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Abstract: In this paper, a data clustering method named consensus fuzzy k-modes clustering is
proposed to improve the performance of the clustering for the categorical data. At the same time,
the coupling DNA-chain-hypergraph P system is constructed to realize the process of the clustering.
This P system can prevent the clustering algorithm falling into the local optimum and realize the
clustering process in implicit parallelism. The consensus fuzzy k-modes algorithm can combine the
advantages of the fuzzy k-modes algorithm, weight fuzzy k-modes algorithm and genetic fuzzy
k-modes algorithm. The fuzzy k-modes algorithm can realize the soft partition which is closer to
reality, but treats all the variables equally. The weight fuzzy k-modes algorithm introduced the
weight vector which strengthens the basic k-modes clustering by associating higher weights with
features useful in analysis. These two methods are only improvements the k-modes algorithm itself.
So, the genetic k-modes algorithm is proposed which used the genetic operations in the clustering
process. In this paper, we examine these three kinds of k-modes algorithms and further introduce
DNA genetic optimization operations in the final consensus process. Finally, we conduct experiments
on the seven UCI datasets and compare the clustering results with another four categorical clustering
algorithms. The experiment results and statistical test results show that our method can get better
clustering results than the compared clustering algorithms, respectively.

Keywords: consensus clustering; fuzzy k-modes algorithm; chain P system; hypergraph structure

1. Introduction

Data clustering has recently attracted more attentions in practical applications. However,
most studies are about numerical data. In this method, the distance between the clustering center and
the data objects are calculated by the standard distance metrics. However, there are many classification
datasets that do not have a natural order or distance between the parts. For example, in the real world,
each classification attribute of blood type has a unique classification value, such as [A, B, O or AB].
Therefore, research into categorical data is a difficult and challenging task, which attracts many data
mining researchers.

In 1998, Huang [1] proposed the k-modes algorithm for the categorical data clustering. The k-modes
algorithm calculated the distance between the object and the cluster center by the Hamming distance
instead of Euclidean distance which is used in the k-means algorithm. Then, Huang [2] proposed
the fuzzy k-modes algorithm (FKM). This algorithm was an extended version of the k-modes
algorithm. Thereafter, many algorithms have been proposed for the clustering of categorical data [3].
These methods were mostly based on numerical data clustering algorithms, such as ROCK [4],
CACTUS [5], COOLCAT [6], LIMBO [7], wk-modes [8], MOGA [9], NSGA-FMC [10], SBC [11],
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MOFC [12], and so on. The research content is mainly divided into two categories. One is the method of
the similarity measure about the categorical data. Hamming distance is the main method for calculating
the distance between the data point and the clustering center which measures the distance two different
categorical values at 1, otherwise is 0. This method has been used in many other clustering algorithms,
such as the k-prototypes algorithm [1] and Squeezer [13]. In addition to the Hamming distance,
there are many other distance metrics [14], such as Ahmad’s distance metric, the Jaccard metric,
the association-based distance metric, and the context-based distance metric. Another direction is
utilizing the optimization algorithm to improve the clustering performance. The WFKM algorithm [2]
strengthened the basic k-modes clustering by associating higher weights with features useful in
analysis. The GFKM algorithm [15] integrated the genetic algorithm into the fuzzy k-modes algorithm,
aiming to find the global optimal solution. The IWFKM algorithm [16] replaced the Hamming distance
with the frequency probability-based distance metric, which has been proved to improve the clustering
results. Apart from this method, the multi-objective clustering algorithm was also considered to
improve the performance of the categorical algorithm [17]. Rough set theory was also introduced into
the K-modes algorithm, which is used to calculate the density of each candidate modes to characterize
the distribution around it [18]. Some researchers developed cluster weighted estimators of marginal
proportion, which remain unchanged under the amount of information, and derive the similarity,
one sample ratio, goodness of fit and independent chi square test for clustering data [19]. Some research
also introduced other evolutionary algorithms into K-modes algorithm. For example, the firefly
algorithm was used to generate initial clusters [20]. Some scholars started from the data themselves,
and studied the possibility of reducing the dimension of representation based on spatial structure
while maintaining the same representation capability [21].

