}

IRD1(NS2[p], x, y) = 2p+1ln{1 + |2− 1|}+ {8× 2p
− 5}ln{1 + |2− 2|}+ 6(2p

− 1)ln{1 + |3− 2|}
= 2p+1ln2 + 6(2p

− 1)ln2 .

9. IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2

IRA(NS2[p], x, y) = 2p+1
(

1
√

2
−

1
√

1

)2
+ {8× 2p

− 5}
(

1
√

2
−

1
√

2

)2
+ 6(2p

− 1)
(

1
√

3
−

1
√

2

)2

= 2p+1
(

1
√

2
−

1
√

1

)2
+ 6(2p

− 1)
(

1
√

3
−

1
√

2

)2
.

10. IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

IRGA(NS2[p], x, y) = 2p+1ln |2+1|
2
√

2
+ {8× 2p

− 5}ln |2+2|
2
√

4
+ 6(2p

− 1)ln |3+2|
2
√

6
= 2p+1ln 3

2
√

2
+ 6(2p

− 1)ln 5
2
√

6
.

11. IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2

IRB(NS2[p], x, y) = 2p+1
(√

2−
√

1
)2
+ {8× 2p

− 5}
(√

2−
√

2
)2
+ 6(2p

− 1)
(√

3−
√

2
)2

= 2p+1
(√

2−
√

1
)2
+ 14(2p

− 1)
(√

3−
√

2
)2

.

12. IRRt(G) = 1
2
∑

UV∈E|du − dv|

IRRt(NS2[p], x, y) = 1
2

[
2p+1
|2− 1|++{8× 2p

− 5}|2− 2|+ 6(2p
− 1)|3− 2|

]
= 1

2

[
2p+1 + 6(2p

− 1)
]

.

Table 4 represents some calculated values of irregularity indices of NS2[p] for some test values of p.
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Table 4. Irregularity indices for NS2[p] polypropylenimine octaamin dendrimers.

Irregularity indices p = 1 p = 2 p = 3 p = 4 p = 5

IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣ 11 27 59 123 251
AL(G) =

∑
UV∈E|du − dv| 10 26 58 122 250

IRL(G) =
∑

UV∈E|lndu − lndv| 5.2054 12.844 28.1199 58.6727 119.7782
IRLU(G) =

∑
UV∈E

|du−dv |

min(du,dv)
7 17 37 77 157

IRLU(G) =
∑

UV∈E
|du−dv |√
(dudv)

5.2779 13.0053 28.4601 59.3697 121.1889

IRF(G) =
∑

UV∈E(du − dv)
2 10 26 58 122 250

IRLA(G) = 2
∑

UV∈E
|du−dv |

(du+dv)
5.0668 12.5336 27.4672 57.3344 117.0688

IRD1 =
∑

UV∈E ln{1 + |dv − dv|} 6.9315 18.0218 40.2025 84.5639 173.2867

IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2
0.4442 0.9894 2.0797 4.2605 8.62197

IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

0.3580 0.8385 1.7995 3.7215 7.5655

IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2
1.2924 3.1909 6.9881 14.5823 29.7708

IRRt(G) = 1
2
∑

UV∈E|du − dv| 5 13 29 61 125

Our next aim is to determine the of irregularity indices of polymer dendrimers.

Theorem 3. Let NS3[p] be polymer dendrimer then the irregularity indices of NS3[p] are:

1. IRDIF(NS3[p]) = 4.5(2p) + 54.999978
(
2p−1

)
− 14.999994

2. IRR(NS3[p]) = 3(2p) + 66(2p−1) − 18

3. IRL(NS3[p]) = 2.079441(2p) + 26.76069
(
2p−1

)
− 7.29837

4. IRLU(NS3[p]) = 3(2p) + 33
(
2p−1

)
− 9

5. IRLF(NS3[p]) = 2.12132(2p) + 26.944384(2p−1) − 7.348468

6. σ(NS3[p]) = 3(2p) + 66
(
2p−1

)
− 18

7. IRLA(NS3[p]) = 2(2p) + 26.4
(
2p−1

)
− 7.2

8. IRD1 = 2.079441(2p) + 45.747702
(
2p−1

)
− 12.476646

9. IRA(NS3[p]) = 1.5(2p) + 1.111242
(
2p−1

)
− 0.303066

10. IRGA(NS3[p]) = 0.176673(2p) + 1.347126
(
2p−1

)
− 0.367398

11. IRB(NS3[p]) = 0.514719(2p) + 6.667386
(
2p−1

)
− 1.8378

12. IRRt(NS3[p]) = 1.5(2p) + 33
(
2p−1

)
− 9

Proof. In order to prove the above theorem we have to consider Figure 3. �

We can see that the edges of NS3[p] admit the following partition in Table 5.

