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Abstract: Bi, a group 15 element, was added to magnesium alloys and applied to seawater batteries in
marine operating machinery to improve the electrochemical performance and corrosion resistance of
the battery. The electrochemical properties of as-cast pure Mg, Mg–8Al, and Mg–8Al–xBi alloy anodes
in 3.5% NaCl solution were researched. Electrochemical impedance spectroscopy and an immersion
test in 3.5% NaCl solution show that the Mg–8%Al–0.4%Bi alloy provides better corrosion resistance
than Mg and the Mg–8Al alloy. The galvanostatic discharge results show that the Mg–8%Al–0.4%Bi
alloy revealed better electrochemical properties and utilization efficiency in 3.5% NaCl solution.
The Mg17Al12 and BiOCl phases formed during the discharge process of the Mg–8%Al–0.4%Bi alloy
play an important role in improving the electrochemical performance and utilization efficiency of
the alloy.
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1. Introduction

Due to environmental pollution and energy issues, ocean research has attracted widespread
attention and has become a hot topic; however, ocean research requires solutions to resolve its energy
needs [1,2]. A seawater-activated battery was invented in the 1940s to solve the requirements of ocean
exploration and research. This battery system applies active metal (e.g., magnesium, aluminum) as
the battery anode; AgCl, CuCl, Cu2I2, and PbCl2 as the battery cathode; and natural seawater is used
as the electrolyte, which is different from the lithium-ion battery system that normally uses porous
carbon (e.g., graphite) as the anode [3] and metal oxide (e.g., LiMn2O4) as the cathode [4]. When the
battery discharges, it uses seawater from the ocean as an electrolyte to enter the battery system [5–7].
The anode loses electrons and the anode metal continuously turns into metallic cations. At the cathode,
metal chloride is reduced to metal and the battery forms a closed circuit [8]. Seawater-activated batteries
can be used in a large number of marine operating equipment, such as ocean probes, submarines, ocean
buoys, life jackets, and sonars [9–11]. As a new type of power source, seawater-activated batteries
possess many strengths. Firstly, the electrolyte is seawater, so extra electrolytes and storage devices do
not need to be found. For this reason, the weight of the appliance can be greatly reduced. Secondly, it is
an open system, so the polarization phenomenon is avoided to a certain extent. With the continuous
development of technology, seawater-dissolved oxygen batteries have begun to attract the attention
of researchers in China and abroad [12]. In order to obtain high-performance seawater batteries,
high-performance anode materials have become the focus of development [13].

The active metals used as chemical kinetic anodes are well known for their good performance.
Magnesium is considered an ideal anode material for batteries due to its outstanding electrochemical
properties. Firstly, magnesium has a negative standard electrode potential of −2.363 V (SHE), which is
more negative than other active metals such as aluminum, zinc, iron, and titanium [14–17]. Thus,
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a magnesium anode can theoretically demonstrate higher battery voltage. Secondly, magnesium has
a relatively high capacity of 2.205 A·h/g. As a consequence, a magnesium anode can theoretically
provide higher battery capacity [18,19]. Thirdly, magnesium has a low density of 1.74 g/cm3, which can
reduce the quality of the battery system. Fourthly, magnesium is rich in content and does not pollute
the environment. Due to the above four advantages, magnesium is used as an excellent negative
electrode material for seawater batteries [20,21].