Pǎun [22] proposed membrane computing (also called P system) in 1998. This aims to abstract
computational models from the structure and function of biological cells and the cooperation
between organs and tissues. Up to now, membrane computing mainly includes three basic models:
cell-like p system, tissue-like p system and neuron-like p system. In the process of calculation, each cell
is regarded as an independent unit, and each cell operates independently and does not interfere
with each other. The whole membrane system operates in a highly parallel mode. According to the
research content about the P system, it can be divided into theoretical study and application study.
For the theoretical research, researchers use the direct membrane to solve problems [23]. In this aspect,
some new P system models are proposed which can improve the computation power with the min
cells or spikes [24,25]. Many other variants of membrane systems were also proposed in [26–29].
In application research, the direct membrane algorithm was used to solve some practical problems
by the researchers [30]. Some researchers also used the coupled membrane system to realize the
clustering process [31,32]. These membrane systems are all improvements based on cell-like P systems,
tissue-like P systems and neuron-like systems. For these kinds of system, they are all designed
based on simple structures and can not solve the problems with complicated structure. For example,
the traditional P system cannot store multivariate data with complex relationships. Therefore, our team
previously proposed the concept of P system with the simple complex structure [33] and chain structure.
For instance, Liu and Xue established the new P system based on the simple complex structure in [33],
and Luan and Liu designed the chain P system [34], while Yan and Xue proposed the chain-hypergraph
P system [35].

Based on the above analysis, we proposed a novel hybrid DNA-chain-hypergraph P system to
implement the consensus clustering (DCHP-FCC). The DCHP-FCC system contains three reaction
chain membrane subsystems and one consensus subsystem. Three different base clustering algorithms
are used in the three subsystems, respectively. This operation combines the different advantages of
the three algorithms, and the DNA genetic algorithm implements the consensus clustering process in
the consensus system. The experiment on seven UCI datasets is conducted. The experimental results
show that our proposed method outperforms the results of the state-of-the-art methods.

This work makes the following contributions:
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(1) A novel DCHP system is designed which combines the advantage of the chain structure
and hypergraph topology structure. Three reaction chain membrane subsystems and one consensus
subsystem are designed to generate the basic partitions and integrate basic partitions, respectively.

(2) A revised k-means which is optimized by the DNA genetic algorithm is used for a basic
partition integration strategy which can optimize the initial clustering center and obtain the global
optimal solutions.

(3) Simulation is performed using well-known datasets in the UCI machine learning repository to
verify the clustering quality of the DCHP-FCC.

The rest of this paper is organized as follows. Section 2 introduces the basic concepts of the
k-modes algorithm, consensus clustering and chain and hypergraph structure. The coupling DCHP
system is illustrated in Section 3. Experiments and results are analyzed in Section 4. Section 5
summarizes conclusions and future research directions.

2. Basic Concepts

2.1. Three Basic Fuzzy K-Modes Clustering Algorithms

The fuzzy k-modes algorithm (FKM) was proposed by Huang and Ng [1], and is one of the most
popular clustering algorithms for categorical data. This type of method has improved the k-modes
algorithm by the corresponding membership degree value in different clustering.

Definition 1. Definiting 4-tuple S = (U, A, V, f ) is an information system, where U represents non-empty
finite set of objects, A refers to the non-empty finite set of attributes, V = ∪a∈AVa, Va records the domain of
attribute a, and f : U ×A→ V is a total function such that f (u, a) ∈ Va, for every (u, a) ∈ U ×A.

Let X be the dataset which has n categorical objects. Each object xi (1 ≤ i ≤ n) has p attributes,
so that xi =

{
xi1, xi2, . . . , xip

}
. The objective of the FKM is characterized as follows:

FFKM(U, Z, X) =
k∑

j=1

n∑
i=1

uαjid(xi, z j) (1)

subject to:
0 ≤ u ji ≤ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ k, (2)

k∑
j=1

u ji = 1, 1 ≤ i ≤ n (3)

0 <
n∑

i=1

u ji < n, 1 ≤ j ≤ k (4)

where, α is weight component, U = (u ji) is a k× n matrix which records the fuzzy membership degree,
Z = {z1, . . . , zk} is the set of the clustering centers. X = (X1, X2, . . . , Xn) is the data matrix, where Xi
is the ith point. d(xi, z j) calculates the distance between the object xi and the clustering center z j.
The distance is calculated by simple matching dissimilarity measures or Hamming distance which is
showed as follows:

d(xi, z j) =
m∑

l=1

δ(xil, z jl) (5)

and

δ(xil, z jl) =

{
0, i f xil = z jl
1, i f xil , z jl

(6)
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Based on the proposed scheme, a weight vector is added in the conventional fuzzy k-modes
algorithm [2]: W = [w1, w2, . . . , wp], where wl represents the weight for the lth variable, ∀l = 1, 2, . . . , p.
So, the objective function of the WFK-modes (WFKM) algorithm is:

Fα,β(U, Z, X, W) =
n∑

j=1

n∑
i=1

uαjid
W
ji (7)

where, β is the power of the attribute weight wl which is a measure of emphasis on weights. Similar to

the FKM algorithm, dW
ji = dW(Z j, Xi) =

p∑
l=1

δW(z jl, xil), where z ji is the lth term of Z j and xil refer to the

lth term of Xi.

