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Abstract: Neural networks (NNs), which have excellent ability of self-learning and parameter adjusting,
has been widely applied to solve highly nonlinear control problems in industrial processes. This paper
presents a reference-model-based neural network control method for multi-input multi-output (MIMO)
temperature system. In order to improve the learning efficiency of the NN control, a reference model
is introduced to provide the teaching signal for the NN controller. The control inputs for the MIMO
system are given by the sum of the output of the conventional integral-proportional-derivative (I-PD)
controller and the outputs of the neural network controller.The proposed NN control method can
not only improve the transient response of the system, but can also realize temperature uniformity
in MIMO temperature systems. To verify the proposed method, simulations are carried out in
MATLAB/SIMULINK environment and experiments are carried out on the DSP (Digital Signal
Processor)-based experimental platform, respectively. Both results are quantitatively compared to
those obtained from the conventional I-PD control systems. The effectiveness of the proposed method
has been successfully verified.

Keywords: neural network control; multi-input multi-output temperature system; transient response;
temperature uniformity

1. Introduction

To realize the precise temperature of the industrial process, temperature controllers are widely
applied to manage manufacturing processes and operations. The common uses include food processing,
packaging machines, and plastic extrusion etc. Their performances can seriously affect product quality,
energy consumption, and production cost. In practical application, the proportional-integral-derivative
(PID) controller has been widely used for its simple structure and wide applicability, especially in
linear systems or first and second order systems [1]. Common methods for determining PID controller
parameters are Ziegler–Nichols (ZN) and Cohen–Coon tuning rules, which are widely used in the
industry due to their simplicity and ease of implementation, but may easily result in overshoot and
weak response damping [2]. Meanwhile, most industrial processes are multi-variable nonlinear systems
with big time constants, strong coupling effects, and large time delays. For such controlled objects,
only using the conventional PID controller may not satisfy the requirements of the system performance.

In order to ensure the robustness and stability of the controller, many methods have been proposed
to improve the performance of the PID controller, such as gain and phase margin [3], pole placement [4],
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and internal model control (IMC) [5]. For canceling the coupling interactions between each channels in
multi-input multi-output (MIMO) systems, a verity of decoupling control strategies have been applied,
such as inverse Nyquist array(INA) [6], feedforward decoupling control [7], and inverse based
decoupling control [8].These decoupling control methods are to design the decoupler so that the MIMO
control system can be divided into multiple single-input single-output (SISO) loops, which allows
one to adopt well developed single loop control methods. However, the modeling error may decrease
system performance as decoupling is guaranteed under the condition that the precise mathematical
model is obtained. The quality of the obtained model depends on many on-site factors, such as
the excitation condition and selected identification algorithm [9–11]. In addition, the decoupling
control is not enough to reach uniform temperature control in transient state without adjusting the
PID parameters in different channels [12].

Considering the complex control rules and controller computation grow exponentially with a
number of variables in nonlinear MIMO systems, intelligent control strategies are developed and
widely used. Fuzzy logic control, genetic algorithms, and neural networks (NN) are the most promising
methods among them [13–15]. NN is known for its great computing power and learning ability to
emulate various systems dynamics with a highly parallel structure. Over the past few decades,
NN has been successfully applied in many fields such as system modeling, pattern recognition,
and signal processing [16–19]. In thermal systems, the NN has been used for heat transfer data
analysis, performance prediction, and dynamic modeling etc. [20–23]. It is shown that NN is well
suitable to deal with complex nonlinear relationships in control systems. NN helps solve the problem
in typical heating system control methods that once the parameters of the control system are designed,
they cannot be adjusted while the system is in operation. For a thermal process system with strong
nonlinearly, large lag, and strong coupling, an adaptive system can improve control performance in
terms of the transient response and overshoot [24–26].

Our previous research has proposed the NN control method applied to the temperature
control system, the proposal has successfully improved the transient response of the single-input
single-output (SISO) temperature control system [27,28]. However, many controlled objects are
MIMO systems in practical applications, the dynamic uniform temperature of the MIMO system
is widely required. In the MIMO temperature control system, the coupling effects and delay
time differences make the system much more complex than the SISO temperature control system
and courses the temperature difference between each channels. Thus, different from the SISO
system control, the control performance of the MIMO system should not only focus on improving
transient response and overshoot, more importantly, focus on reducing temperature differences to
realize temperature uniformity of different channels. In this paper, we extend the previous NN
control method from SISO to MIMO systems, clearly defining the parameters selection method of the
reference model for the complex multi-point control system. Moreover, the coupling effects on the
system performance can been effectively suppressed by the NN learning controller without specially
designing decoupling compensators.

