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Abstract: A novel active semi-supervised learning framework using unlabeled data is proposed
for fault identification in labeled expensive chemical processes. A principal component analysis
(PCA) feature selection strategy is first given to calculate the weight of the variables. Secondly,
the identification model is trained based on the obtained key process variables. Thirdly, the pseudo
label confidence of identification model is dynamically optimized with an historical, current, and future
pseudo label confidence mean. To increase the upper limit of the identification model that is
self-learning with high entropy process data, active learning is used to identify process data and
diagnosis fault causes by ontology. Finally, a PCA-dynamic active safe semi-supervised support
vector machine (PCA-DAS4VM) for fault identification in labeled expensive chemical processes is
built. The application in the Tennessee Eastman (TE) process shows that this hybrid technology is able
to: (i) eliminate chemical process noise and redundant process variables simultaneously, (ii) combine
historical pseudo label confidence with future pseudo label confidence to improve the identification
accuracy of abnormal working conditions, (iii) efficiently select and diagnose high entropy unlabeled
process data, and (iv) fully utilize unlabeled data to enhance the identification performance.

Keywords: semi-supervised learning; active learning; feature selection; ontology; chemical process;
fault identification

1. Introduction

1.1. Background and Significance

According to the accident statistics in chemical plants, there appear many minor anomalies
before a serious accident occurs [1]. Minor abnormality generally refers to abnormal conditions, such
as regulator failure or alarms caused by abnormal fluctuations. Therefore, it is of great theoretical
and practical significance to conduct fault identification for chemical process to quickly discover the
potential abnormality and to reliably maintain the stationary operation of chemical plants.

The existing fault identification methods are mainly divided into: Qualitative methods [2],
quantitative methods [3,4], and data-driven methods [5,6]. Among all of the data-driven fault
identification methods, the supervised machine learning technique provides impressive fault
identification results for the chemical process [7,8]. Its fault identification accuracy rate can be
as high as 92%. For example, Mohd Azlan Hussain et al. [9] proposed the kernel fisher discriminant
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analysis-support vector machine (KFDA-SVM) identification model with an average accuracy of 96.79%
in the Tennessee Eastman (TE) process. However, the lack of labeled process data in practice often
hinders the application of supervised machine learning methods. Moreover, it is expensive to label the
large amount of unlabeled process data that widely exists in chemical processes. Among them, process
data represent process conditions. The labeled process data represent the process data of known
process conditions, and they and their labels are used together as a training set for the identification
model. For example, when a device is known to be leaking, the process data are labeled. The unlabeled
process data, however, represent the process data of unknown process conditions, and only the process
data are used as a training set for the identification model. For example, when it is unknown whether
a device is leaking, the process data are unlabeled. How to make full use of unlabeled process data to
improve the accuracy of fault identification in chemical processes is, thus, a hot topic.

Semi-supervised learning is a combination of supervised learning and unsupervised learning
methods realized by the active learning strategy. It uses a small amount of labeled process data to
train the initial identification model, and then improves the identification performance through a large
amount of unlabeled process data. The semi-supervised learning method has been applied to various
fields, such as writer identification [10], sentiment classification [11], medical image analysis [12], traffic
flow [13], etc. Active learning is a sampling strategy that selects high entropy unlabeled data. First,
the identification model determines the confidence of the unlabeled data. Second, the query function
determines the high entropy data. Finally, unlabeled data are labeled and added to the labeled dataset.
Among them, the design of the query function uses information entropy. The greater the information
entropy of the data, the richer the amount of information they carry. However, the application of
active learning and semi-supervised learning to chemical process fault identification is only a small
presence in the literature. Wang et al. [14] proposed an active learning based semi-supervised fisher
discriminant analysis (SemiFDA) model with an average fault identification accuracy of 58.10% for the
TE process. Song et al. [15] proposed a dynamic spare stacked auto-encoders (DSSAE) model based
semi-supervised framework. Its average fault identification accuracy is up to 90.2% for the TE process.