δW(xil, z jl) =

 0, i f xil = z jl

wβl , i f xil , z jl
(8)

In addition to improving the algorithm itself, some optimization algorithm is also used to optimize
the FKM algorithm. For example, the genetic fuzzy k-modes algorithm integrated the genetic algorithm
and the conventional fuzzy k-modes algorithm, which is called GFKM [36]. This algorithm has five basic
steps: (1) string representation, (2) population initialization, (3) selection process, (4) crossover process,
and (5) mutation process. The fuzzy k-modes algorithm which is optimized by the genetic algorithm
can obtain the globally optimal solution and speed up the process of the convergence.

2.2. Consensus Clustering

Consistent clustering is a framework for clustering multiple algorithms or the same algorithm
under different parameters to obtain better results. As shown in Figure 1, let X = {x1, x2, . . . , xn}

represents the dataset, and arbitrary cluster algorithms are used p times to get p different basic partitions
π1,π2, . . . ,πp (BPs) [37].
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Figure 1. Consensus clustering framework.

The number of clusters K1, K2, . . . , Kp in different partition is arbitrary. Each cluster result can
transfer to the corresponding binary valued vector representation, and the binary value 1 indicates the
sample i belonging to the cluster, otherwise 0. Then, the consensus function needs to aggregate the BPs
and obtains the final clustering result π. In this paper, the revised k-means algorithm which optimized
by the DNA genetic algorithm is used as the consensus function. The DNA genetic algorithm is
used to optimize the initial clustering center of the k-means algorithm, and the clustering quality
can be evaluated by some common evaluation indicators, such as normalized mutual information,
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accuracy and F_measure, etc. The consensus clustering result is typically better than that obtained by
the best BP. The following notations can be used to illustrate it:

πi ≡ partition i : (ki, Ci
1 . . .C

i
ki
)

ki ≡ number o f clusters in partitionπi
Ci

j =
{
sl : sl ∈ cluster j o f partitionπi

}
≡ list o f samples in the jth cluster o f partitionπi

Xi
j : Xi

j(k) =

 1 i f sk ∈ Ci
j, k = 1, . . . , n

0 otherwise
≡ binary valued vector representation o f cluster Ci

j

(9)

2.3. Chain and Hypergraph Structure

A simple complex S is a set of non-empty simplex s1, s2, . . . , sp. If s1 ≺ s2, s1 represent the vertex
or face of the simplex s2. Each complex also should be oriented. Therefore, a S-chain is a simplicial
complex with p dimensional simplices, which defined in [33]. All simplexes which have the same
directions can combine into a chain domain.

A hypergraph H = (v, e) represents a graph whose edge contains an arbitrary number of
vertices [38–40]. v is vertices sets and e is hyper-edges sets. A hyper-edge can contain more than
two vertices and can be formally represented by a nonempty subset of v. As shown in Figure 1.
A hypergraph can better represent the complex information and the local group information than the
traditional graph. In the traditional graph, there is only one edge between the two vertices if they are
similar. However, in the hypergraph, we can construct a hyper-edge to connect more than two vertices.
Therefore, the local group information and complex relationship hidden in the data can be captured by
the hypergraph model [41].

We also can represent the hypergraph H = (v, e) in an accessible matrix:

H =

{
1, v ∈ e

0, otherwise

where, H = 1 if the hyper-edge e contains the vertex v. So, the Figure 2 can be expressed as:

e1 e2 e3 e4

v1 1 0 0 0
v2 1 1 0 0
v3 1 1 1 0
v4 0 0 0 1
v5 0 0 1 0
v6 0 0 1 0
v7 0 0 0 0


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Figure 2. An example of the hypergraph which has vertices v = {v1, v2, v3, v4, v5, v6, v7}, and hyper-edges
e = {e1, e2, e3, e4} = {{v1, v2, v3}, {v2, v3}, {v3, v5, v6}}.