Although magnesium is a good anode material for seawater batteries, there are still some
problems to be solved. A Mg(OH)2 film will form on the anode surface during the discharge process.
This Mg(OH)2 film covers the electrode surface and impedes battery discharge, so the actual potential of
the magnesium anode is more positive than its theoretical potential. In addition, the electrode efficiency
of the magnesium anode cannot reach 100%, owing to electrode self-discharge in the electrolyte. Finally,
many metal particles fall off during the discharge process, and this part of magnesium cannot be used
effectively, resulting in a reduction in active ingredients in the anode [22–25]. Now, magnesium alloy
anode performance can be improved by alloying, heat treatment, hot extrusion [26], and electrolyte
modification. Alloying is a simple and effective method [27–30]. According to reports, aluminum and
zinc is added to magnesium to obtain better performance at the beginning. An AZ magnesium alloy
has good corrosion resistance in NaCl solution but low discharge activity. Balasubramanian et al. [31]
reported the performance of AZ31 magnesium alloy as a seawater battery anode. The cell voltage was
close to 1.5 V for 400 mA at 30 ◦C. Jingling Ma et al. [32] studied the effect of Al content on properties
of an AZ magnesium alloy. The AZ91 magnesium alloy has the best electrochemical performance of
−1.193 V (vs. SHE) anode potential and 46% utilization at 20 mA cm−2. Wang et al. [33] researched
the reaction mechanism of an AP magnesium alloy in 3.5% NaCl solution and found that the AP65
magnesium alloy has the best electrochemical performance of −1.686 V(vs. SHE) anode potential
and 84% utilization at 180 mA cm−2. Yuasa et al. [26] reported that Ca can improve the capability of
a Mg–Al–Mn alloy and thins discharge products. The Mg–6Al–0.3Mn–2Ca alloy’s anode potential
increases by 0.088 V and its utilization rate increases by 10.6% compared to the Mg–6Al–0.3Mn anode
at 10 mA cm−2. Feng et al. [34–36] reported that the Mg–Hg–Ga alloy can form Mg21Ga5Hg3 phases,
which reduces the electron transfer resistance during discharge process. In addition, it reduces Hg
pollution and Mg–1.6Hg–2Ga has good electrochemical performance of −1.897 V (vs. SHE) anode
potential and 74% utilization at 180 mA cm−2. In order to obtain anodes with higher utilization
efficiency, more negative discharge potential, and no pollution to the environment, a new composition
magnesium alloy needs to be developed.

It has been reported that the self-corrosion rate of a magnesium alloy is reduced after adding
group 14 and 15 elements [37]. In addition to this, aluminum plays an important role in inhibiting
self-discharge and improving electrode utilization. Therefore, in order to obtain a high-performance
seawater battery anode, this study prepared a Mg–Al–Bi ternary alloy. In order to understand the effect
of elements Bi and Al in the magnesium alloy discharge process, a series of Mg–Al–Bi alloys were
prepared by a high frequency induction furnace. The open circuit potential–time curves, galvanostatic
discharging curves, and electrochemical impedance spectra curves were measured to display the
impact on electrode performance of element Al and Bi. X-ray diffraction and scanning electron
microscopy were used to analyze the changes in the structure and morphology of Mg–Al–Bi alloys
in the galvanostatic discharging process. Based on the experimental data, a reaction mechanism is
proposed to explain all the experimental phenomenon.

2. Materials and Methods

2.1. Preparation of Materials

A certain amount of commercial grade metal Mg (99.99%), metal Al (99.99%), and metal Bi
(99.99%) were prepared to smelt the Mg–Al–Bi alloy. The addition amounts of Al and Bi are shown
in Table 1. The investigated metals were melted in a graphite crucible in a high frequency induction
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furnace. The pressure in the induction furnace was −0.1 MPa at the beginning by vacuumizing and
subsequently, the pressure recovered to 0.3 MPa by accessing argon. Then, the furnace started to heat
at a stable heating power at 30% total power to 750 ◦C. This process lasted 3 min and stayed for 7 min
at 750 ◦C, thus the uneven distribution of alloying elements reduced [38]. Finally, the molten alloys
were poured into a preheated steel mold that was installed in the induction furnace and cooled down
to 400 ◦C to remove from the induction furnace. The entire magnesium alloy preparation process is
shown in Figure 1.

Table 1. Sample content of Mg–Al–Bi alloys.