Some technical difficulties still exist in these methods, such as the inferiority of semi-supervised
learning performances when compared to supervised ones. For this reason, Zhou et al. [16] proposed
a safe semi-supervised support vector machine (S4VM). Bernhard Sick et al. [17] showed that a
semi-supervised support vector machine (SemiSVM) can well exploit structure information in data
and greatly improve identification performance with unlabeled data. On the other hand, the large
number of instruments in the actual chemical process brings noise and redundant process variables.
Therefore, this paper selects the key process variables based on PCA. In order to further improve the
upper limit of S4VM self-learning, high entropy process data are selected based on active learning to
realize process data fault diagnosis.

1.2. Method

This paper proposes a principal component analysis and dynamic active safe semi-supervised
support vector machines (PCA-DAS4VM) based fault identification method. Firstly, PCA [18,19]
determines the key process variables with a sum weight of more than 80%. The selection of the weight
threshold is based on experience with no specific standard in practice. Secondly, the pseudo label
confidence of the DAS4VM model is dynamically optimized based on the pseudo label confidence mean
of concerned process data. Then, high entropy unlabeled data are selected, and an ontology-based
graphical scenarios object model is used for fault diagnosis of unlabeled process data. Finally, the hybrid
technology is applied to the fault identification of the TE process.

1.3. Contributions

The main contributions of this work are as follows. After S4VM and active learning are integrated,
the pseudo label confidence of active learning is dynamically optimized, and thus, the selection accuracy
of the high entropy process data is improved. By making full use of the process implicit information
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and expert knowledge, the graphical scenario object model helps to determine process data labels. The
root cause of the failure is analyzed through the influence relationship between variables based on
process data, thereby determining the process conditions. Compared with supervised learning using
the same amount of labeled data, the method fully utilizes the structure of unlabeled data to improve
the accuracy of the identification model, and it ensures that the performance does not decrease when
used to label expensive chemical processes.

1.4. Organization

The rest of the paper is organized as follows. The following part introduces the PCA-DAS4VM
based fault identification framework and its implementation process. The case study part describes
its practical application in the TE process. The last section shows the main conclusions and future
improvement of the research.

2. Methods

2.1. Fault Identification Framework

The PCA-DAS4VM identification framework is shown in Figure 1. The first step is offline training:

(1) Historical process data are acquired and preprocessed, including process data identification,
training sets labeling, etc.

(2) Based on PCA, feature selection of offline data is performed to extract the largest linear independent
variable group M.

(3) Datasets in M are divided into labeled dataset and unlabeled dataset.
(4) The labeled data and unlabeled data in M are used to train DAS4VM.
(5) The PCA-DAS4VM model will be built if the pseudo label confidence is higher than 80%.

Otherwise, unlabeled data with high entropy are selected by active learning, and then the fault
cause for unlabeled data is determined by the graphical scenario object model and added to the
label dataset.

(6) The optimal parameters of the PCA-DAS4VM identification model are lastly saved.

The second step is online fault identification. Based on the optimal PCA-DAS4VM model, the key
variable data in the M group are acquired online to determine whether the system is running normally.
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Figure 1. The framework of the PCA-dynamic active safe semi-supervised support vector machine
(PCA-DAS4VM) based fault identification method.
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2.2. Principal Component Analysis

Assume that there is an m-dimensional variable vector in the data matrix (x1,g, x2,g . . . xm,g),
and each variable has n data (xq,1, xq,2 . . . xq,n)T, where q = 1, 2, . . . , m; g = 1, 2, . . . , n. For dimensionality
reduction of the data matrix, PCA is used to convert the correlated variables in the data matrix to a set
of linearly independent variable group M. The calculation steps are as follows:

(1) Normalize Z-score of the data matrix, as shown in Equation (1).

Zqg =
xqg − µ

σ
(1)

where µ is the mean of the data matrix, and σ is the variance of the data matrix.
(2) Calculate the feature covariance matrix of the data matrix and then its eigenvalues, eigenvectors,

and variance contribution rate, as shown in Equations (2)–(4). The variance contribution rates are
sorted from large to small so that the variables whose sum of variance contributions exceeds the
set ratio threshold are set as the principal component variables.

