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Abstract: In general, the performance of a direction of arrival (DOA) estimator may decay under a
non-uniform noise and low signal-to-noise ratio (SNR) environment. In this paper, a memetic particle
swarm optimization (MPSO) algorithm combined with a noise variance estimator is proposed, in order
to address this issue. The MPSO incorporates re-estimation of the noise variance and iterated local
search algorithms into the particle swarm optimization (PSO) algorithm, resulting in higher efficiency
and a reduction in non-uniform noise effects under a low SNR. The MPSO procedure is as follows: PSO
is initially utilized to evaluate the signal DOA using a subspace maximum-likelihood (SML) method.
Next, the best position of the swarm to estimate the noise variance is determined and the iterated
local search algorithm to reduce the non-uniform noise effect is built. The proposed method uses the
SML criterion to rebuild the noise variance for the iterated local search algorithm, in order to reduce
non-uniform noise effects. Simulation experiments confirm that the DOA estimation methods are valid
in a high SNR environment, but in a low SNR and non-uniform noise environment, the performance
becomes poor because of the confusion between noise and signal sources. The proposed method
incorporates the re-estimation of noise variance and an iterated local search algorithm in the PSO.
This method is effectively improved by the ability to reduce estimation deviation in low SNR and
non-uniform environments.

Keywords: non-uniform noise; memetic algorithms; particle swarm optimization; direction of arrival
estimation; subspace maximum-likelihood

1. Introduction

Obtaining original signal-related information from signal sources containing interference is a very
important issue [1,2]. The main sources of interference in the development of mobile communication
technologies are low signal-to-noise ratio (SNR) and non-uniform noise. Array signal processing
technologies have been applied to estimate the direction of arrival (DOA), using sensing elements
arranged in different geometries to sample the wave field and collect spatial-related information
to calculate the signal source DOA [3–6]. In wireless communications, low SNR and non-uniform
noise are types of propagation phenomena, which can lead to misrecognition of the signal source and
significant degradation of DOA estimation performance [7–12].

Among DOA estimation techniques, the maximum-likelihood (ML) [4,5,13] and multiple signal
classification (MUSIC) [14] methods are the most representative. The ML algorithm assumes that the
noise has a white Gaussian distribution and that the energy is uniform. The MUSIC method uses the
autocorrelation matrix of the received signal to perform feature decomposition and decomposes its
feature vector into signal and noise subspaces, utilizing the characteristics of orthogonality between
the signal and noise to establish the DOA search criteria of the signal source. The performance of
the ML and MUSIC methods is adversely affected by low SNR, however [12]. Therefore, Ji et al. [15]
proposed the spatial MUSIC algorithm, while Zhang et al. [16] used the colony algorithm to solve
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computationally complex problems; however, these methods cannot deal with the DOA inaccuracy
caused by excessive noise. Madurasinghe [10] suggested the power domain ML method to formulate
a new objective function to solve the problem of low-energy non-uniform noise through estimation
of the actual noise; however, the objective function did not propose a solution for the general low
SNR and high non-uniform noise method. Wen [11] proposed the smooth space method to deal with
coherent signals and non-uniform noise. This method is similar to the signal subspace projection
technique under a low SNR and suffers performance loss under high non-uniform noise environments.
Pesavento et al. [5] proposed a non-uniform noise and combined iterative quadratic algorithm (PIQML)
to improve the estimation performance and obtain better results; however, their method shows poor
performance if the non-uniform noise is too large. The judgment error will be invalid, due to early
iteration. Sha et al. [17] proposed the use of projection into a subspace to establish a high-resolution
estimate of the associated signal direction angle. This method can reduce the computational complexity
and can handle higher resolution DOA problems, but is not suitable under low SNR conditions.
This paper proposes the subspace ML (SML) method using iterated local searching by the memetic
particle swarm optimization (MPSO) [8,18,19] algorithm to search the neighborhood of the signal
direction, in order to build the beam-space [20]. The received data are bypassed through beamforming,
which can decrease the non-uniform noise phenomenon [11,12].