Sample Bi Al Mg

1 0% 0% 100%
2 0% 8% 92.0%
3 0.2% 8% 91.8%
4 0.4% 8% 91.6%
5 0.6% 8% 91.4%
6 0.8% 8% 91.2%
7 1.0% 8% 91.0%
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2.2. Electrochemical Measurements

A CHI660D electrochemical workstation was adopted to measure the electrochemical performance
of the magnesium alloy anode. The electrochemical measurements were carried out at 25 ± 1 ◦C
by a three-electrode system. Ruthenium titanium mesh and saturated calomel electrode (SCE) were
used as the counter electrode and reference electrode, respectively. The electrolyte was composed of
3.5 wt% NaCl aqueous solution (250 mL for each test). The magnesium alloy anode with an area of
1 cm2 sealed glue was ground with 240, 400, 1000, and 2000 mesh abrasive paper. Electrochemical
impedance spectroscopy (EIS) measurements were conducted in the open circuit potential + 20 mV
and the measuring frequency was 0.1 Hz to 100 k Hz. Galvanostatic discharging tests were tested at
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current densities 30 and 120 mA/cm2, respectively. The anode utilization efficiency was acquired by
calculating the theoretical weight loss and the actual weight loss in Equation (1).

Utilization e f f iciency =
Wtheoretical

Wactual
× 100% (1)

2.3. Structural Characterization

The X-ray diffraction patterns of the Mg–Al–Bi alloys and pure Mg were recorded with a Rigaku
MiniFlex II X-ray diffractometer. The 2θ angle regions between 20◦ and 80◦ were measured at a scan
rate of 4◦ min−1. The grain size and lattice constant of Mg alloys were analyzed by JADE 6.5.

The scanning electron microscopy (SEM) observations were performed with a field-emission
Hitachi s-4800 and SEM/energy dispersive spectrometer (EDS) spectroscopy mappings were undertaken
at an acceleration voltage of 15 kV. X-ray photoelectron spectroscopy (XPS) was performed using a
PHI5000 Versa Probe to analyze the chemical composition and valence state. The energy calibration of
the spectrometer was performed using C 1s peak at 284.5 eV.

3. Results

3.1. Open Circuit Potential Analyses

Figure 2 shows the open circuit potential–time curves of Mg–8%Al–xBi alloys measured at
25 ± 1 ◦C. The open circuit potential gradually became stable after testing for 400 s. The relatively
stable open circuit potential indicates that the electrochemical state on the electrode surface is relatively
stable. The addition of Bi makes the open circuit potential of Mg–8%Al–xBi alloys negative from
Bi content 0.2% to 0.4% and makes the open circuit potential positive from Bi content 0.6% to 1.0%.
The Mg–8%Al–xBi alloys with Bi content of 0.4% have the most negative open circuit potential, so they
have the possibility of generating a more negative potential during galvanostatic discharging.
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3.2. Galvanostatic Discharging Analyses