3. Coupling DNA-Chain-Hypergraph P System for Consensus Clustering (DCHP-FCC)

In this section, the coupling DCHP system is proposed. Firstly, the membrane structure of the
DCHP system is introduced. Then, the different operations in the subsystem and consensus system are
introduced, respectively. The flowchart of the proposed DCHP-FCC algorithm is shown in Figure 3.
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3.1. Membrane Structure of the DCHP System

The DCHP system has two main membrane structures—the chain membrane and hyper-membrane
structure. The basic framework of the chain membrane structure is shown in Figure 4 and the structure
of the hyper-membrane structure is shown in Figure 5.
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Definition 2. Based on the operation of the chain structure, the unit membrane can combine into
chains. The chain membrane has two directions (i.e., “+” or “−”). As shown in Figure 4, the chain
σ1 is “+”: σ11 → σ12 → σ13 → · · · → σ1s and s is the length of the chain σ1. As in σ2, the chain σ2

is “−”: σ21 → σ22 → σ23 → · · · → σ2s . Membranes σ11, σ12, . . . , σ1s, σ21, . . . , σ2s are all unit membranes.
There is a channel between the adjacent unit membrane. τ is the skin membrane, and it is also the max
membrane in the system. σ11, σ12, . . . , σ1s, σ21, . . . , σ2s are all called children membrane of the skin membrane
τ, so σ11, σ12, . . . , σ1s, σ21, . . . , σ2s ≺ τ. A membrane without any other membranes inside it is an elementary
membrane, so σ11, σ12, . . . , σ1s, σ21, . . . , σ2s are also represent elementary membrane.

Definition 3. Based on the topology structure of the hypergraph, the hyper-membrane structure is designed as
a membrane with two or more upper membranes. In this system, it also has a similar definition to the chain
membrane. For example, a membrane without any upper membrane is as skin membrane, and a membrane
without any children membranes is an elementary membrane. For the two membranes m1 and m2, m1 is the
upper membrane of the m2 if m2 ⊂ m1. If there is no membrane, m3 satisfies m2 ⊂ m3 ⊂ m1, and the membrane
m2 is the correspondingly lower membrane of m1 As shown in Figure 5, membrane 1 is a skin membrane,
and membranes 2, 3, 6, 8, 9, 10, 11 are all elementary membranes. In particular, membrane 8 is a hyper-membrane
which has two upper membranes, 4 and 7.

According to the basic membrane structure in Figures 4 and 5, a novel P system is designed for
the consensus clustering process. The membrane structure of the DCHP system is shown in Figure 6.
The DCHP system of degree m > 0 is defined as:∏

= (O,µ,ω1,ω2, . . . ,ωm, subsysi, consys, i0)

where:

• O is the finite set of objects;
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• µ represents the structure of the membrane. It includes the structure of the chain membrane,
hyper-membrane and consensus membrane;

• ω1,ω2, . . . ,ωm are objects in O, which represent the initial multisets objects in m membranes at
the beginning of the calculation; we denote the number of chain membrane is m1, the number of
hyper-membrane is m2 and the number of membrane in consensus system is m3. m1 +m2 +m3 = m.
λ means the membrane has no object.

• subsysi is the subsystem which is used to generate the basic partition of clustering. In this system,
three subsystems execute three kind of clustering algorithm, respectively.

• consys is the consensus clustering membrane, which is used to generate the final clustering result.
• i0 is the output membrane of the system

∏
.
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3.2. The Consensus Clustering Realized with the DCHP System

To implement the consensus clustering of the fuzzy k-modes algorithm, we propose three kinds of
subsystem (i.e., reaction chain-hyper P system, consensus system, and global DCHP system). As shown
in Figure 6, three classic algorithms (FKM [1], WFKM [2,16] and GFKM [36]) are simultaneously
implemented in the three subsystems. The fuzzy k-modes algorithm generates a fuzzy partition matrix
for the categorical data, and gives confidence to objects in different clusters. We call it soft partition,
which is closer to reality than hard partition. This method is equal to all variables that determine cluster
membership. However, the situation in the real world is usually different. The WFKM algorithm
introduces a weight vector in the traditional FKM algorithm. This modification associates higher
weights with the features which are instrumental in recognizing the clustering pattern of the data.
These two methods are only improvements of the K-mode algorithm itself, and there are still some
drawbacks in the convergence speed and the global optimization of the algorithm. In order to speed
up the convergence process, the GFKM algorithm is proposed which used a one-step crossover process,
mutation process and selection process in the clustering process.
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3.2.1. Reaction Chain-Hypergraph P System in Subsystem

Initially, objects are randomly generated in the reaction chain hypergraph P system. The object
represents a set of cluster centers. Suppose the dataset X = {X1, X2, . . . , Xn} ⊆ Rn×d has K clusters,
where n is the number of data points and d is the dimension. The initial cluster centers Ki(i = 1, 2, 3)
are randomly selected out of n data as the initial cluster centers and are denoted as Z =

{
z1, z2, . . . , zki

}
,

where zi = {zi1, zi2, . . . , zid} ⊆ Rd. Z =
{
z1, z2, . . . , zki

}
is the initial string in the reaction chain hypergraph

P system. Different reaction chain hypergraph P systems in the same subsystem conduct the same
k-modes algorithm. Different subsystems conduct different K-modes algorithms with different
parameters in parallel.