C =
1
m

ZTZ (2)

|C− λE| = 0 (3)

αd = λd

/ o∑
d

λd (4)

where C is the calculated feature covariance matrix, λ is the eigenvalue, E is the identity matrix, o
is the number of the principal component, and α is the variance contribution rate.

(3) The linear expression of the principal component is established, and the coefficients of variables
in the linear expression of each principal component are determined, as shown in Equation (5).

coeq,d =
vq,d
√

ed
(5)

where coeq,d is the coefficient of the qth variable in the linear expression of the dth principal
element, vq,d is the dth principal component of the qth variable, and ed is the eigenvalue of the dth
principal component.

(4) Obtain a comprehensive score model based on the coefficients of principal component variables
in the principal element linear expression, as shown in Equation (6).

wq =
o∑

d=1

coeq,d × sd

/ o∑
d=1

sd (6)

where wq is the coefficient of the qth variable in the comprehensive scoring model, and sd is the
variance of the dth principal component.

(5) Normalize the variable coefficient in the comprehensive score model and redefine the weight of
the variables.

2.3. Dynamic Active Safe Semi-Supervised Support Vector Machine

S4VM is a safe semi-supervised learning algorithm that can improve the identification accuracy
by using a large amount of easily accessible unlabeled data. The term “safe” here means, in theory, that
S4VM is not inferior to the supervised learning algorithm that uses the same amount of labeled data.
In S4VM, it is believed that there are often multiple similar low-density maximum interval classifiers
in a data space (see Figure 2), any one of which may become the optimal classifier later.
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The traditional semi-supervised SVM algorithm attempts to obtain an optimal solution by using a
decision function f assigned to an unlabeled dataset. The following loss function (Equation (7)) is used,
and a maximum interval classifier can be obtained by solving Equation (7).

h( f , ŷ) = min
f ,ŷ

1
2
‖ f ‖2 + C1

l∑
i=1

l(yi, f (xi)) + C2

l+u∑
j=i+1

l(ŷ j, f (x j)) (7)

where x is the input space, y is the labeled space, ŷ is the prediction space, i is the labeled data (i = 1, 2,
. . . , l), j is the unlabeled data (j = 1, 2, . . . , u), and C1 and C2 are hyperparameters with labeled data
and unlabeled data, respectively.

In order to obtain a set containing multiple low-density maximum interval classifiers, the loss
function is redefined as Equation (8).

min
{wt,bt,ŷt∈}

T
t=1

T∑
t=1

( 1
2‖wt‖

2 + C1
l∑

i=1
ξi + C2

l+u∑
j=l+1

ξ j) + M
∑

1≤t,̃t≤T
I(

ŷ′t ŷ̃t
u ≥ 1− ς)

s.t. yi(w′tφ(xi) + bt) ≥ 1− ξi, ξi ≥ 0,
ŷt, j+l(w′tφ(x j+l) + bt) ≥ 1− ξ j+l, ξ j+l ≥ 0.

(8)

where Wt is one dimensional vector, bt is the bias, t is the classifier (t = 1, 2, . . . , T), ζ is the relaxation
vector, M is a constant, I is the indication function, and ς = 0.5, φ( ) is a feature mapping guided by a
kernel function.

According to the smoothness assumption of semi-supervised learning, the historical pseudo label
confidence pj−1 and the future pseudo label confidence pj+1 constitute dynamic related information to
reduce misjudgment of the current working condition, as shown in Equation (9).

p j,k =
1
3
(p j−1,k + p j,k + p j+1,k) (9)

where the confidence that the jth data belong to the kth class is pjk.
In general, semi-supervised learning is based on a small number of labeled data. It can improve

performance by utilizing useful data distribution information provided by a large amount of unlabeled
data, but it may also lead to misleading or even wrong information due to data noise. Therefore,
the unlabeled data are selected according to their entropy. The higher the entropy is, the greater the
amount of information is carried by the process data, in which the entropy of unlabeled data j is
calculated by Equation (10).

ent j = −
K∑

k=1

p jk log p jk (10)
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where entj is the jth data entropy, and k is the number of classes (k = 1, 2, . . . , K).
The DAS4VM selects the unlabeled data with high entropy, where the criteria for selection is

given in Equation (11).
xs = argmax

x j∈XU
ent j (11)

The criterion for DAS4VM to stop selecting unlabeled data is given in Equation (12).

max
1≤k≤K

p j,k ≥ a (12)

where a is the stopping threshold.
The pseudo code of DAS4VM is shown in Algorithm 1.