Figure 3 displays the discharge curves and utilization efficiency–Bi content curves of Mg–8%Al–xBi
alloys at 30 and 120 mA/cm2. The tests of Mg–8%Al–xBi alloys under different Bi content were
investigated. The Mg–8%Al–xBi anodes have more negative potential than the Mg anode and
Mg–8%Al anode. The Mg–Al–Bi anodes have relatively stable potential at 30 and 120 mA cm−2, but the
Mg anode has serious polarization at 120 mA cm−2 and therefore, reduces its discharge performance.
The potentials of Mg–8%Al–xBi, Mg, and Mg–8%Al alloys all shift positively at the beginning of the
galvanostatic discharging, then shift negative fast over different periods, and then, continue to move
positively. This process is due to the discharge products attached to the electrode surface, which blocks
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the discharge process. The consequent sudden change in potential indicates the cracking of the
passivation film. Finally, a dynamic balance is established between the formation and desorption of
discharge products. By comparing Figure 3a,b, the potential change during the steady discharge period
becomes obvious as the discharge current increases. This is caused by the accelerated corrosion rate of
the electrode and the shedding of α-Mg crystal grains. In general, the Mg–8%Al–0.2%Bi alloy has the
most negative potential of −1.466 V and the highest utilization efficiency of 56.6% when it is discharged
at the current density of 30 mA/cm2; the Mg–8%Al–0.4%Bi alloy has the most negative potential of
−1.185 V and the highest utilization efficiency of 72.4% when it is discharged at the current density
of 120 mA/cm2. By comparing Mg, the Mg–8%Al alloy, and the Mg–8%Al–xBi alloy, the potential of
the Mg–8%Al–xBi alloy is more negative than that of Mg or the Mg–8%Al alloy and the utilization
efficiency is higher. This effect is attributed to the intermetallic Mg17Al12 and Bi oxide, which can
destroy the Mg(OH)2 film formed on the anode surface, making the electrolyte easy to contact with
the matrix [37,39,40]. The Mg17Al12 phase is good for stripping of corrosion products, avoiding the
polarization of the electrode. The addition of Bi makes the potential show a positive trend with
the increase in Bi content at 30 mA/cm2. In addition, the potential shows a negative trend with the
increase in Bi content from 0% to 0.4% and then, shows a positive trend with the increase in Bi content
from 0.4% to 1.0% at 120 mA/cm2. The more negative the alloy discharge potential, the higher the
utilization efficiency.
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Figure 3. Discharge curves of Mg–8%Al–xBi electrode with different Bi content at (a) 30 mA/cm2 and (b)
120 mA/cm2; Discharge potential–Bi content curves at (c) 30 mA/cm2 and (d) 120 mA/cm2; Utilization
efficiency–Bi content curves of Mg–Bi alloy at (e) 30mA/cm2 and (f) 120 mA/cm2, measured in 3.5%
NaCl solution.

3.3. Microstructures

Figure 4 shows the XRD patterns of the Mg–8%Al and Mg–8%Al–0.4%Bi alloys and the 4N grade
Mg. The peak positions of Mg are in accordance with the standard powder diffraction pattern of Mg
(PDF#35-0821), but the peak positions shifted after adding the Al element compared with the standard
powder diffraction pattern of Mg (PDF#35-0821). This is because the addition of a large amount
of aluminum changes the lattice structure of magnesium and simultaneously forms the Mg17Al12

(PDF#73-1148) phase. The grain sizes and lattice constants from the XRD data are calculated in Table 2.
The lattice parameters of Mg–8%Al–0.4%Bi alloys increase with the addition of elements Al and Bi.
As shown in Table 2, the lattice parameters of pure magnesium change when alloying elements are
added. The grain size is arranged in the following order: Mg–8%Al–0.4%Bi < Mg–8%Al < Mg, denoting
the addition of Al and Bi is beneficial to reduce the grain size of Mg alloys. In the Mg–8%Al–0.4%Bi
XRD pattern, the Bi element content is too low and therefore, cannot be reflected.
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Table 2. Grain size and lattice parameters of the Mg–Al–Bi alloys.

Sample Grain Size/Å
Lattice Parameters/Å

a b c

Mg 753 3.2294 3.2294 5.1599
Mg–8%Al 251 3.1825 3.1825 5.3346

Mg–8%Al–0.4%Bi 244 3.1971 3.1971 5.3540

3.4. XPS Analyses

In order to further determine the chemical composition of the Bi element in the discharge product,
XPS was used to prove the existence of the low-content element and to detect its valence. Figure 5 is
the peak fitting curve of the XPS spectrum of Bi4f for Mg–8%Al–0.4%Bi alloy discharging for 30 min
at 120 mA cm−2. It reveals that the XPS spectrum of Bi4f has two high peaks and two low peaks.
By fitting data and comparing with standard binding energy, the peak of Bi4f5/2 has a peak of Bi with a
binding energy of 157 eV and a characteristic peak of Bi3+ with a binding energy of 159 eV. Due to the
presence of chloride ions and the neutral pH of the solution, Bi3+ exists in the form of BiOCl [41].
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3.5. SEM and EDS Analyses