Then, each reaction chain-hyper P system generates a clustering result with different cluster
number Ki. The clustering result πi is transferred to the corresponding subsystem. These results
are also called basic partitions (BPs). Next, the object co-occurrence strategy is used for these BPs,
and the details of this method can be seen in [42]. The BPs are transformed into a binary dataset

X(2) =
{
x(2)l |l = 1, 2, . . . , n

}
:x(2)l =< x2

l,1, . . . , x2
l,i, . . . , x2

l,p >, with x(2)l,i =< x2
l,i1, . . . , x2

l,i j, . . . , x2
l,iKi

>, and

x(2)l,i j =

{
1, i f xl belongs to cluster j in BPπi

0, otherwise
(10)

3.2.2. Local Communication Membrane System

Afterwards, the transformed binary dataset X(2) is transferred to the consensus system by the
communication rule:

(p, ak/q,λ) (11)

where ak is the basic partition result in the subsystem and λ means there is no object in the membrane.
p is the subsystem, and q is the consensus system.

3.2.3. Consensus System

The revised k-means algorithm which is optimized by the DNA genetic algorithm is used as the
consensus function. The DNA genetic algorithm is used to optimize the initial clustering center of
the k-means algorithm. When the dataset X(2) appears in the consensus system, it is transferred to
binary. So, we can use these values as the initial population. Then, the specific selection, crossover and
mutation process of DNA genetic algorithm are described as follows:

(1) Selection operation
The optimal individuals with the first 10% fitness are directly inherited to the next generation,

and the rest of the individuals are selected according to the roulette selection strategy.
(2) Crossover and mutation operation
One-point crossover and adaptive mutation operation are used in this step, respectively.

The crossover probability is set as Pc. The mutation probability can be adjusted according to the fitness
value of the individual. The specific mutation probability is updated as follows:

Pm = ( fmax − f )/( fmax − favg) (12)

where, Pm is the mutation probability, fmax refers to the maximum fitness in every generation, favg is
the average fitness in every generation, and f is the fitness of the individual. If the fitness is equal to
the maximum fitness, the mutation probability is 0. This operation can guarantee that the optimal
individual does not change by the mutation operation.

(3) Fitness function
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The absolute-deviation criterion in the following is used to measure the clustering quality:

F =
K∑

k=1

∑
xi∈Ck

dist(xi, ok) (13)

where, xi is data point i in the dataset X(2), ok is the cluster center of the Ck. dist(xi, ok) calculates the
Euclidean distance between the data point xi and the corresponding cluster center ok.

The computation process can stop when the predefined maximum iteration is reached or the
difference between two adjacent iterations is less than the given threshold ε. Then, the DCHP system
is stopped, and the final results are output in the membrane i0.

4. Experiments and Discussions

4.1. Data Sets and Parameter Settings

Seven datasets which were collected from the UCI Machine Learning Repository [43] are used
in this section. The data type of all seven datasets is categorical data. These datasets are used in the
comparison algorithms. Although the comparison algorithms used several other data sets in addition
to these seven datasets, considering that these datasets have poor results in the comparison algorithms,
they are not used as experimental data in this paper. Table 1 shows the detail information of these
datasets. To generate the BPs, three different clustering algorithms are used. The number of clusters
Ki(i = 1, 2, 3) in the process of BPs generation is set to

[
Ka,
√

n
]
, and Ka is the actual number of clusters

of the dataset. The cluster number of the consensus clustering process is set as Ka. All experiments are
simulated by the MATLAB R2014b running on a Windows 7 platform of the 64-bit edition. The PC has
an Intel Core i7-4770 3.4 GHZ CPU and 8 GB of RAM.

Table 1. Benchmark datasets.

Dataset # of Instance # of Attributes # of Classes

Soybean-small 47 35 4
Spect Heart 267 22 2
Tic-tac-toe 958 9 2

Voting 435 16 2
Breast cancer 286 9 2

Zoo 101 17 7
Mushroom 8124 22 2

4.2. Evaluation Metric

To evaluation the performance of the DCHP-FCC algorithm, three external clustering evaluation
metrics are selected [44], i.e., Adjusted Rank Index (ARI), Clustering Accuracy (ACC), and F_measure
(F).