Algorithm 1 DAS4VM

Input: D = { {xi, yi
}l
i=1,

{
x j}

l+u

j=l+1
};

Output: y.
1: Optimize pseudo label confidence through dynamic related information via Equation (9).
2: Calculate the entropy of unlabeled data and sort them via Equations (10)–(12).
3: Determine the fault cause of the selected unlabeled data by graphical scenario object model (see Section 2.4).
4: Generate a pool of diverse large-margin low-density separators

{
ŷ
}T
t=1 for D via Equation (8).

5: Assign the labels y = {yl+1, . . . , yl+u} to unlabeled instances such that improvement in performance for any
separator ŷt (t = 1, . . . , T) is maximized.

2.4. Ontology

The graphical scenario object model based on ontology determines the failure reason of the
unlabeled process data. The ontology [20] is a clear norm of conceptual expression, which mainly
includes the types of structural information, basic elements, and expressions of influence relations.
It can systematically and graphically express the chemical process, facilitating domain knowledge
sharing between people and computers. When an anomaly occurs in the chemical process due to
the process parameter’s deviation, the anomaly will propagate along the material flow, energy flow,
and information flow under the deviation. If no preventive action is made in time, the accident will
likely occur. The process described above is a hazard scenario [21].

3. Case Study

3.1. Process Description

The proposed method is applied to the TE benchmark process. The TE process was given by
Downs and Vogel from Tennessee Eastman Chemical Company [22]. The TE process consists of five
main operating units: Reactor, condenser, compressor, separator, and stripper, as shown in Figure 3.
The rectangles in Figure 3 represent measuring instruments, such as PI03 for the pressure of the stripper,
while the circles in Figure 3 represent control instruments, such as FIC01 for the flowrate of stream 1.
The heat and mass balance of the TE process is shown in Table 1. The process includes 22 continuous
measured variables (Table 2) and 20 preset fault modes (Table 3).
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Figure 3. Flow chart of Tennessee Eastman (TE) process.

Table 1. TE process heat and mass balance table.

No. in
Process

Flow
/koml·h−1 Temperature/◦C

Process Concentration/mol·mol−1

A B C D E F G H

1 11.2 45.0 0.99990 0.00010 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 114.5 45.0 0.00000 0.00010 0.00000 0.99990 0.00000 0.00000 0.00000 0.00000
3 98.0 45.0 0.00000 0.00000 0.00000 0.00000 0.99990 0.00010 0.00000 0.00000
4 417.5 45.0 0.48500 0.00500 0.51000 0.00000 0.00000 0.00000 0.00000 0.00000
5 465.7 65.7 0.43263 0.00444 0.45264 0.00116 0.07256 0.00885 0.01964 0.00808
6 1890.8 86.1 0.32188 0.08893 0.26383 0.06882 0.18776 0.01657 0.03561 0.01659
7 1476.0 1476.0 0.27164 0.11393 0.19763 0.01075 0.17722 0.02159 0.12302 0.08423
8 1201.5 1201.5 0.32958 0.13823 0.23978 0.01257 0.18579 0.02263 0.04844 0.02299
9 15.1 15.1 0.32958 0.13823 0.23978 0.01257 0.18579 0.02263 0.04844 0.02299

10 259.5 259.5 0.00000 0.00000 0.00000 0.00222 0.13704 0.01669 0.047269 0.37136
11 211.3 211.3 0.00479 0.00009 0.01008 0.00018 0.00836 0.00099 0.53724 0.43828

Table 2. Continuous measurement variable (CMV) of the TE process.