Figure 6a,b show the SEM image of Mg anode and Mg–8%Al–0.4%Bi anode surfaces after discharge
at 120 mA/cm2 for 30 min. It is observed that the discharge products are distributed on the anode
surface in Mg and Mg–8%Al–0.4%Bi anodes The discharge product of Mg anode is thicker and has
fewer surface cracks, while the discharge product of Mg–8%Al–0.4%Bi anode is thinner and has more
surface cracks. According to reports, the discharge performance of Mg batteries is related to their
appearance during discharge. Cao et al. [42] proved that the discharge products attached to the surface
of the Mg–Li-Al–Ce–Zn–Mn alloy are loose small pieces. These loose oxidation products allow the
electrolyte to penetrate and maintain the anode discharge activity, while the bulk discharge products
quickly fall off. Therefore, the cracks that appear on the discharge product shown in Figure 5 will also
promote the penetration of the electrolyte into the discharge product and maintain contact with the
substrate to maintain its discharge activity, while the thick one with fewer cracks formed on the surface
of the magnesium anode blocks the contact between the electrolyte and the anode surface. Therefore,
Mg–8%Al–0.4%Bi shows better discharge performance.
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Figure 6. SEM images of (a) Mg and (b) Mg–8%Al–0.4%Bi discharged at 120 mA/cm2 for 20 min with
discharge products; (c) Mg and (d) Mg–8%Al–0.4%Bi discharged at 120 mA/cm2 for 20 min without
discharge products.

Figure 6c,d show the SEM image of the Mg anode and Mg–8%Al–0.4%Bi anode surfaces discharged
at 120 mA/cm2 without discharge products. The Mg–8%Al–0.4%Bi anode surface is uniformly dissolved.
In contrast, larger corrosion pits were observed on the magnesium anode. The deep pits observed in
the Mg anode may be caused by the shedding of α-Mg grains from the anode during the discharge.
These shed α-Mg grains cannot be used for discharge, resulting in a decrease in discharge capacity and
anode utilization efficiency [43,44]. As shown in Figure 6, the surface of the Mg–8%Al–0.4%Bi anode
was uniformly corroded, and no corrosion pits were observed. This is considered to be another reason
why the discharge performance and anode efficiency of the Mg–8%Al–0.4%Bi anode are higher than
those of the Mg anode under high current density.

Figure 7a shows the SEM image of the Mg–8%Al–0.4%Bi alloy and the EDS results of magnesium
and the alloying elements’ distribution. According to Figure 7, most of the Al elements are evenly
distributed on the surface, and the Bi element content is too low to be detected. No obvious second
phase can be observed in the image. Figure 7b shows the SEM image of the corroded surface
morphology and the related EDS results of the Mg–8%Al–0.4%Bi alloy after discharge at the current
densities of 120 mAcm−2 for 30 min without discharge product. According to the EDS results in
Figure 7b, Al elements gather together and basically exist in the form of Mg17Al12 phase, and at
the same time, Bi elements are enriched on the anode surface after discharge in the form of BiOCl.
They formed a protective layer on the surface of the anode to reduce self-discharge and strip the thick
Mg(OH)2 passivation film. Therefore, the discharge performance and utilization efficiency of the
battery were improved.
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3.6. Electrochemical Impedance Spectroscopy (EIS) Analyses