The ARI is defined as follows:

ARI(T, C) =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
(14)

where, T represents the pre-determined clustering label, and the C represents the label of the clustering
result. a, b, c and d refer to: (1) in the same class as T and C, (2) in the same class as T but not in the
same class as C, (3) in the same class as C but not in the same class as T, (4) in a different class C and
T, respectively.
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The ACC can be calculated by:

ACC =

n∑
k=1

δ(lk, map(gk))

n
(15)

where, n is the number of data points, gk represents the clustering result labels which are obtained
by the algorithm, and lk is the true class label of the data xi. map(·) is the mapping function that
maps the clustering labels obtained by the algorithm to the real clustering labels. When lk = map(gk),
the function value of δ(lk, map(gk)) is equal to 1, and otherwise it is equal to 0.

The F_measure is defined as:

F_measure(k, l) =
2× (P(k, l) ×R(k, l))
(P(k, l) + R(k, l))

(16)

where, P(k, l) = skl/sk and R(k, l) = skl/sl.P(k, l) refers to the precision of cluster k with respect to class
l, and R(k, l) represents the recall of cluster k with respect to class l. skl refers to data points which
belong to both cluster k and l, sk represents the number of data points in k, and sl is the number of data
points in l.

4.3. Experiment Results and Analysis

In this section, we firstly select the number of BPs. According to the analysis in previous
research [37], we can select the number of BPs as about 50, and the clustering effect gradually stabilizes.
In this paper, we also need to determine the number of BPs, but we do not use the same BP generation
strategy as in the other methods. In this paper, BPs need to be generated in each time. At the same
time, considering the structure of the DCHP system and the characteristics of the three basic clustering
algorithms, we need to guarantee that the BPs generated by the different algorithms are the same. So,
the final number of BPs is a multiple of 3. Taking into account that the number of BPs is basically
maintained at about 50, the clustering effect is the best, so we conduct preliminary experiments on
the number of BPs with 30, 60 and 90, respectively. Experiments are run 30 times, and the mean and
variance of the experimental results are recorded in each case. The experimental results in Table 2 show
that when the number of BPs is 60, the experimental effect is the best.

Table 2. The preliminary experiments on the Soybean-small dataset.

UCI Datasets
DCHP-FCC (BPs = 90) DCHP-FCC (BPs = 60) DCHP-FCC (BPs = 30)

ARI ACC F ARI ACC F ARI ACC F

Soybean-small
Mean 0.9338 0.9149 0.9052 0.9676 0.9567 0.9505 0.9228 0.8950 0.8853

Std. 0.0069 0.0112 0.0140 0.0044 0.0078 0.0102 0.0086 0.0145 0.0180

At the same time, the boxplots for the 30 times are also shown in Figure 7. In Figure 7, (a) is the
result of the NMI metric, (b) is the result of the ACC metric, and (c) is the result of the F_measure
metric. The red line is the center of the box. The top line is the third quartile and the bottom line is the
first quartile of the box. The upper and lower limits of the whiskers represent the maximum and the
minimum values, respectively. The symbol ‘+’ represents the outlier. Note that the better clustering
result, the higher and more compact the boxes are. We can see from Figure 7, when the BPs is 60,
the best clustering results are obtained. Therefore, the number of BPs in subsequent experiments is
determined to be 60.
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DCHP-FCC algorithm on Soybean-small dataset with basic partitions (BPs) equal to 30, 60 and
90, respectively.

Next, the DCHP-FCC algorithm is compared with three basic clustering algorithms and one
improved algorithm, IWFKM, which was proposed in [16]. In order to maintain the originality of the
benchmark algorithms, this paper obtains the results of these algorithms through their own algorithms
and parameters, which are shown in Table 3. The mutation probability in the GFKM algorithm is also
set as 0.01. For comparison, the maximum number of iterations of the comparison algorithm is 100.

Every experiment is also run 30 times, and the mean and variance of the experimental results
are recorded in each case. The experimental results are shown in Table 4. As we can see from Table 4,
the performance of the DCHP-FCC is much better than the compared algorithms on Soybean-small,
Spect heart, Voting, Zoo and Mushroom datasets, and partly better than the compared algorithms on
the Tic-tac-toe and Breast cancer datasets. For the Tic-tac-toe and Breast cancer datasets, the DCHP-FCC
algorithm can obtain the best ARI value, and the GFKM algorithm attains the best ACC and F_measure
values. Even though the DCHP-FCC algorithm does not perform best on the Tic-tac-toe and Breast
cancer datasets, the metric value is only 0.01 lower than the best value. So, the DCHP-FCC algorithm
is more effective in dealing with the categorical clustering than the compared clustering algorithms.
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Table 3. Parameter setting of the proposed algorithm and the comparison algorithms.