Based on our previous research, this proposal focuses on the multi-inputs multi-outputs (MIMO)
temperature control system to improve the transient response of each channel in the MIMO system and
reduce the temperature difference between each channel, realizing the temperature uniformity of the
MIMO temperature system. A reference-model-based neural network control method combined with
the integral-proportional-derivative (I-PD) controller is proposed. The system is driven by the error
signal between the reference model output and real system outputs. The error signal of each channel is
used as the teaching signal for the corresponding NN controller. The output of NN controller is added
to the I-PD controller output, appropriately adjusting the control input of each channel. The MIMO
temperature system is expected to achieve uniform temperature and steady state quickly. The rest of
this paper is organized as follows: Section 2 describes the structure of the proposed MIMO control
system. The simulation results and experimental results are presented in Sections 3 and 4, respectively.
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Meanwhile, the results are quantitatively compared with those of the I-PD control system. A simple
conclusion is given in Section 5.

2. Configuration of the MIMO Temperature Control System

This section describes the configuration of the proposed reference-model-based NN control
method in the MIMO control system. In this paper, the MIMO system is simplified as a two-input
two-output (2I2O) model. The block diagram of the proposed temperature control system is shown in
Figure 1.

Figure 1. Block diagram of the multi-input multi-output (MIMO) temperature control system.

As shown in Figure 1, the temperature controller consists of two feedback controllers C1 and C2,
a reference model Rm, and two neural network controllers CNN1 and CNN2. Here, r is the reference
of the system, and y1 and y2 indicate the actual outputs of two channels. v1 and v2 are the outputs
of two feedback controllers C1 and C2, respectively. uN1 and uN2 indicate the outputs of CNN1

and CNN2, respectively. Thus, the control inputs of the two channels can be respectively indicated by
u1 and u2 which can be expressed as the sum of the outputs of the NN controllers and I-PD controllers.
y1 and y2 represent the inputs and outputs of the 2I2O controlled object, respectively. Due to the control
object of each channel being a plant with a time delay, the reference model Rm can be appropriately
designed to provide the ideal temperature output with the same time delay which is the maximum
time delay of two channels in the MIMO system. er1 and er2 are the errors between the outputs of the
system and output of the reference model, respectively, which are the teaching signal for NN. The NN
controller adjusts control inputs to compensate for the difference between the reference model output
and each channel output. The explanation of the control system is divided into four main parts.

2.1. MIMO Controlled Objects with Strong Coupling Effects

The control system is designed based on the MIMO temperature system with a strong coupling
influence, the schematic block diagram of the coupled system is shown in Figure 2, where u1 and u2

are defined as the inputs of channel ch1 and channel ch2, respectively. In addition, y1 and y2 indicate
the output of ch1 and ch2, respectively. The coupling terms between the two channels are obtained as
P21 and P12, respectively. In this proposal, the controlled objects can be defined as a first-order plus
time delay (FOPTD) system expressed as Equation (1) [29]. The step response characteristics of the
controlled object is shown in Figure 3, where τ is time delay, K is the steady-state gain, and T is the
time constant.

P(s) =
K

Ts + 1
e−τs (1)
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Figure 2. Block diagram of the two-input two-output (2I2O) controlled object.

Figure 3. Step response of FOPTD plant.

2.2. Conventional I-PD Controller

Considering that the NN controller needs time to train its parameters for getting expected outputs,
it will mainly act after training. Thus, the conventional I-PD controllers as the feedback controllers
are designed for each channel to eliminate the proportional and derivative kick appeared during
the set-point change and reduce the undesirable overshoot of the controlled variable [30]. The block
diagram of the conventional I-PD controller is shown in Figure 4. For each I-PD controller parameters
of the system, Kpn is the proportional gain and Tin is the integral time constant. Tdn represents the
derivative time constant, where n = 1, 2. They are related to the plant parameters (K, T, and τ) as
described above. In addition, µ represents the low-pass filter gain of the derivative term for reducing
the high-frequency gain and noise. The feed-forward gain K f is added to decide the system response
speed (K f = 0: slow; K f = 1: fast).

Figure 4. Block diagram of the integral-proportional-derivative (I-PD) controller.
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For the industrial PID controller tuning, Ziegler–Nichols tuning rules are recognized and widely
applied in actual control systems. The robustness and stability of the controllers are ensured.
The parameters of two I-PD controllers C1 and C2 are calculated based on this tuning rule as
Equations (2)–(4).

Ti1 = 2τ11; Ti2 = 2τ22 (2)

Td1 = 0.5τ11; Td2 = 0.5τ22 (3)

Kp1 =
1.2T11

K11 ∗ τ11
; Kp2 =

1.2T22

K22 ∗ τ22
. (4)

2.3. Multi-Layer NN Controller

In order to realize the uniform temperature of different channels, a multi-layer NN controller is
introduced into each channel of the control system for the reference model output tracking. In the
proposed system, each NN controller has one input layer with two neurons, one hidden layer with 10
neurons, and one output layer with one neuron. Thus, the structure of each multi-layer NN controller
can be described as 2-10-1. Figure 5 illustrates the multi-layer neural network controllers.

Figure 5. Structure of the multi-layer neural network controllers.