Variable Description Variable Description

CMV (1) A Feed CMV (12) Separator level
CMV (2) D Feed CMV (13) Separator pressure
CMV (3) E Feed CMV (14) Separator underflow
CMV (4) A and C Feed CMV (15) Stripper level
CMV (5) Recycle flow CMV (16) Stripper pressure
CMV (6) Reactor feed CMV (17) Stripper underflow
CMV (7) Reactor pressure CMV (18) Stripper temperature
CMV (8) Reactor level CMV (19) Stripper steam flow
CMV (9) Reactor temperature CMV (20) Compressor work
CMV (10) Purge flow CMV (21) Reactor cooling water outlet temperature
CMV (11) Separator temperature CMV (22) Condenser cooling water outlet temperature
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Table 3. Preset faults of the TE process.

No. in TE Fault Reason Fault Type

1 A/C feed ratio, B composition constant Step
2 B composition, A/C ratio constant Step
3 D feed temperature Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss Step
7 C header pressure loss-reduced availability Random
8 A, B, and C feed composition Random
9 D feed temperature Random
10 C feed temperature Random
11 Reactor cooling water inlet temperature Random
12 Condenser cooling water inlet temperature Random
13 Reactor kinetics Drift
14 Reactor cooling water valve Viscous
15 Condenser cooling water valve Viscous
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown

3.2. Feature Selection by PCA

Take fault 4 as an example. According to Equations (2)–(4), the variances and eigenvalues of the
principal components in fault 4 are obtained and shown in Figures 4 and 5.

Figure 4 shows that the total variance contribution rate of the first 12 principal components has
reached 83.15% (more than 80%), so the first 12 principal components can reflect information about all
variables. Figure 5 shows the eigenvalues of the first 12 principal components as well.
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Then, according to Equations (5) and (6), the comprehensive score coefficient and weight ratio of
all the variables are obtained based on the determined 12 principal components in fault 4. The sum
of the weights of the first 13 variables of fault 4 is 80.06% (more than 80%), so the first 13 variables
represent all variables, as shown in Figure 6. Key variables for other faults are similarly selected when
the sum of their weights are more than 80%, as shown in Figure 7.
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3.3. Identification Results and Discussion

In recent years, many researchers have made various optimization efforts for supervising SVM
and have achieved remarkable results. For example, Gao et al. [23] used grid search to determine
the optimal SVM parameters. Yuan et al. [24] optimized SVM parameters with the cuckoo algorithm.
Xiao [25] trained KNN and SVM on the same training set, and then used the integrated model of KNN
and SVM to predict the test dataset. KNN predict the test dataset through labels of k nearest neighbors
data, SVM predict the test dataset based on hyperplane. However, these methods are still limited to
supervised learning, resulting in poor generalization performance, a low industrial fault diagnosis
rate (FDR), and a high false positive rate (FPR). Therefore, this paper proposes a fault identification
method PCA-DAS4VM based on a graphical scenario object model, which improves the identification
accuracy of traditional SVM due to its full use of the unlabeled data distribution information. In order
to better prove the effectiveness of the proposed method, the PCA-DAS4VM proposed in this paper is
compared with the DAS4VM and PCA-S4VM fault identification methods when applied to the TE
process. In these methods, the DAS4VM directly recognizes raw process data, and the PCA-S4VM
model is based on S4VM to identify key process data selected by PCA.

In order to clearly show the performance of the proposed method, this paper defines a confusion
matrix (Table 4), F1 score (Equation (13)), fault diagnosis rate (FDR) (Equation (14)), false positive rate
(FPR) (Equation (15)), and accuracy (Equation (16)) as comparing criterions.

F1 =
2× PRE×REC

PRE + REC
× 100% (13)

FDR =
TP

TP + FN
× 100% (14)

FPR = 1−
TN

FP + TN
× 100% (15)

Accuracy =
TN + TP

FP + TN + TP + FN
× 100% (16)

where TN represents a normal condition diagnosed as normal, FP represents a fault condition diagnosed
as normal, FN represents normal conditions diagnosed as a fault, and TP represents a fault condition
diagnosed as a fault.