Algorithm Parameters Description Setting

FKM K1 The number of clusters Random select in
[
Ka,
√

n
]

WFKM/IWFKM K2 The number of clusters Random select in
[
Ka,
√

n
]

GFKM

K3 The number of clusters Random select in
[
Ka,
√

n
]

Pop_size Population size 100

Max_iter Maximum number of generations 100

Pm Mutation parameter 0.01

Consensus
clustering

Ka The number of clusters Real number of clusters

ε Iteration stopping criteria e−5

Pc Crossover parameter 0.7

Pm1 Mutation parameter 0.01

Table 4. The comparison of ARI, ACC and F-measure (F) benchmark for four clustering algorithms on
seven datasets (mean ± std., BPs = 60).

UCI Datasets DCHP-FCC FKM WFKM GFKM IWFKM

Soybean-small

ARI 0.97 ± 0.004 0.86 ± 0.006 0.88 ± 0.010 0.89 ± 0.009 0.87 ± 0.006

ACC 0.96 ± 0.008 0.83 ± 0.009 0.86 ± 0.015 0.86 ± 0.013 0.85 ± 0.010

F 0.95 ± 0.010 0.80 ± 0.012 0.84 ± 0.021 0.84 ± 0.017 0.83 ± 0.015

Spect Heart

ARI 0.75 ± 0.002 0.50 ± 4 ×
10−5

0.50 ± 2 ×
10−5 0.51 ± 0.001 0.50 ± 4 ×

10−5

ACC 0.79 ± 5 ×
10−32

0.79 ± 5 ×
10−32

0.79 ± 5 ×
10−32

0.79 ± 5 ×
10−32

0.79 ± 5 ×
10−32

F 0.74 ± 0.002 0.63 ± 0.000 0.63 ± 0.000 0.63 ± 0.003 0.63 ± 0.000

Tic-tac-toe

ARI 0.52 ± 0.000 0.51 ± 0.000 0.50 ± 3 ×
10−5 0.52 ± 0.001 0.51 ± 5 ×

10−5

ACC 0.65 ± 2 ×
10−31

0.65 ± 4 ×
10−5

0.65 ± 2 ×
10−31 0.66 ± 0.000 0.65 ± 2 ×

10−31

F 0.59 ± 0.001 0.57 ± 0.001 0.55 ± 0.001 0.60 ± 0.002 0.56 ± 0.001

Voting

ARI 0.78 ± 0.000 0.75 ± 0.000 0.75 ± 3 ×
10−6 0.75 ± 0.000 0.75 ± 2 ×

10−6

ACC 0.88 ± 0.000 0.86 ± 0.000 0.85 ± 1 ×
10−6 0.86 ± 0.000 0.85 ± 1 ×

10−6

F 0.88 ± 0.000 0.86 ± 0.000 0.85 ± 1 ×
10−6 0.86 ± 0.000 0.85 ± 1 ×

10−6

Breast cancer

ARI 0.51 ± 1 ×
10−4

0.50 ± 6 ×
10−6

0.50 ± 3 ×
10−5

0.51 ± 7 ×
10−4

0.50 ± 6 ×
10−6

ACC 0.70 ± 5 ×
10−32

0.70 ± 5 ×
10−32

0.70 ± 5 ×
10−32

0.71 ± 5 ×
10−5

0.70 ± 5 ×
10−32

F 0.58 ± 8 ×
10−4

0.56 ± 3 ×
10−4

0.55 ± 7 ×
10−4 0.59 ± 0.002 0.54 ± 4 ×

10−4

Zoo

ARI 0.90 ± 0.000 0.87 ± 0.001 0.87 ± 0.002 0.89 ± 0.002 0.86 ± 0.001

ACC 0.87 ± 0.000 0.84 ± 0.002 0.83 ± 0.003 0.84 ± 0.002 0.83 ± 0.003

F 0.78 ± 0.004 0.74 ± 0.005 0.73 ± 0.008 0.77 ± 0.004 0.72 ± 0.006

Mushroom

ARI 0.81 ± 1 ×
10−31 0.67 ± 0.014 0.70 ± 0.014 0.68 ± 0.016 0.67 ± 0.018

ACC 0.89 ± 2 ×
10−31 0.76 ± 0.017 0.80 ± 0.014 0.74 ± 0.015 0.76 ± 0.017

F 0.89 ± 2 ×
10−31 0.76 ± 0.015 0.79 ± 0.014 0.77 ± 0.016 0.76 ± 0.019
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4.4. Significance Testing

In this section, the hypothetical tests on the values of seven UCI datasets are computed between
the DCHP-FCC algorithm and other four comparison clustering algorithms. The results are shown in
Tables 5–7. The significance level is set as ρ < 0.05. According to the results in Tables 5–7, the symbol
‘+’ represents when the difference between the DCHP-FCC algorithm and the compared algorithm
is significant, and the symbol ‘−’ represents when the difference between the DCHP-FCC algorithm
and the compared algorithm is not significant. We can see from Tables 5–7 that the results of the
hypothetical test are almost ‘+’. This proves that there is a clear difference between the algorithm in
this paper and the comparison algorithms.