In this system, the reference value of the system r and y1 (the output of ch1) are set as the
input signals of the NN controller1, r and y2 (the output of ch2) are set as the input signals of the
NN controller2. For each controller, two inputs are transmitted in the forward direction through
the network. The composition of the learning process of the network is by forward propagation and
back propagation [31]. Neural network calculates and store intermediate variables from the input
signals to the output signals, which is expressed as Equation (5):

NNout = f (Wout ∗ f (Win ∗ NNin + b1) + b2). (5)

For each NN controller, NNin is the input vector and NNout is the output vector. Win and Wout are
connection weights of neurons. b1 is the bias of the hidden layer neurons, b2 is the bias of the output
layer neurons, and f (∗) is the activation function.

For training the network, the back propagation algorithm is used to update the weights and biases.
Through this process, each NN controller constantly adjust its outputs uN1 and uN2 for achieving
the minimum error between the reference model output and actual outputs of two channels in
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this system. Considering one of the NN controllers, a neuron in the output layer is called neuron j
(here j = 1). The error at the output of the neuron j for nth iteration is defined by Equation (6). In the
backward process, weights on the connections between all layers will be updated to minimize the
error between target and output until the optimum weights are found [32]. Therefore, the total error is
the sum of ej for all neurons in the output layer, as given in Equation (7):

ej(n) = yr(n)− yj(n) (6)

ε(n) =
1
2 ∑

j
e2

j (n) (7)

where the reference model output yr is the expected output for neuron j and yj(n) is the actual outputs
of two channels. The output for the neuron j can be expressed as Equation(8), where k = 10 is the
number of inputs from the hidden layer. Here, Wj0 equals the bias bj applied to the neuron j:

yj(n) = f (
k

∑
i=0

Wji(n)yi(n)). (8)

The connection weights of the neuron j are updated by the chain rule, and can be expressed in
Equation (9), where δj(n) represents the local gradient of neuron j, given in Equation (10):

∂ε(n)
∂Wji(n)

= δj(n)yi(n) (9)

δj(n) = −ej(n) f ′(
k

∑
i=0

Wji(n)yi(n)). (10)

Therefore, the weight wij is updated by adopting the gradient descent, expressed as Equation (11).
The correction ∆Wij ensures wij changes in a way that always decreases the error, given in Equation (12),
where α represents the learning rate of the back propagation:

Wji(n + 1) = Wji(n) + ∆Wij(n) (11)

∆Wij(n) = −α
∂ε(n)

∂Wji(n)
. (12)

The neuron bias connection for the neuron j is adjusted by δj(n) during training, as given in
Equation (13), where β is the training gain of the bias:

bj(n + 1) = bj(n) + βδj(n). (13)

In order to accelerate the training speed and solve the vanishing problem in the NN controller,
the rectified linear unit (ReLU): f (x) = max(0, x) is used as the activation function [33]. The derivative
of the function is given in Equation (14):

f
′
(x) =

{
1, x ≥ 0

0, x < 0
(14)

2.4. Reference Model

In the reference-model-based NN control structure, the teaching signal of each NN controller is
provided by errors between the reference model output and real plant output. It also helps to prevent
over learning of the NN controller.
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For the controller design, time delays in the dynamic systems can be approximated by rational
transfer functions. The exponential function can be defined as follows [34]:

ex ≈ lim
n→∞

1
( x

n + 1)n . (15)

In order to save memory and consider trade-off between accuracy and calculation burden, the time
delay e−τs which is written as 1/eτs can be described as the second-order rational approximation in
Equation (16):

e−τs ≈ 1
( τs

2 + 1)2 . (16)

Then the reference model with time delay can be expressed as Equation (17). Here, τ and T are
delay time and the time constant of the reference model, which are set based on the real system model.
It is designed to provide the ideal temperature output with the same time delay τ which is the
maximum time delay of channels in the MIMO system. In addition, the time constant T of the reference
model is the smaller time constant in the identified system model. The gain PRM value of 0.01 is added
to the plant time constant T for improving the transient response speed of the system:

Rm(s) =
1

T · PRM · s + 1
∗ 1
( τs

2 + 1)2 . (17)

3. Simulation Results

To verify the efficiency of the proposed control method, the control object is based on a real
temperature control system. Figure 6 shows the experimental setup for the multi-input multi-output
temperature system with strong coupling effects and large time delays.

(a) Front view. (b) Rear view.

Figure 6. Experimental setup.