Table 4. Confusion matrix.

Normal Condition Failure Condition

Diagnosed as normal TN FP
Diagnosed as failure FN TP

Where TN represents a normal condition diagnosed as normal, FP represents a fault condition diagnosed as normal,
FN represents normal conditions diagnosed as a fault, and TP represents a fault condition diagnosed as a fault.

Semi-supervised learning is usually sensitive to the number of labeled data and unlabeled data.
This paper uses the S4VM parameters recommended by Li et al. [26], as shown in Table 5. The
parameter “a” is recommended by Yin et al. [14]. The amount of labeled data and unlabeled data are
determined based on experience and experiments. Since the amount of labeled data and unlabeled
data directly affect the accuracy of the identification model, the influence of the number of labeled data
and unlabeled data on the identification accuracy is discussed with the average identification accuracy
of 20 kinds of TE faults as criterion, as shown in Figures 8 and 9.

First, under the condition that the training set contains 960 unlabeled data, the impact of the
amount of labeled data in the training set on the accuracy of the identification model is tested. It can be
seen from Figure 8 that with the increasing number of labeled data, the average identification accuracy
of PCA-DAS4VM is gradually improved. However, the number of labeled data increases slowly after
more than 10, so this article uses 10 labeled data (especially denoted by red color in Figure 8). Secondly,
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under the condition that the training set contains 10 labeled data, the impact of the number of unlabeled
data in the training set on the accuracy of the identification model is tested. All of the number of
unlabeled data for each condition is 960. It can be seen from Figure 9 that with the increasing percentage
of unlabeled data, the average identification accuracy of PCA-DAS4VM is gradually improved, so this
paper uses the 100% (960) unlabeled data to train PCA-DAS4VM (especially denoted by red color in
Figure 9). Therefore, the training set of PCA-DAS4VM contains 10 labeled data and 960 unlabeled data.

Table 5. Parameters of PCA-DAS4VM.

Title 1 Title 2

Sample Time 100
C1 100
C2 0.1

kernel RBF
a 0.8
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The F1 scores for PCA-S4VM, DAS4VM, and PCA-DAS4VM using 20 types of faults in the
TE process are compared in Figure 10. It can be seen from Figure 10 that compared with other
identification methods, PCA-DAS4VM has the highest F1 score. Compared with PCA-S4VM and
DAS4VM, the average F1 scores of PCA-DAS4VM are enhanced by approximately 6.01% and 3.21%,
respectively. The identification performance of PCA-DAS4VM is stable around 98%, further proving
the reliability and stability of the S4VM. For the four types of faults in the TE process, PCA-S4VM
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and PCA-DAS4VM have higher identification accuracy for drift type faults, with average F1 scores of
92.96% and 99.25%. DAS4VM has higher identification accuracy for step type faults, with an average
F1 score of 95.61%.Processes 2020, 8, x FOR PEER REVIEW 12 of 16 
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To further illustrate the effectiveness of PCA-DAS4VM for industrial processes, the FPR for the
model PCA-S4VM, DAS4VM, and PCA-DAS4VM are compared in Figure 11. In Figure 11, the average
FPR for PCA-DAS4VM is only 0.42%, 507.14% less than that of PCA-S4VM and 261.90% less than that
of DAS4VM. For the four types of faults in the TE process, PCA-S4VM and DAS4VM have lower FPRs
for step type faults, with an average FPR of 2.44% and 1.35%. PCA-DAS4VM has a lower FPR for drift
type faults, with an average FPR of 0.31%.
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The FDR for PCA-S4VM, DAS4VM, and PCA-DAS4VM are compared in Figure 12. The average
FDR for PCA-DAS4VM is 9.35% higher than that of PCA-S4VM and 5.05% than that of DAS4VM. For
the four types of faults in the TE process, PCA-S4VM and PCA-DAS4VM have higher FDRs for drift
type faults, with an average FDR of 89.66% and 98.88%. DAS4VM has a higher FDR for step type
faults, with an average FDR of 92.93%.