Figure 8 displays the Nyquist plots of Mg, Mg–8%Al, and Mg–8%Al–0.4%Bi measured in
3.5% NaCl solution at 25 ± 1 ◦C. According to Figure 8, the interfacial processes and corrosion
mechanisms are studied. The shapes of the Nyquist diagrams of all three samples are similar,
so they have similar electrochemical behavior. All Nyquist plots have three parts: two capacitive
semicircles at high frequency and medium frequency, and one inductive semicircle at low frequency.
The capacitive semicircles at high frequency and medium frequency are related to electron transfer
and the electrochemical double-layer. The larger the radius of the semicircle, the greater the corrosion
resistance. The radius of the loops increases according to the order Mg < Mg–8%Al < Mg–8%Al–0.4%Bi.
There is a low frequency induction semicircle in almost all magnesium alloys, which may be attributed
to the interaction of corrosion products and the corroded alloy surface. The Mg–8%Al–0.4%Bi
alloy possesses the highest impedance and it exhibits the optimal corrosion resistance, which is
consistent with the results obtained in the immersion experiment. In order to explain the Nyquist plots,
an equivalent circuit is used to model the impedance (Figure 8b). Table 3 lists the main EIS parameters
of the equivalent circuit fitted by ZSimpWin software. In the equivalent circuit fitting parameters
of the Mg alloy, CPEct and Rct describe the electrochemical double layer and the charge transfer
resistance, respectively; CPEfilm and Rfilm describe the capacitance and resistance of the passivation
film on the alloy, respectively. R and L, respectively, describe the low frequency inductance resistance
and inductance resulting from the adsorption of corrosion products. Rs describes the resistance
of the solution. The value of Rct + Rfilm determines the corrosion resistance of the material in the
electrolyte. The larger the value of Rct + Rfilm, the better the corrosion resistance. The Rct + Rfilm

of Mg–8%Al–0.4%Bi alloy reaches 205 Ω, while the Rct + Rfilm of pure Mg is 19.941 Ω. For the
Mg–8%Al–0.4%Bi alloy, the observed Rct + Rfilm is much larger than that of the Mg and Mg–8%Al
alloys. It shows the Mg–8%Al–0.4%Bi alloy has better corrosion resistance, which is consistent with
the results of the immersion experiment.
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Figure 8. (a) Nyquist curves of Mg and Mg alloys. (b) Equivalent circuit diagram of Figure 7a measured
in 3.5% NaCl solution.

Table 3. Parameter values of the equivalent elements in Figure 7.

Sample Rs/Ω CPEct/µF Rct/Ω CPEfilm/mF Rfilm/Ω L/H R/Ω

Mg 3.008 0.4493 5.751 0.2322 14.19 0.6358 6.6100
Mg–8Al 5.662 5.676 70.92 0.1200 68.74 6.685 60.0641

Mg–8Al–0.4Bi 6.612 9.877 106.5 0.1120 98.50 10.1 74.8830

3.7. Immersion Test Analyses

The corrosion rate curves of the Mg, Mg–8%Al, and Mg–8%Al–xBi alloys were compared in
Figure 9. It reflects that the Mg–8%Al–0.4%Bi alloy has the slowest corrosion rate and its chemical
corrosion resistance is better than that of Mg and the Mg–8%Al alloy. The corrosion rate of all alloys
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is faster at the beginning of corrosion, then gradually slows down, and finally, tends to be constant.
Because a passivation film is formed on the surface of the alloy, the protection of the passivation film
and the hydrogen evolution overpotential of the alloy determine the alloy’s corrosion rate. The better
protection of the passivation film, the higher the hydrogen evolution overpotential of the alloy, and the
slower the corrosion rate. The results indicate that the addition of metal Bi slows down the evolution
of hydrogen because Bi is a high hydrogen evolution overpotential metal. Therefore, the chemical
corrosion rate of the Mg–Al–Bi alloy is lower than that of pure magnesium and pure aluminum [45].
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Figure 9. (a) Corrosion rate–time curves of Mg–8%Al–xBi alloys measured in 3.5% NaCl solution.
(b) Weight loss–Bi content of Mg–8%Al–xBi alloys soaked in 3.5% NaCl solution for 24h.

The anode surface morphologies of pure Mg and Mg alloys immersed in 3.5 wt% NaCl solution
for 12 and 24 h are shown in Figure 10. According to the microstructure and corrosion morphology,
corrosion can be classified as either “dotted” or “flaky” corrosion type. The degree of corrosion at the
center of the sample is determined by the alloy properties, while the corrosion at the edge of the sample
is determined by the alloy properties and edge stress. The corrosion morphology of the Mg–8%Al alloy
is similar to that of the Mg–8%Al–0.4%Bi alloy, which is mainly flaky. The metallographic photograph
indicates that corrosion started to form small flaky corrosion areas and then, connected into a larger
corrosion areas. The formation of larger “flaky” corrosion areas and deep pitting corrosion of pure
Mg revealed that the occurrence and spread of corrosion was very fast. That is, pure magnesium can
quickly initiate corrosion, but cannot prevent the spread of corrosion. The corrosion products exist in
the form of individual large pieces and are not connected into flakes. This leads to a lower corrosion
resistance of pure magnesium. The degree of corrosion increases in the order Mg–8%Al–0.4%Bi <