3.1. Experimental Setup and System Identification

This system has four coupled aluminum blocks, the size being 60 × 60 × 50 (mm). As shown in
Figure 6b, they are arranged in line with the same separation distance by nuts, forming a two-input
two-output system with strong coupling and large time delays. The left two blocks as a whole are
channel ch1 and the right two blocks as a whole are channel ch2. Channel ch1 and channel ch2 have
two heaters of 150 W (Cartridge Heater, type G2A56, WATLOW, Chiyoda, Japan) and the temperature
sensor (K type thermocouple, RKC, Tokyo, Japan), respectively. The temperature sensor transforms
the temperature (0–400 ◦C) into the output voltage (0–10 VDC). They are placed inside of holes with
a depth of 30 [mm] (close to the inner center of aluminum blocks). The heaters are controlled by
the solid-state relay (SSR, type G3PE-245BL, Omorn, Tokyo, Japan), which is driven by the pulse
width modulation (PWM). The temperature is controlled by changing the duty ratio of the PWM
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signals. A digital signal processor (DSP, DS1104 R&D Controller Board, dSPACE Japan, Tokyo, Japan)
is implemented as the temperature controller. The sampling time is set as 0.1 [s]. Although the SSR is
a nonlinear element for the relay based on the PWM duty signal, it can be considered as the gain if
the switching frequency of the relay is sufficiently large in comparison to the control bandwidth of
the controlled object. In our system, the control bandwidth is 1

2π∗PRM∗T = 0.0064 [Hz] (PRM ∗ T is the
reference model time constant), while the PWM frequency is 10 [Hz]. Therefore, SSR can be handled as
a linear factor.

The step signal (20% PWM duty cycle) is added to ch1 and ch2, in order. The heaters of the ch1 and
heaters of ch2 are actuated, respectively. The ambient temperature during the performed identification
experiments was 28 ◦C. The controlled object of the temperature control system is identified from the
input-output(step response) measured data. The ARX (auto-regressive with eXogenous) model based
on the least-squares criterion is applied to estimate the system transfer functions in MATLAB. The
following Equation (18) shows the form of the ARX model, where u(k) is the system inputs, y(k) is the
system outputs, nk is the system delay, and e(k) is the system disturbance:

A(q)y(k) = B(q)u(k− nk) + e(k). (18)

In Equation (18), A(q) and B(q) are given as follows:

A(q) = 1 + a1q−1 + · · ·+ ana q−na (19)

B(q) = b1q−1−nk + · · ·+ bnb q−nb−nk (20)

where na and nb are the orders of polynomial A(q) and B(q), respectively. The parameters of A(q)
and B(q) are determined using the least squares method that minimizes the quadratic prediction
error criteria. In MATLAB, the identified discrete-time model is transformed into the continuous-time
model and model order is reduced by balanced realization, obtaining the identified system model
in the form of first-order plus time delay [35,36]. The performance parameter used for validating
the identified model is the percentage of fit as the following expression (21), where y(k) is the actual
output, ŷ(k) is the model output, and y(k) is the mean of the actual output:

Fit(%) = (1−

√
∑N

k=1[ŷ(k)− y(k)]2√
∑N

k=1[y(k)− y(k)]2
)× 100%. (21)

The identification results of the coupling terms are shown in Figure 7 and the estimation fit in
results shows that the accuracy of the estimated model is above 95%.

Figure 7. System identification results.
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Thus, the identification results can be finalized as (22). The system controller parameter design,
system simulation, and experiments are all based on the identified plant transfer functions:

Gp(s) =

[
P11 P12

P21 P22

]
=

[ 2.7502
2482.4s+1 e−431s 1.4614

3085.1s+1 e−1042s

1.7352
3195.9s+1 e−973s 2.3937

2588.6s+1 e−464s

]
. (22)

3.2. Simulation Results

According to the identified system model, the gains of two I-PD controllers are determined by the
Ziegler–Nichols method, as described above. The gains of the I-PD controller (C1) are Kp1 = 2.5146,
Ti1 = 861.5, and Td1 = 215.375. The gains of the I-PD controller (C2) are Kp2 = 2.7968, Ti2 = 927.98, and
Td2 = 231.995. In addition, the reference model Rm(s) is given as (23). Here, PRM is set as 0.01:

Rm(s) ≈
1

2482.4 ∗ 0.01 ∗ s + 1
∗ 1
( 464s

2 + 1)2
. (23)

The hyper-parameters of both NN controllers are initialized as follows: The learning rate
α = 1× 10−10 and the bias training gain β = 1× 10−5. They are determined via the try and error
method. The initial biases of each layer are initialized as zero. The weights of the NN controller are
initialized to small random values between −1 and 1.

The simulation is divided into two phases. In the first phase, setting the reference signal to 100 ◦C,
then the temperature of different channels increases from 0 ◦C to 100 ◦C. During this period, the neural
network controller completes learning. Then, in the second phase, a repetitive step signal with an
amplitude of 5 ◦C is added to the reference signals periodically. The offset of the reference signal
is 100 ◦C. In one cycle, the temperature is controlled from 100 ◦C to 105 ◦C, then return to 100 ◦C.
After multiple cycles, the first step response and last step response results in both directions can be
obtained. Here, the temperature from 100 ◦C to 105 ◦C is defined as the positive direction control and
the temperature from 105 ◦C to 100 ◦C is defined as the negative direction control.