The core work of this paper is to train and test the identification models in the offline phase. In
order to compare the performance of each identification model more clearly, this article compares the
average computation time of each identification model for the 20 TE process faults. As can be seen
from Table 6, the average computation time of PCA-DAS4VM is 130.35 s (tested on a Core i5, 8 GB
memory computer) because it has high modeling complexity. PCA-DAS4VM reduces the computing
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time by 53.53% compared with DAS4VM. Although PCA-DAS4VM adds 17.95% more computing time
than PCA-S4VM, PCA-DAS4VM is still recommended as it has better identification performance.Processes 2020, 8, x FOR PEER REVIEW 13 of 16 
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Table 6. Average computation time of PCA-S4VM, DAS4VM, and PCA-DAS4VM models.

Method Computation Time (s)

PCA-S4VM 110.51
DAS4VM 280.52

PCA-DAS4VM 130.35

In order to better demonstrate the effectiveness of the PCA-DAS4VM method, this method is
also compared with those typical semi-supervised learning methods such as ALSemiFDA [14] and
DSSAE [15]. The accuracy rate of each method when applied to TE process is shown in Figure 13. It
can be concluded that the accuracy rate of the PCA-DAS4VM method is 33.76% and 6.74% higher than
that of ALSemiFDA and DSSAE, respectively.
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For fault diagnosis, the TE process is divided into five parts for analysis: Reactor, condenser,
separator, recycle compressor, and stripper. The graphical scenarios object model of TE process based
on ontology is established (Figure 14) where the circle point represents 22 continuous measurement
variables (Table 2) of the TE process, and the connection lines indicate mutual influence between
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variables (also called events). The mutual influence includes four relations: Control relation, reaction
relation, type relation, and position relation [27].Processes 2020, 8, x FOR PEER REVIEW 14 of 16 
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Figure 14. Graphical scenario object model of the TE process based on ontology.

This scenario object model is used to monitor the continuous measurement variables in the TE
process, starting with the key events of the initial alarm, and then reversely reasoning the possible root
nodes. Take fault 4 as an example. The reactor temperature in fault 4 is the first variable to have a
high alarm. As the reaction is an exothermic reaction, three direct causes possibly affecting the reactor
temperature are found: Recycle flow abnormality, reactor feed rate abnormality, and reactor cooling
water temperature abnormality. This fault leads to four direct consequences: High reactor cooling
water outlet temperature, high condenser cooling water outlet temperature, high product separator
temperature, and high reactor pressure. The graphical scenario object model of fault 4 is shown in
Figure 15.
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After analysis, we find that the circulating flow rate and the reactor feed flow rate have no
deviation, so the abnormal temperature of the reactor cooling water most likely causes the reactor
temperature anomaly. Therefore, the root cause of fault 4 is the abnormal temperature of the reactor
cooling water.

4. Conclusions

The powerful capability of PCA in feature selection, DAS4VM in fault identification, and the
graphical scenario object model in fault diagnosis are combined in this paper. Under the premise that
the process data are complete and all the instruments are normal, the method can accurately identify
the failure of the industrial process and alert the operator as soon as possible for the failure. The
graphical scenario object model established by this method helps operators understand the process
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failure propagation mechanism. This work aims for full use of the unlabeled data structure while
it is in the process of improving the generalization performance and identification accuracy of fault
identification. TE process data are non-stationary data but our model is fit for non-stationary data,
although it does not specifically deal with non-stationary data. The superiority of the method is
demonstrated by comparison with traditional semi-supervised learning methods such as DSSAE and
ALSemiFDA. The average accuracy of this method is 98.93%, which is 33.76% and 6.74% higher than
ALSemiFDA and DSSAE, respectively. Its average F1 scores are 6.01% and 3.21% greater than that of
PCA-S4VM and DAS4VM, respectively.

How to improve the adaptability and anti-interference of the identification method is the future
focus of this research.
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