Mg–8%Al < Mg. Hence, the Mg–8%Al–0.4%Bi alloy shows the best corrosion resistance, and the
pure Mg exhibits the most serious corrosion. In Figure 10, the edge corrosion of pure magnesium is
light, but the center corrosion is serious. It has good edge stress resistance, but the matrix has poor
resistance to chemical corrosion. The pitting corrosion of pure magnesium spreads to the depths
of the magnesium matrix, causing more serious corrosion. The corrosion of Mg–8%Al alloy and
Mg–8%Al–0.4%Bi alloy is basically concentrated on the edge, and the corrosion resistance of the matrix
is better. Mg–8%Al–0.4%Bi has the least degree of corrosion, so its corrosion resistance is the strongest
in 3.5% NaCl without discharge.
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Figure 10. Metallographic microscope images of (a) Mg,(b) Mg–8%Al, and (c) Mg–8%Al–0.4%Bi soaked
in 3.5% NaCl solution for 12 h; (d) Mg, (e) Mg–8%Al, and (f) Mg–8%Al–0.4%Bi soaked in 3.5% NaCl
solution for 24 h.

4. Discussion

The mechanism diagram of the pure Mg and Mg–8%Al–0.4%Bi alloy discharge process and the
cross-section of corrosion products are depicted in Figure 11. Song [46] found that during the discharge
process of magnesium and magnesium alloys, a protective film of Mg(OH)2 is formed on the anode
surface. Because the protective layer is loose in the presence of certain ions (such as Cl- etc.) and
cannot peel off quickly, the protective performance of the film is poor and the discharge performance
is reduced, as shown in Figure 11a. However, it can be clearly seen from Figure 6 that the surface of
the pure Mg is corroded very seriously after discharging in 120 mA cm−2, while the surface of the
Mg–8%Al–0.4%Bi alloy is very flat and shows good corrosion resistance, which means the protection
of the film formed by the Mg–Al–Bi alloy is greater than that of the Mg(OH)2 film formed by pure Mg
in discharge. It can be seen from Figure 6 that after the addition of Al and Bi, the corrosion resistance
of the alloy becomes better and the alloy surface film becomes thin. This may be because Bi has a
high hydrogen evolution overpotential. In general, the higher the hydrogen evolution overpotential,
the greater the resistance of the hydrogen evolution reaction, thereby slowing down self-corrosion.
At the same time, the Mg17Al12 and BiOCl produced in the discharge process peel off the Mg(OH)2

film, which improved the discharge performance of the anode, as shown in Figure 11b.
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5. Conclusions

1. The electrode performance of the as-cast Mg–8%Al–0.4%Bi alloy shows that compared with
pure Mg or Mg–8%Al alloy, it has a more negative discharge potential of −1.185 V and a higher
utilization rate of 72.4%.

2. EIS research and immersion tests show that the chemical resistance of the Mg alloy surface
protective film follows the following order: Mg < Mg–8%Al < Mg–8%Al–0.4%Bi. Therefore,
the corrosion rate of the Mg–8%Al–0.4%Bi alloy in seawater is the slowest.

3. Different phases in the magnesium alloy play an important role in electrochemical performance.
The Mg17Al12 and BiOCl phases in the as-cast Mg–8%Al–0.4%Bi alloy can increase the alloy
utilization rate and promote the dissolution of α-Mg in seawater during discharge. Moreover,
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the Bi element is environmentally friendly and pollution-free, which means that Mg–8%Al–0.4%Bi
alloy is a promising electrode material for the anode of seawater-activated batteries.
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