Figure 8a shows the full time response of the control system and (b) shows the results of positive
direction control (from 100 ◦C to 105 ◦C) and negative direction control (from 105 ◦C to 100 ◦C)
of the NN control system. From the NN control system results, the first step response is almost
the same as the last response, meaning the learning of the NN control ends at the beginning of
the first step. Thus, the NN controllers realize the quick-learning. These results are quantitatively
compared with those obtained by the conventional I-PD control with different feed-forward gains
K f = 0 (slow response) and K f = 1 (fast response). The step-response characteristics of systems are
computed from the response data in MATLAB, the rise time of a response is defined as the change in
time required for the response to rise from 10% to 90% of the desired steady-state response yfinal (here,
105 ◦C and 100 ◦C, respectively). Furthermore,the settling time is defined as the time required for the
error between the time response y(t) and yfinal to fall below 5% of the yfinal. Percentage overshoot is
also relative to yfinal.

In the positive direction, two channels of the proposed NN control system follow the reference
model as much as possible. The rise time of ch1 and ch2 in the NN control system is 753.2 s
and 787.9 s, respectively. Compared with that of the I-PD (K f = 0) control system, which is 931.2 s and
990.1 s, ch1 and ch2 has an improvement of 23.6% and 25.7%, respectively. Compared with that of the
I-PD (K f = 1) system which is 459.2 s and 482.4 s, although the transient response of the I-PD (K f = 1)
system is faster, the overshoots of two channels are 2.43 ◦C and 2.37 ◦C, which are about 48.6% and
47.5% of the reference value, respectively. The overshoots of two channels in the I-PD (K f = 0) system
are 0.51 ◦C and 0.4 ◦C, which are about 10.1% and 8% of the reference value, respectively. By contrast,
both overshoots of the proposed NN system outputs are zero.

In addition, the settling time of ch1 and ch2 in the NN control system is 2225.1 s and 2178.4 s.
Compared with that of the I-PD (K f = 1) control system which is 3666.3 s and 3554.5 s, both channels
have an improvement of about 42%. Compared with that of the I-PD (K f = 0) control system which is
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3634.9 s and 3144.1 s, ch1 improved by 38% and ch2 improved by 31%, respectively. The NN control
system was the fastest to reach stable state without overshoots. Simulation results for the temperature
from 100 ◦C to 105 ◦C are presented in Table 1. The rise time and settling time reflect the transient
response and steady-state response speed of the control systems, respectively.

(a) Full time response of the control system. (b) Positive and negative direction control results.

Figure 8. Simulation results. (a) Full time response for the control system. (b) Results of positive
direction control for the temperature from 100 ◦C to 105 ◦C and negative direction control for the
temperature from 105 ◦C to 100 ◦C.

Table 1. Comparison of simulation results for time response characteristics (100 ◦C to 105 ◦C).

100 ◦C to 105 ◦C Ref ch1 (K f = 1) ch2 (K f = 1) ch1 (K f = 0) ch2 (K f = 0) ch1 (NN) ch2 (NN)

Rise Time (s) 780.7 459.2 482.4 931.2 990.1 753.2 787.9

Settling Time (s) 1378.2 3663.0 3554.5 3634.9 3144.1 2225.1 2178.4

Overshoot (%) 0 48.6 47.5 10.1 8.0 0 0

In the negative direction, the temperature signal varies from 105 ◦C to 100 ◦C. Response
characteristics of different control systems are compared and results are similar to the corresponding
results in the positive direction. The rise time of ch1 and ch2 in the NN control system is 726.7 s
and 772.2 s, respectively. Compared with that of the I-PD (K f = 0) control system, which is 931.2 s
and 990.1 s, ch1 and ch2 has an improvement of 21.9% and 22%, respectively. Compared with that
of the I-PD (K f = 1) system which is 459.2 s and 482.4 s, although the transient response of the I-PD
(K f = 1) system is faster, the overshoots of two channels are 2.43 ◦C and 2.37 ◦C, which are about 48.6%
and 47.5% of the reference value, respectively. The overshoots of the two channels in the I-PD (K f = 0)
system are 0.51 ◦C and 0.4 ◦C, which are about 10.1% and 8% of the reference value, respectively. By
contrast, both overshoots of the proposed NN system outputs are zero.

Additionally, the settling time of ch1 and ch2 in the I-PD (K f = 0) control system is 3689 s
and 3135.5 s. In the NN control system, it is 2241.3 s and 2164.5 s, which has an improvement of 39%
and 31%, respectively. Compared with that of the I-PD (K f = 1) control system which is 3669 s and
3553 s, the NN control system improved by 38.9% and 39%. From simulation results, different channels
in the NN control system can quickly reach the stable state with no overshoot in contrast to the large
overshoots of the I-PD control systems. Simulation results for temperature from 105 ◦C to 100 ◦C
are presented in Table 2. These results show that the proposed NN control system has improved the
temperature control efficiency in both directions.
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Figure 9a,b, respectively show the temperature differences between ch1 and ch2 in positive and
negative directions, using I-PD control with gains K f = 1, 0 and the proposed NN control.

Table 2. Comparison of simulation results for time response characteristics (105 ◦C to 100 ◦C).