The particle swarm optimization (PSO) algorithm was inspired by the social behavior of animals,
such as bird flocking, swarming, and the schooling of fish. It is a branch of evolutionary algorithms,
first suggested by Kennedy et al. [21]. PSO has been shown to be outstanding for the solution of DOA
problems and is simple to implement [22–24]. PSO is a population-based random search optimization
procedure, in which the population is called a swarm. Each swarm consists of many particles and is
updated based on the influence of individual experiences, the best past experience of each individual,
and the overall best experience. The swarm characteristics of parallel multi-directional search are
different from the general heuristic method. The advantage of PSO is that it is simple to solve and
that it has the characteristics of parallel multi-directional search, which can quickly find the optimal
method but is more likely to converge to a local optimum result and does not guarantee convergence
to the global optimum, especially when the objective function has a high dimension or is a complex
non-linear function [25,26].

To reduce the premature convergence of PSO and to obtain an adequate solution for DOA
estimation under low SNR and non-uniform noise environments, this paper proposes the combination
of the iterated local search algorithm and the PSO to construct a MPSO for solving the DOA under low
SNR and non-uniform noise conditions. The proposed MPSO algorithm is simple and practicable,
as it adopts a first-order Taylor series expansion of the target function using the SML criterion [9,27],
in order to reduce the non-uniform noise effect, therefore increasing the capacity of PSO to find the
best solution. The first-order Taylor series approximates the spatial search vector and cuts it down to
a direct one-dimensional optimization [20]. Simulation results show that the proposed method has
a considerably improved ability to decrease the estimation bias under non-uniform noise and a low
SNR environment.

The remainder of the paper is structured as follows: Section 2 describes the SML DOA estimator.
Section 3 presents the SML DOA estimator using MPSO. Section 4 presents numerical simulation
results, illustrating the effect of the proposed method. The final section outlines our conclusions,
referring to the proposed estimator.

2. SML DOA Estimator

Assume a P narrowband signal impinges on M (P < M) sensors in a uniform linear array (ULA)
system. The tth measured snapshot of the received signal is written as [1]:

x(t) =
P∑

p=1

a(θp)sp(t) + n(t) = A(θ)s(t) + n(t), t = 1, 2, · · · , N, (1)
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where θ =
[
θ1 θ2 · · · θP

]T
is the unknown DOA, the superscript T indicates transposition,

N is the number of snapshots, n(t) =
[

n1(t) n2(t) · · · nM(t)
]T

is the sensor noise,

x(t) =
[

x1(t) x2(t) · · · xM(t)
]T

, xi(t) is the ith sensor receiving signals, s(t) =[
s1(t) s2(t) · · · sP(t)

]T
is the P× 1 vector of signal amplitudes, and A(θ) is the M× P composite

steering matrix, expressed as

A(θ) =
[

a(θ1) a(θ2) · · · a(θP)
]T

,

a(θi) =
[

1 exp(− j2πd sinθi/χ) · · · exp(− j2πd(M− 1) sinθi/χ)
]T

,
(2)

where a(θi) is the steering vector, χ is the wavelength, and d is the sensor spacing between two
neighboring sensors. In this paper, the sensor noise, n(t), is considered to be non-uniform and to be a
zero mean Gaussian process, such that

E[n(t)] = 0
Rn = E

[
n(t)n(t)H

]
= diag

{
σ2

1, σ2
2, · · · , σ2

M

}
,

(3)

where E[·] is the expectation, the superscript H denotes the complex conjugate transpose, diag {.} is
a diagonal matrix composed of the bracketed elements, and σ2

i is the ith sensor’s noise variance.
In general, the sensor noise n(t) is uncorrelated with all signals. The array covariance corresponding
to Equation (1) can be expressed as

R = E{x(t)xH(t)} = A(θ)RsAH(θ) + Rn, (4)

where Rs = E[s(t)sH(t)] is the covariance matrix of the signal amplitudes. The array covariance matrix
can be estimated by the sample average, R̂:

R̂ =
1
N

N∑
t=1

x(t)xH(t). (5)

The ML estimator for non-uniform noise can be found using the weighted least-squares
approach [10], using the normalized composite steering matrix and noise component. The maximum
likelihood problem becomes a least-squares solution [10]:

L(θ,σ2) = min
θ,σ2

N∑
t=1

∣∣∣x(t) −A(θ)s(t)
∣∣∣2, (6)

where σ2 is the M× 1 vector of noise variance, |.|2 denotes the l2 norm, x(t) is the normalized receiving
signal, x(t) = R−1/2

n x(t), and A(θ) is the normalized steering matrix, A(θ) = R−1/2
n A(θ). The A(θ)s(t)

of Equation (6) is separable and, for fixed A(θ), s(t) can be obtained by using the pseudo-inverse [9]:

s(t) =
[
A

H
(θ)A(θ)

]−1
A

H
(θ)x(t). (7)

Given Equation (7), substituting the ML estimator into Equation (6) results in

L(θ,σ2) = min
θ,σ2

tr{P
A

R̂}, (8)

where P
A
= I −A(θ)

[
A

H
(θ)A(θ)

]−1
A

H
(θ), I is the unit diagonal matrix, and tr{.} is the trace of the

matrix. Equation (8) is a multi-objective minimization problem. In general, L(θ,σ2) is a very highly



Processes 2020, 8, 1429 4 of 12

non-linear function of θ and σ2, and the cost function is highly non-linear; it is impossible to represent
the target function with any closed-form expression [16]. However, the ML estimator still has inferior
performance when the noise is non-uniform and in a low SNR environment. It is well-known that the
signal subspace projection method can weaken the noise effect of the received noisy data vector [9].

Applying eigende composition, the sample covariance matrix Equation (5) can be expressed as

R̂ =
M∑

m=1

λmemeH
m m = 1, . . . , M, (9)

where λ1 ≥ λ2 ≥ · · · ≥ λM are the eigenvalues of R̂ and em denotes the eigenvector associated with λm

for m = 1, 2, · · · , M. The column spans of Es = [e1, . . . , eP] and En = [eP+1, . . . , eM] are defined as the
signal and noise subspaces, respectively. The covariance matrix can be expressed as the summation of
two orthogonal components, EsEH

s and EnEH
n . Hence, this paper adopts the signal subspace projection

EsEH
s x(t), the projection of x(t) onto the columns of Es. Properly constructing the signal subspace

projection-based approach to filter the non-uniform noise can effectively enhance the performance.
The SML estimator using the ML estimator of Equation (8) can be expressed as:

L(θ,σ2) = min
θ,σ2

tr{P
A

EsEH
s R̂}. (10)

Selection of a signal subspace under a low SNR or non-uniform noise is very difficult when using
eigendecomposition. As the received signal has low SNR or non-uniform noise, Es may contain a
noise subspace and En may contain a signal subspace. This paper adopts the reiterated procedure of a
method to reduce such confusion. First, it is assumed that the noise variance is constant for all sensors
(λM) and that the SML estimator in Equation (10) can be expressed as

L(θ) = min
θ

tr{P
A

EsEH
s R̂}. (11)

Next, using Equation (11) to obtain the DOA, the noise variance R̂n can be estimated by

R̂n = 1
N

N∑
t=1

∣∣∣x(t) −A(θ̂)s(t)
∣∣∣2,

s(t) =
[
AH(θ̂)A(θ̂)

]−1
AH(θ̂)x(t),

(12)

where θ̂ is the estimated DOA. This procedure implies that, for a fixed R̂n, the solution θminimizes
L(θ) in Equation (11), and vice versa. Once θ is obtained, a refined result for R̂n can be achieved using
Equation (12). Hence, θ̂ and R̂n can be estimated in an iterative manner.

The steering matrix can be determined using a first-order Taylor series approximation expansion
at the estimation DOA θ̂, expressed as [1]:

A(θ) = A(θ̂+ ηθ) � A(θ̂) + ηθA
′

(θ̂), (13)

where ηθ is a small value and A′(θ̂) = d
dθ A(θ)

∣∣∣
θ=θ̂

. Substituting Equation (13) into Equation (11),
the following expression can be obtained:

L(θ) = min
ηθ

tr{P
A(θ̂)+ηθA

′

(θ̂)
EsEH

s R̂}, (14)

which is a direct one-dimensional optimization problem. Then, it can easily be shown that the optimum

ηθ is given by
d{tr{P

A(θ̂)+ηθA
′
(θ̂)

EsEH
s R̂}}

d(ηθ)
= 0. The value of |ηθ| has two characteristics [8]: first, if the

value of |ηθ| is small, it can achieve a convergence result that may be local or global. However, if the
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value of |ηθ| is large, the results may remain far from convergence. Using these characteristics of |ηθ|,
θ̂ is updated by:

θ̂ =

{
θ̂+ ηθ, i f |ηθ| > ε
θ̂, i f |ηθ| ≤ ε

, (15)

where ε is the search precision value. In this paper, Equation (15) is repeated until |ηθ| < ε. The proposed
procedure is as follows:

1. Given the received signal x(t), compute R̂ in Equation (5) and the eigendecomposition in Equation (9).
2. Assume that the noise variance, which is constant for all sensors, is λM.
3. Estimate the DOA θ using the SML estimator in Equation (11).
4. Update the estimate of θ in Equation (15) using the ηθ property until |ηθ| ≤ ε.
5. Update the estimated non-uniform noise R̂n in Equation (12).
6. Reiterate Steps 3 to 5 until θ̂ and R̂n converge.

From the above, we propose a new method, which is a hybrid algorithm that combines PSO and
the estimated DOA θwith an iterated local search algorithm for |ηθ|.

3. The Proposed Method

This paper proposed a hybrid algorithm that incorporates PSO with an iterated local search
algorithm. The DOA with SML estimator criterion cannot be directly carried out under a non-uniform
noise and low SNR environment, in which the closed form of the contained criteria are

{
θ,σ2

}
at the

same time. Therefore, MPSO is introduced to solve the issue.
The MPSO includes the following two components: First, the PSO-based SML estimation method

searches the entire space. Second, the local search using the property achieves a more accurate search
around potential solutions of the first component. The design process of the MPSO is expressed below.

3.1. The PSO-Based SML Estimation

The PSO algorithm is an optimized search method based on a group that is easy to use, as the
algorithm requires few parameters. The swarm of the PSO algorithm consists of many particles.
Each individual particle represents a solution; it has its own position and velocity, the initial values
of which are set randomly. Then, each particle obtains a value measure from a target function; the
changing of the particle position is regulated by the value of the objective function. Our objective is to
minimize the value of the fitness function. We use the fitness function L(θ) presented in Equation
(11). There are three kinds of influences on the movement of particles. First, movement in the
previous direction; second, movement towards the position of the individual particle’s optimization
situation; and, finally, movement towards the position of the global optimization situation of the
overall swarm [21].

Let S denote the swarm size, vi(t) = [ vi,1(t) vi,2(t) · · · vi,P(t)]T be the current velocity,

and θi(t) =
[
θi,1(t) θi,2(t) · · · θi,P(t)

]T
be the current position. During each iteration, the update

to the velocity vi, j(t + 1) and position θi(t + 1) of each particle is as follows:

vi, j(t + 1) = κ · vi, j(t) + c1 ×ϕ1,i(t) × (pi, j − θi, j(t)) + c2 ×ϕ2,i(t) × (g j − θi, j(t)),
f or all i = 1, 2, · · · , S, j = 1, 2, · · · , P

(16)

θi(t + 1) = θi(t) + vi(t + 1), (17)

where vi, j(t) is the velocity of the jth dimension of the ith particle, κ is the inertia weight (this value is
typically set as 0 ≤ κ < 1), c1 and c2 are set near 2.0 [27], ϕ1,i(t) and ϕ2,i(t) are uniformly distributed
random numbers in the range [0,1] pi, j is the individual best position of the jth dimension of the ith
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particle, and g j is the global best position of the jth dimension. The individual best position of each
particle is updated using

pi =

{
pi, if L(θi(t + 1)) ≥ L(θi(t))

θi(t + 1), if L(θi(t + 1)) < L(θi(t))
, (18)

where pi =
[

pi,1 pi,2 · · · pi,P
]T

. The overall best position can be found as follows:

g = min L(pi), f or i = 1, 2, · · · , S, (19)

where g =
[

g1 g2 · · · gP
]T

. The value of the velocity vi, j(t) can be limited to the range
[−vmax, vmax], in order to reduce the number of particles escaping the search space with an
uncontrollable trajectory [22]. In this paper, we use vmax = 0.1× θmax = 18◦ for the ULA system [8].