Table 5. The p-value produced by the T-test in terms of ARI.

UCI Datasets
DCHP-FCC vs.

FKM WFKM GFKM IWFKM

Soybean-small 0.9 × 10−8(+) 5.0 × 10−5(+) 3.0 × 10−4(+) 6.6 × 10−6(+)

Spect Heart 5.7 × 10−27(+) 1.0 × 10−23(+) 5.1 × 10−22(+) 1.1 × 10−23(+)

Tic-tac-toe 7.0 × 10−14(+) 1.8 × 10−14(+) 3.5 × 10−10(+) 8.5 × 10−5(+)

Voting 6.1 × 10−9(+) 1.8 × 10−12(+) 1.5 × 10−6(+) 6.9 × 10−13(+)

Breast cancer 6.6 × 10−4(+) 0.0077(+) 0.3373(−) 3.1 × 10−4(+)

Zoo 0.0092(+) 0.0033(+) 0.3104(−) 0.0020(+)

Mushroom 3.4 × 10−7(+) 2.6 × 10−5(+) 5.1 × 10−6(+) 4.9 × 10−6(+)

Table 6. The p-value produced by the T-test in terms of ACC.

UCI Datasets
DCHP-FCC vs.

FKM WFKM GFKM IWFKM

Soybean-small 2.9 × 10−7(+) 1.1 × 10−4(+) 8.4 × 10−4(+) 2.2 × 10−5(+)

Spect Heart - - - -

Tic-tac-toe - - - -

Voting 7.2 × 10−9(+) 1.2 × 10−12(+) 1.8 × 10−6(+) 4.3 × 10−13(+)

Breast cancer - - - -

Zoo 5.5 × 10−4(+) 0.0027(+) 0.0060(+) 4.8 × 10−5(+)

Mushroom 0.0414(+) 0.5516(−) 0.1215(−) 7.9 × 10−6(+)

Table 7. The p-value produced by the T-test in terms of F_measure.

UCI Datasets
DCHP-FCC vs.

FKM WFKM GFKM IWFKM

Soybean-small 4.3 × 10−7(+) 2.0 × 10−4(+) 8.7 × 10−4(+) 1.1 × 10−4(+)

Spect Heart 1.9 × 10−14(+) 3.7 × 10−14(+) 1.2 × 10−9(+) 8.1 × 10−13(+)

Tic-tac-toe 0.0540(−) 6.0 × 10−6(+) 0.5474(−) 1.1 × 10−4(+)

Voting 6.8 × 10−9(+) 1.1 × 10−12(+) 1.6 × 10−6(+) 3.9 × 10−13(+)

Breast cancer 9.7 × 10−4(+) 1.9 × 10−4(+) 0.3499(−) 1.7 × 10−6(+)

Zoo 0.0374(+) 0.0280(+) 0.3151(−) 0.0023(+)

Mushroom 2.3 × 10−6(+) 8.8 × 10−5(+) 1.0 × 10−5(+) 6.6 × 10−6(+)
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5. Conclusions

In this paper, we propose a novel P system (DCHP) with a hybrid structure which combines the
advantage of the chain structure and hypergraph topology structure for the consensus fuzzy k-modes
clustering. The DCHP system has three subsystems and one consensus system. The subsystems are
used to generate three kinds of basic partitions, respectively, and the consensus system is used to
realize the consensus clustering process with evolution operations. Then, the DCHP-FCC algorithm is
compared with four k-modes clustering algorithms on seven UCI datasets and uses three performance
validation indices: ARI, ACC and F_measure. The experimental results show that the DCHP-FCC
algorithm can get better clustering results than the other compared algorithms.

There are several ways to continue this study in the future. Firstly, we can consider using different
basic clustering algorithms in the consensus clustering or design a new P system structure instead of
DCHP system. Secondly, the algorithm which can identify the optimal number of clusters should be
investigated for categorical data in the consensus clustering process. In addition, the other clustering
method can be used in the consensus clustering process.
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