105 ◦C to 100 ◦C Ref ch1 (K f = 1) ch2 (K f = 1) ch1 (K f = 0) ch2 (K f = 0) ch1 (NN) ch2 (NN)

Rise Time (s) 780.7 459.2 482.4 931.2 990.1 726.7 772.2

Settling Time (s) 1378.2 3669.0 3552.0 3689.0 3135.5 2241.3 2164.5

Overshoot (%) 0 48.6 47.5 10.1 7.9 0 0

In the positive direction, the maximum temperature difference of the I-PD control with gains
K f = 1 and K f = 0 are 0.35 ◦C and 0.31 ◦C, about 7% and 6.2% of the reference temperature,
respectively. The result of the proposed NN control system is 0.23 ◦C, about 4.6% of the reference
temperature. The maximum temperature difference of the NN control system is decreased by 2.4%
and 1.6%, compared to results of I-PD (K f = 0) and I-PD (K f = 1) control systems. Meanwhile, the
temperature difference of the NN control drops to 0 ◦C in about 2400 s. The time has been shortened
by 55% and 59% compared with the time for I-PD (K f = 1) and I-PD (K f = 0) control systems, which
is about 5300 s and 5800 s.

(a) Temperature difference (100 ◦C–105 ◦C). (b) Absolute temperature difference (105 ◦C–100 ◦C).

Figure 9. Simulation results. (a) Temperature differences between ch1 and ch2 from 100 ◦C to 105 ◦C.
(b) Absolute temperature differences between ch1 and ch2 from 105 ◦C to 100 ◦C.

In the negative direction, results are similar to those in the positive direction. The maximum
absolute temperature difference of the NN control system and the I-PD control system with gains
K f = 1 and K f = 0 are about 0.24 ◦C, 0.34 ◦C and 0.31 ◦C, corresponding to 4.8%, 6.8%, and 6.2% of
the reference value. The maximum temperature difference in the NN control system decreased by
1.4% and 1.6%, when compared to the results of I-PD (K f = 0) and I-PD (K f = 1) control systems.
Meanwhile, the temperature difference of the NN control drops to 0 in about 2300 s. The time is
shortened by 57% and 60% compared to that of I-PD (K f = 1) and I-PD (K f = 0) control systems,
which is about 5400 s and 5700 s. From these simulation results, although the maximum temperature
difference between ch1 and ch2 is not suppressed drastically, quick transient response and uniform
temperature in different channels can be achieved.

In order to analyze the influences of the coupling terms between different channels, the time
response results of the I-PD (K f = 1) control system with coupling and without coupling effects are
given in Figure 10, the reference signal is set to 100 ◦C. The overshoots of the system with coupling
terms become bigger, about 11.2% and 8.4% of the reference signal. The overshoots of the system
without coupling terms are about 9.4% and 7.8%, respectively. In addition, a slight oscillation is
enhanced in both outputs for the coupling effects. From absolute temperature differences of outputs
between the control system with coupling effects and without coupling effects, both output temperature
differences in the I-PD system are large, with maximum values of about 11.4 ◦C and 16.6 ◦C, respectively.
The maximum errors of the NN control system are about 4.2 ◦C and 5.1 ◦C in output temperatures.
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The proposed NN control system can effectively weaken the coupling terms influences on the control
system outputs.

(a) Time response comparison. (b) Absolute temperature difference of outputs.

Figure 10. Analysis of coupling effects in the control system. (a) Compare time response results between
the control system with coupling effects and without coupling effects. (b) Absolute temperature
difference of outputs between the control system with coupling effects and without coupling effects.

4. Experimental Results

According to the identified system model introduced in the simulation, experiments with the
proposed NN control method are carried out in the real temperature control system. The experimental
setup is shown in Figure 6. Experimental conditions are as follows: The room temperature is set at
28 ◦C, sampling period is 0.1 s, controller sampling bit is 12 bits and the sensor resolution is 0.1 ◦C.
In experiments, the reference temperature is first set to 100 ◦C, the temperature of two channels is
controlled from the room temperature to 100 ◦C. Then a repetitive step signal with amplitude of 5 ◦C
is added to the reference periodically. The temperature is controlled from 100 ◦C to 105 ◦C, then return
to 100 ◦C. This process is repeated many times. The temperature increases from the room temperature
to 100 ◦C, defined as the learning period of the NN controller, and the temperature from 100 ◦C to
105 ◦C and from 105 ◦C to 100 ◦C are the control results of the NN control system. For NN learning in
the first step, we roughly estimated [uN1, y1, er1, uN2, y2, er2] × 100,000 steps (sampling time 0.1 s) =
6.0× 105 data is required to complete the learning. For testing the learned NN, one sequence of the
step response is needed. Therefore, the same data number is required. Similarly, in the simulation,
to verify the control performance of the proposed method, results are compared with those of the I-PD
control with gains K f = 1 (slow) and K f = 0 (fast).