3.2. The MPSO Estimator

The MPSO proposed in this paper combines the application of a local search method into the PSO
algorithm, in order to solve the problem that the SML estimator criterion cannot obtain a closed form
solution. Using the PSO to estimate θ̂ in Equation (12), the characters of |ηθ| in the local search method
and the re-estimated R̂n are combined. A small |ηθ| value will generate convergent results, while a
large |ηθ| value requires a greater time to converge and may cause a value that changes the estimated
deviation towards a more correct value. The pseudocode of the Algorithm 1 MPSO is as follows:

Algorithms 1. MPSO

Input: received signal x(k) and set of initial values for S, c1, c2, ε,θmin,θmax in MPSO.
Output: DOA θ ∈

[
θmin θmax

]
Step 1: Set t = 0.
Step 2: Evaluate R̂ by Equation (5), λM by Equation (9), and randomly uniformly generate θi(t) and vi(t) for
i = 1, 2, · · · , S.
Step 3: Evaluate fitness value L(θi(t)) in Equation (11).
Step 4: Set pi ← θi(t) and g = min{pi}.
Step 5: Update the velocities vi, j(t + 1) using Equation (16) and positions θi(t + 1) using Equation (17).
Step 6: Evaluate the fitness value L(θi(t + 1)) in Equation (11).
Step 7: IF L(θi(t + 1)) < L(θi(t)), then pi ← θi(t + 1) .
Step 8: g← min{pi} and θ̂← g
Step 9: While |ηθ| > ε, Do

Update θ̂← θ̂+ ηθ

Evaluate |ηθ|
End While.

Step 10: Evaluate R̂n in Equation (12)
Step 11: Set g← θ̂ .
Step 12: Set t = t + 1.
Step 13: Go to Step 5 until the stopping criterion is satisfied.

Based on the above analysis, Figure 1 presents a flowchart of the proposed algorithm.
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4. Simulation Result

Two examples were considered in order to illustrate the practicability of using the proposed
algorithm for DOA estimation in a non-uniform noise and low SNR environment. Simulation results
were used to compare the performance of the proposed algorithm with the MUSIC [14], minimum
variance distortionless response (MVDR) [1], and power domain ML (Power-Domain) methods [10].
The non-uniform noise (using the worst noise power ratio; WNPR) and SNR were defined using:

WNPR =
σ2

max
σ2

min
,

SNR =
s2
p

M

M∑
i=1

1
σ2

i
, f or p = 1, 2, · · · , P,

(20)
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where σ2
max and σ2

min are the maximum and minimum non-uniform noise variances, respectively.
The simulated results were obtained by averaging 500 independent Monte Carlo (MC) runs. In the
literature, a variety of statistical methods have been applied to compare performance. These include
the mean absolute error (MAE) and the root-mean-squared error (RMSE), which are defined as

MAE = 1
500×P

500∑
j=1

P∑
p=1

∣∣∣θ̂ j,p − θp
∣∣∣,

RMSE =

√
1

500×P

500∑
j=1

P∑
p=1

(θ̂ j,p − θp)
2
,

(21)

where θ̂ j,p is the jth MC run for the θp estimate value. The search grid capacity for the spectrum scan of
MUSIC [14] was set as 0.001◦. The initial set of parameters of the proposed estimators were defined as

c1 = c2 = 2.05,χ = 0.99, S = 200, T = 50, ε = 0.001, (22)

where c1, c2 are acceleration coefficients, χ is the inertial weight, S is the size of the swarm, T is the
number of iterations, and ε is the search precision value.

The first example considered a four-element ULA with half-wavelength inter-element spacing,

where the noise power was given as σ2 =
[

5 10 0.1 6
]t

, WNPR = 50, and the source had the
DOA θ1 = 5◦. Figure 2 illustrates the RMSE values of the estimated DOA versus the number of
snapshots under SNR = −15 dB. The proposed method achieved a faster convergence approach with
75 snapshots, while the other methods converged at about 150 snapshots. Figure 3 shows that the
RMSE of the various estimators versus different SNRs under snapshots was 100. In Figure 3, we can
see that all estimator RMSEs were near zero under high SNR, but the performance of other estimators
decayed under low SNR conditions. Table 1 shows the RMSE and MAE under various SNRs. The bold
text is the best estimated value under the same SNR. The proposed algorithm had RMSE and MAE
values smaller than those of the other estimators, especially under low SNR environments.
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Table 1. Direction of arrival (DOA) evaluation for the different estimators (multiple signal classification
(MUSIC), minimum variance distortionless response (MVDR), power domain maximum likelihood
(Power-Domain), and the proposed estimator) in Example 1.