Table 5. Edge partition of polymer dendrimer.

Edges Type (du,dv) Number of Edges

(1,2) 3.2p

(2,2) 54(2p−1) − 24
(2,3) 66(2p−1

− 1) + 48
(3,3) 3.2p+1

Now using above Table 5 and the above definitions we have:
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1. IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣
IRDIF(NS3[p], x, y) = 3.2p

∣∣∣ 2
1 −

1
2

∣∣∣+ 54(2p−1) − 24
∣∣∣ 2
2 −

2
2

∣∣∣+ 66(2p−1
− 1) + 48

∣∣∣ 3
2 −

2
3

∣∣∣+ 3.2p+1
∣∣∣ 3
3 −

3
3

∣∣∣ .
= 3.2p

∣∣∣ 2
1 −

1
2

∣∣∣+ 66(2p−1
− 1) + 48

∣∣∣ 3
2 −

2
3

∣∣∣.
2. IRR(G) =

∑
UV∈E imb(e) ∴ imb(e) = |du − dv|

IRR(NS3[p], x, y) = 3.2p
|2− 1|+ 54(2p−1) − 24|2− 2|+ 66(2p−1

− 1) + 48|3− 2|+ 3.2p+1
|3− 3|

= 3.2p + 66(2p−1
− 1) + 48.

3. IRL(G) =
∑

UV∈E|lndu − lndv|

IRL(NS3[p], x, y) = 3.2p
|ln2− ln1|+ 54(2p−1) − 24|ln2− ln2|+ 66(2p−1

− 1) + 48|ln3− ln2|+ 3.2p+1
|ln3− ln3|

= 3.2p
|ln2− ln1|+ 66(2p−1

− 1) + 48|ln3− ln2|.

4. IRLU(G) =
∑

UV∈E
|du−dv |

min(dudv)

IRLU(NS3[p], x, y) = 3.2p |2−1|
1 + 54(2p−1) − 24 |2−2|

2 + 66(2p−1
− 1) + 48 |3−2|

2 + 3.2p+1 |3−3|
3

= 3.2p +
66(2p−1

−1)+48
2 .

5. IRLF(G) =
∑

UV∈E
|du−dv |√
(dudv)

IRLF(NS3[p], x, y) = 3.2p |2−1|
√

2
+ 54(2p−1) − 24 |2−2|

√
4
+ 66(2p−1

− 1) + 48 |3−2|
√

6
+ 3.2p+1 |3−3|

√
9

= 3.2p
√

2
+

66(2p−1
−1)+48
√

6
.

6. σ(G) =
∑

UV∈E(du − dv)
2

σ(NS3[p], x, y) = 3.2p(2− 1)2 + 54(2p−1) − 24(2− 2)2 + 66(2p−1
− 1) + 48(3− 2)2 + 3.2p+1(3− 3)2

= 3.2p + 66(2p−1
− 1) + 48.

7. IRLA(G) = 2
∑

UV∈E
|du−dv |
(du+dv)

IRLA(NS3[p], x, y) = 2
[
3.2p |2−1|

(2+1) + 54(2p−1) − 24 |2−2|
(2+2) + 66(2p−1

− 1) + 48 |3−2|
(2+2) + 3.2p+1 |3−3|

(3+3)

]
= 2

[
3.2p

(3) + 66(2p−1
− 1) + 48

(5)

]
.

8. IRD1 =
∑

UV∈E ln{1 + |dv − dv|}

IRD1(NS3[n], x, y) = 3.2pln{1 + |2− 1|}+ 54(2p−1) − 24ln{1 + |2− 2|}+ 66(2p−1
− 1) + 48ln{1 + |3− 2|}+ 3.2p+1ln{1 + |3− 3|}

= 3.2pln2 + (66(2p−1
− 1) + 48)ln2.

9. IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2

IRA(NS3[p], x, y) = 3.2p
(

1
√

2
−

1
√

1

)2
+ 54(2p−1) − 24

(
1
√

2
−

1
√

2

)2
+ 66(2p−1

− 1) + 48
(

1
√

3
−

1
√

2

)2
+ 3.2p+1

(
1
√

3
−

1
√

3

)2

= 3.2p
(

1
√

2

)2
+ 66(2p−1

− 1) + 48
(

1
√

3
−

1
√

2

)2
.
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10. IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

IRGA(NS3[p], x, y) = 3.2pln |2+1|
2
√

2
+ 54(2p−1) − 24ln |2+2|

2
√

3
+ 66(2p−1

− 1) + 48ln |3+2|
2
√

4
+ 3.2p+1ln |3+3|

2
√

6
= 3.2pln |3|

2
√

2
+ (66(2p−1

− 1) + 48)ln |5|
2
√

6
.

11. IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2

IRB(NS3[p], x, y) = 3.2p
(√

2−
√

1
)2
+ 54(2p−1) − 24

(√
2−
√

2
)2
+ 66(2p−1

− 1) + 48
(√

3−
√

2
)2
+ 3.2p+1

(√
3−
√

3
)2

= 3.2p
(√

2−
√

1
)2
+ (66(2p−1

− 1) + 48)
(√

3−
√

2
)2

.

12. IRRt(G) = 1
2
∑

UV∈E|du − dv|

IRRt(NS3[p], x, y) = 1
2

[
3.2p
|2− 1|+ 54(2p−1) − 24|2− 2|+ 66(2p−1

− 1) + 48|3− 2|+ 3.2p+1
|3− 3|

]
= 1

2

[
3.2p + (66(2p−1

− 1) + 48)
]
.

The following Table 6 represents some calculated values of irregularity indices of NS3[p] for some
test values of p.

Table 6. Irregularity indices for NS3[p] polymer dendrimers.

Irregularity Indices p = 1 p = 2 p = 3 p = 4 p = 5

IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣ 48.9999 112.9999 240.9999 496.9998 1008.99
AL(G) =

∑
UV∈E|du − dv| 54 126 270 558 1134

IRL(G) =
∑

UV∈E|lndu − lndv| 23.6212 54.541 116.379 240.058 487.414
IRLU(G) =

∑
UV∈E

|du−dv |

min(du,dv)
30 69 147 303 615

IRLU(G) =
∑

UV∈E
|du−dv |√
(dudv)

23.8385 55.025 117.399 242.147 491.644

IRF(G) =
∑

UV∈E(du − dv)
2 54 126 270 558 1134

IRLA(G) = 2
∑

UV∈E
|du−dv |

(du+dv)
23.2 53.6 114.4 236 479.2

IRD1 =
∑

UV∈E ln{1 + |dv − dv|} 37.4299 87.3365 187.1496 386.7760 786.0286

IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2
3.8082 7.9194 16.1419 32.5868 65.4768

IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

1.3331 3.0335 6.4345 13.236 26.84015

IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2
5.8590 13.5558 28.9495 59.7368 121.3113

IRRt(G) = 1
2
∑

UV∈E|du − dv| 27 63 135 279 567

4. Graphical Analysis, Discussions and Conclusions

In this part we give our comparative analysis of some of the irregularity indices of the above
discussed dendrimers and the dependences of the irregularity indices on the parameter of the structures.
Figures 4–7 contain three graphs of irregularity indices. The horizontal axis is used for step size p
and the vertical axis shows the value of irregularity index. In the graphs, the red color shows the
irregularity of NS1 [p], the blue color shows the irregularity of NS2 [p] and the green color shows the
irregularity of the NS3 [p]. In each graph, three different colored curves are depicted which shows the
behavior of the irregularity indices with increase in p.
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.
From above graph it seems obvious that irregularities have a slight increase with an increase in

the step size p for the range p ≤ 12. But after p ≥ 14, these irregularity indices drastically increase
with increase in p. So NS3[p] is the most irregular and asymmetric structure as far as most of the
irregularity indices are concerned. Nanostar dendrimers are relatively less irregular, and NS1[p] are
the most regular dendrimers. This trend is not restricted to only irregularity index IRDIF. Most of the
irregularity indices behave pretty similarly as shown in the following figures. All other figures show
the trends which can easily be understood in the Figures 5–7.
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All above graphs (Figures 4–7) indicate that NS3[p] is highly asymmetric as far as all irregularity
indices are concerned, whereas NS1[p] is less asymmetric, and NS2[p] is the most regular structure
with respect to all indices. In IRB, NS1[p] and NS3[p] show the same irregularity behavior. These facts
typically relate geometry and topology of the structure of these dendrimers and can be used in
modelling purposes.

We foresee that our results could play an important role in determining properties of these
dendrimers such as enthalpy, toxicity, resistance and entropy. Similar research has been done in [29],
where authors discussed some properties of alkane isomers.
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