Figure 11a shows the results for full time response of the control system, and (b) shows the results
for the temperature changes in positive and negative directions. As shown in Figure 11b, the I-PD
control system with gain K f = 1 has the fastest transient response speed, but is the slowest to reach
the steady state in both directions. For the I-PD control system with gain K f = 0, both the transient
response and steady-state response are slower than the NN control system in both directions.

The time response characteristics of controlled systems are extracted from positive direction
and negative direction response data in MATLAB. The response data is loaded, which is an array of
response data y and corresponding time vector t. The 2nd-order butterworth digital low-pass filter
with a cutoff frequency of 0.05 Hz (sampling frequency is 10 Hz) is applied to eliminate as much of
the noise in the data as possible. The response characteristics were calculated from these data using
the command “S = stepinfo(y, t, yfinal)” in MATLAB. Considering the noise in the data, the last value
in y may not have the true steady-state response value. Therefore, the steady-state value (yfinal)
should be set as 105 and 100 in the positive and negative direction control, respectively. The response
characteristics of controlled systems such as rise time, settling time, and overshoot can be obtained.

In the positive direction, the rise time of ch1 and ch2 in the I-PD (K f = 0) control system is
947.2 s and 973.1 s, in the NN control system, it is 812.4 s and 820.6 s, which improved by 14.2%
and 15.7%. The settling time of ch1 and ch2 in the I-PD (K f = 0) control system is 3414.2 s and 3217.9 s,
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and the NN control system had an improvement of 35.1% and 31.5%, which is 2217.3 s and 2204.8 s,
respectively. In the I-PD (K f = 1) control system, the settling time of ch1 and ch2 is 3824.3 s and 3718.6 s.
By comparison, the NN control system improved by 42% and 40.7%. In addition, the overshoots of
ch1 and ch2 in the I-PD (K f = 1) control system are 2.01 ◦C and 1.92 ◦C, corresponding to 40.1% and
38.4% of the reference. The overshoots of ch1 and ch2 in the I-PD (K f = 0) control system are about
0.69 ◦C and 0.53 ◦C, corresponding to 13.9% and 10.5% of the reference. In the NN control system,
the overshoot of ch1 and ch2 are about 0.06 ◦C and 0.08 ◦C, corresponding to 1.3% and 1.7% of the
reference, much smaller than those in the I-PD control systems.

(a) Time response of the controlled system. (b) Positive and negative direction control results.

Figure 11. Experimental results. (a) Time response for the controlled system. (b) Results of positive
direction control for the temperature from 100 ◦C to 105 ◦C and negative direction control for the
temperature from 105 ◦C to 100 ◦C.

In the negative direction, similar results can be obtained. The rise time of ch1 and ch2 in the
I-PD (K f = 0) control system is 1027.3 s and 1093.4 s, in the NN control system is 877.3 s and 893.7 s,
which has been improved by 14.6% and 18.3%. The settling time of ch1 and ch2 in the I-PD (K f = 0)
control system is 3492.7 s and 3325.1 s, the NN control system has an improvement of 38.6% and 37%,
which is 2145.6 s and 2093.2 s, respectively. In the I-PD (K f = 1) control system, the settling time of
ch1 and ch2 is 3862.5 s and 3870.4 s. By comparison, the NN control system improved by 44.5% and
45.9%, respectively. In addition, the overshoots of ch1 and ch2 in the I-PD (K f = 1) control system
are about 2.14 ◦C and 2.07 ◦C, corresponding to 42.7% and 41.4% of the reference. The overshoots
in the I-PD (K f = 0) control system are 0.62 ◦C and 0.48 ◦C, corresponding to 12.3% and 9.7% of
the reference. In the NN control system, the overshoots of ch1 and ch2 are about 0.11 ◦C and 0.12
◦C, which are 2.1% and 2.5% of the reference. The overshoots in both directions are much smaller
than the results of the I-PD control systems. Two channels can track the reference model output,
realizing a quick and stable response to temperature signals. Comparing experimental results of the
system response in Figure 11 with the simulation results in Figure 8, the discrepancy between the real
system performance and simulation within 5% either settling time or overshoot, e.g., the errors of the
NN system for the positive direction are about 2.3% and 1.7% in settling time and 1.3% and 1.7% in
overshoot, respectively, the negative direction results are about 4.3% and 3.3% in settling time and
2.1% and 2.5% in overshoot. The corresponding errors of the I-PD control systems are slightly larger
than 5%, e.g., the errors of the I-PD (K f = 0) system for the negative direction are about 5.3% and
5.7% in settling time, respectively, the I-PD (K f = 1) system errors are about 5.1% and 8.2%. Although
the errors of rise time are about 10% in both directions, considering the difference between different
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channels is almost negligible, results are acceptable. These results show a good agreement between
simulated and experimental results.

For comparison, the response characteristics of different control systems in positive and negative
directions are listed in Tables 3 and 4, respectively. The percentage differences between the experimental
results and simulation results are also given in both tables. From the above experimental results, it is
seen that the proposed NN control gives great improvement in the performance of the temperature
system.