MVDR MUSIC Power-Domain Proposed Method
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SNR

−20 dB 19.5392 35.9564 31.3039 5.3792

−15 dB 4.6780 28.2148 17.6577 3.1546

−10 dB 1.4788 10.6452 3.2314 1.7144

−5 dB 0.8232 1.2765 1.0158 0.7440

0 dB 0.4282 1.2765 0.5046 0.4368

5 dB 0.2368 0.2728 0.2545 0.2392

The second example considered an eight-element ULA and two sources with DOAs θ =[
−3
◦

6
◦

]t
. The additive background noise variance was σ2 =

[
6 2 0.5 2.5 3 1 1.5 10

]t

and WNPR = 20. The other parameters were the same as in Example 1. Figure 4 indicates the RMSE of
the various estimators versus different snapshots under SNR = 0 dB. Again, this figure indicates that
the proposed estimator not only carried out faster convergence (at 50 snapshots) but also offered an
improvement in DOA evaluation accuracy. Figure 5 indicates that the RMSE of the various estimators
versus different SNRs under snapshots was 100. In Figure 5, we can see that the other estimators
were not sensitive to various low SNRs (SNR < −5 dB), when comparing their performance with
the proposed method. As hoped, the results indicate again that the DOA evaluation accuracy was
improved by the proposed estimator. Table 2 gives the DOA estimates (RMSE, MAE) of the MUSIC,
MVDR, and Power-Domain methods, along with those of the proposed estimator. The evaluation
accuracy of the MUSIC, MVDR, and Power-Domain estimators worsened under a low SNR. Moreover,
the accuracy of the proposed estimator was better than those of the other estimators under low
SNR conditions.
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Table 2. DOA evaluation for the different estimators (MUSIC, MVDR, Power-Domain, and the proposed
estimator) in Example 2.

MVDR MUSIC Power-Domain Proposed Method
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SNR

−15 dB 28.5391 22.2818 30.3017 25.5400 38.2552 30.3440 8.1092 7.3989

−10 dB 28.8271 22.4764 30.8397 24.0450 37.9480 29.2230 4.8597 4.4936

−5 dB 30.4322 23.3296 18.7202 15.3910 11.6566 9.4562 1.5421 1.4312

0 dB 31.3296 24.2212 5.2164 4.4160 3.2706 2.9772 1.1865 1.1242

5 dB 1.2848 1.2488 0.3967 0.3590 3.0139 2.9830 0.4313 0.3950

5. Conclusions

DOA estimation cannot be directly carried out under a non-uniform noise and low SNR
environment, in which the closed form of the contained criteria is

{
θ,σ2

}
. Generally, it is necessary

to process the DOA (θ) and the noise variance (σ2). In this paper, a new re-iterated process was
introduced, in which the noise variance is fixed to estimate the DOA and, vice versa, the DOA is
fixed to estimate the noise variance. After several iterations, the procedure converges to the nearest
correct estimates of the DOA and the noise variance. The proposed solution combines the MPSO
scheme, which uses the fixed noise variance to estimate the DOA through the PSO algorithm, using
the best particle to estimate the noise variance. An MPSO that incorporates the re-estimation of noise
variance and an iterated local search algorithm is applied in the PSO, resulting in an efficient reduction
of the non-uniform noise effect under a low SNR. The iterated local search of the MPSO method
exploits the characteristics of the first-order Taylor expansion |ηθ|. A small |ηθ| value can guarantee
convergent results that may be local or global while, with a large |ηθ| value, convergence will take a
longer time and may provide a value that updates the estimated deviation toward the correct value.
Empirical evidence shows that the DOA estimation methods are valid in a high SNR environment,
but in a low SNR and non-uniform noise environment, the performance becomes poor because the
noise is confused by the source of the signal. The proposed method incorporates the re-estimation
of noise variance and an iterated local search algorithm in the PSO. This method is effectively able
to reduce estimation deviation and to achieve high accuracy and fast convergence in low SNR and
non-uniform environments. Generally, a low SNR and non-uniform environment is caused by foul
weather. This problem occurs in mountaineering, so this method provides valid DOA estimation in
this environment, and can be used for positioning system issues.
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