Table 3. Comparison of experimental results for time response characteristics (100 ◦C to 105 ◦C).

Characteristics Ref CH1 (K f = 1) CH2 (K f = 1) CH1 (K f = 0) CH2 (K f = 0) CH1 (NN) CH2 (NN)

Rise Time (s) 780.7 534.9 (14.1%) 557.6 (13.4%) 947.2 (1.7%) 973.1 (1.7%) 812.4 (11.6%) 820.6(4.1%)

SettlingTime 5% (s) 1378.2 3824.3 (4.2%) 3718.6 (4.4%) 3414.2 (6.1%) 3217.9 (2.3%) 2217.3 (2.3%) 2204.8 (1.7%)

Overshoot (%) 0 40.1 (4.8%) 38.4 (3.4%) 13.9 (3.9%) 10.5 (2.5%) 1.3 (1.3%) 1.7 (1.7%)

Table 4. Comparison of experimental results for time response characteristics (105 ◦C to 100 ◦C).

Characteristics Ref CH1 (K f = 1) CH2 (K f = 1) CH1 (K f = 0) CH2 (K f = 0) CH1 (NN) CH2 (NN)

Rise Time (s) 780.7 519.1 (11.5%) 535.5 (9.8%) 1027.3 (9.3%) 1093.4 (9.4%) 877.3 (17.1%) 893.7 (13.6%)

SettlingTime 5% (s) 1378.2 3862.5 (5.1%) 3870.4 (8.2%) 3492.7 (5.3%) 3325.1 (5.7%) 2145.6 (4.3%) 2093.2 (3.3%)

Overshoot (%) 0 42.7 (5.9%) 41.4 (6.1%) 12.3 (2.2%) 9.7 (1.8%) 2.1 (2.1%) 2.5 (2.5%)

Figure 12a,b show the curves of temperature differences between the outputs of ch1 and ch2 in
positive and negative directions, respectively. In the positive direction, the maximum temperature
differences of the I-PD (K f = 1), I-PD (K f = 0), and NN control are 0.39 ◦C, 0.43 ◦C, and 0.15 ◦C,
which correspond to 6.4%, 9.4%, and 3.8% of the reference value, respectively. In addition, the time for
the temperature difference drops to 0 ◦C is about 3900 s, 3600 s, and 2300 s. The NN control system
has an improvement of 41% and 36% compared to the I-PD (K f = 1) and I-PD (K f = 0) control system,
respectively. As illustrated in Figure 12a, the temperature difference of the NN control system can be
suppressed by the proposed method.

Similarly, in the negative direction, the maximum absolute temperature differences of the I-PD
(K f = 1), I-PD (K f = 0), and NN control systems are 0.24 ◦C, 0.25 ◦C, and 0.14 ◦C, corresponding to
4.8%, 5%, and 2.8% of the reference value. Moreover, the time for the temperature difference drops
to 0 ◦C is about 4400 s, 4100 s, and 3300 s, respectively. The NN control system has an improvement
of 25% and 20% compared to the I-PD (K f = 1) and I-PD (K f = 0) control system, respectively.
From these results, it was observed that the rapid uniform temperature response could be achieved in
both transient state and steady state. The proposed control method improved the performance of the
multi-input multi-output temperature system.

(a) Temperature difference (100 ◦C–105 ◦C). (b) Temperature difference (105 ◦C–100 ◦C).

Figure 12. Experimental results. (a) Temperature differences between ch1 and ch2 from 100 ◦C to
105 ◦C. (b) Temperature differences between ch1 and ch2 from 105 ◦C to 100 ◦C.
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5. Conclusions

In this paper, to improve transient response and realize the temperature uniformity in the
multi-input multi-output temperature system with strong coupling effects, a reference-model-based
neural network control method was proposed. In order to confirm the effectiveness of the
proposed method, the proposed NN method was applied to a real MIMO temperature control system.
Simulation and experiments were carried out, respectively. Both simulation results and experimental
results were quantitatively compared with those of the I-PD control systems. The improvement
of the transient response was achieved from the above experimental results, e.g., 42% and 40.7%
improvements of two channels in settling time shortening compared to those of the traditional I-PD
(K f = 1) control system. In addition, the overshoots of different channels decreased by about 40%
in both directions. The temperature uniformity of the MIMO system was achieved, e.g., in the
positive direction, the temperature differences between two channels were reduced in more than
half of those in the I-PD (K f = 1) and I-PD (K f = 0) control system. The temperature differences
quickly went down to zero, with about 41% and 36% improvements in time compared to the I-PD
control systems, respectively. These results show that the proposed NN control method improved the
transient response and overshoot of the multi-input multi-output temperature system and realized
the temperature uniformity of different channels in both transient state and steady state. The control
effectiveness of the proposed method was successfully verified. For the NN control learning in the
MIMO system, the selection of inputs and teaching signal is worth discussing in future study, e.g., the
temperature difference between channels or derivative of difference can be added to inputs of the NN
controller, thus it is possible to further improve the control performance.
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