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Abstract: Packed bed reactors have been widely applied in industrial production, such as for catalytic
hydrogenation. Numerical simulations are essential for the design and scale-up of packed beds,
especially direct numerical simulation (DNS) methods, such as the lattice-Boltzmann method (LBM),
which are the focus of future researches. However, the large density difference between gas and liquid
in packed beds often leads to numerical instability near phase interface when using LBM. In this paper,
a lattice-Boltzmann (LB) model based on diffuse-interface phase-field is employed to simulate bubble
rising in complex channels saturated with liquid, while the numerical problems caused by large
liquid-to-gas density ratio are solved. Among them, the channel boundaries are constructed with
regularly arranged circles and semicircles, and the bubbles pass through the channels accompanied
by deformation, breakup, and coalescence behaviors. The phase-field LB model is found to exhibit
good numerical stability and accuracy in handing the problem of the bubbles rising through the
high-density liquid. The effects of channel structures, gas-liquid physical properties, and operating
conditions on bubble deformation, motion velocity, and drag coefficient are simulated in detail.
Moreover, different flow patterns are distinguished according to bubble behavior and are found to be
associated with channel structure parameters, gravity Reynolds number (ReGr), and Eötvös number (Eo).

Keywords: packed bed reactor; multiphase system; phase-field LB model; complex channel;
flow pattern; bubble evolution

1. Introduction

Packed bed reactors have the advantages of simple structure, convenient operation, low operating
cost, good heat, and mass transfer performance, and have thus been widely used in industrial processes
such as catalytic hydrogenation [1], oxidation reaction [2], nitrification reaction [3], and wastewater
treatment [4], among others. For gas-liquid-solid three-phase packed bed reactors, the dynamic
behaviors of the dispersed phase directly affect the mixing, mass transfer, and reaction efficiency
between gas and liquid, which are extremely important for the design, optimization, and scale-up
of the packed beds. However, the detailed dynamics of the dispersed phase and the complicated
topological evolution of the gas-liquid interface are difficult to fully understand through experiments
or numerical simulations on the reactor scale. The direct numerical simulation (DNS) provides us
with a promising solution, in which the lattice-Boltzmann method (LBM) has attracted more and more
attention due to its simple computation and clear physical background. At present, LBM has realized
the precise tracking of the gas-liquid interface and the accurate prediction of the bubble (dispersed
phase) dynamics from the mesoscopic scale [5]. However, the density ratios of liquid to gas in the
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actual packed beds are often as high as 1000, which tends to cause numerical instability at the gas-liquid
interface in the simulations using LBM.

In recent decades, various lattice-Boltzmann (LB) models have been proposed for multiphase flows.
Based on the approaches of describing the interactions between fluids, these models can be divided into
four categories, including the color model [6], the pseudo-potential model [7], the free-energy model [8],
and the kinetic model [9]. Undesirably, the original forms of these models are all accompanied by
numerical instability defects when applied to multiphase systems with large density ratios in the range
of 500–1000. In order to remedy the limitation, Inamuro et al. [10] developed an LB model that satisfies
Galileo invariance for incompressible two-phase flows with density ratios of 50–1000 based on the
free-energy model, but the implementation of this method requires high computational costs for solving
the introduced pressure-Poisson equation, which destroys the simplicity of LBM. Lee et al. [11,12]
successively proposed innovative LB models with three-step algorithms and second-order mixed
difference schemes based on the Cahn-Hilliard model [13], achieving numerical stability at large density
ratios up to 1000. In addition to the complicated and inefficient algorithms, some researchers [14,15]
pointed out that the models of the Lee’s group [11,12] lacked accurate mass conservation due to the
inconsistent invocations of central and biased finite differences. Zheng et al. [16] claimed to develop
an LB model for multiphase systems with large density ratios by improving the free-energy model,
but Fakhari and Rahimian [17] thought that their model was restricted to density-matched binary
fluids, and incapable of modeling actual multiphase flows with large density ratios.

Over the past ten years, Fakhari and his group [17–24] have been dedicated to the LBM studies
of multiphase systems with large density ratios, and have proposed various improved LB models
and made a series of research progress. In particular, a phase-field LB model suitable for large
density ratios has been constantly modified and optimized, which already has the characteristics
of exact mass conservation, superior accuracy, and stability [19,20]. Until 2019, this LBM was used
to solve various numerical problems such as bubble rising [17,19,21,24], droplet falling [17,19,20,22],
von Kármán vortex street flows [18,20], and gas-liquid flows in porous media [23]. However, due to
the complicated topological evolutions of the gas-liquid interface, including the bubble deformation,
splitting, coalescence, and interplay with obstacles, no researchers have studied the bubble rising in the
packed bed by this method so far. In order to save computing resources, the packed bed is simplified
and replaced by two complex channels in our work, the bubble rising problem in the channels saturated
with liquid will be investigated using the phase-field LB model.

In this paper, the phase-field LB model is tested by several benchmark problems and proved to
indeed be a numerical method with high numerical stability and accuracy. Subsequently, this model is
employed to simulate bubble rising in complex channels saturated with liquid at large density ratios,
in which the problem of specifying the contact angle is also taken into account. The numerical results
reveal the effects of channel structures, gas-liquid physical properties, and operating conditions on
bubble deformation, motion velocity, and drag coefficient. Additionally, different flow patterns are
recognized and found being dependent of channel structure parameters, gravity Reynolds number
(ReGr), and Eötvös number (Eo). In the following, the specific numerical algorithm of phase-field
LB model and its implementation details are presented in Section 2. Several verification examples
used to test the phase-field LB model are listed in Section 3. Then, detailed numerical results and the
discussions are given in Section 4. Finally, a summary and conclusions for the whole article are given
in Section 5.

2. Numerical Method

In this paper, a phase-field LB model [20] is employed to solve the problem of bubble rising in
complex channels saturated with liquid. This model is characterized by good accuracy and strict
mass conservation, and has smaller spurious velocities and performs better in handling multiphase
flows with large density and viscosity ratios than color and pseudo-potential models. In addition,
the method also takes into account the three-phase contact line dynamics.
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2.1. Phase-Field LB Model

The phase-field LB model we currently use is proposed by Fakhari et al. [20], in which the
lattice-Boltzmann equations (LBE) combine a modified interface tracking equation and improved
hydrodynamic evolution equations to achieve numerical computations of isothermal incompressible
multiphase fluid systems.

2.1.1. Macroscopic Governing Equations

In the phase-field LB model, a phase-field variable φ is defined and its value is zero in the light
fluid (gas bubbles) while one in the heavy fluid (liquid), which changes smoothly across the phase
interface between two different fluids. Unlike those phase-field models based on the Cahn-Hilliard
equation [13,17,25], a so-called conservative phase-field equation is used in the current model for
interface tracking [26]:

∂φ

∂t
+∇ · (φu) = ∇ ·

[
M

(
∇φ−

4
ξ
φ(1−φ)n̂

)]
(1)

where t is the time, u is the macroscopic velocity vector, M is the mobility, ξ is the interface thickness,
and n̂ represents the unit vector normal to the gas-liquid interface, whose direction is away from the
liquid side and points to the gas bubble side, that is

n̂ =
∇φ∣∣∣∇φ∣∣∣ (2)

The isothermal incompressible multiphase flows are governed by Navier-Stokes equations,
including the continuity equation:

∂ρ

∂t
+∇ · ρu = 0 (3)

and the momentum conservation equation,

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇ ·

(
µ
[
∇u + (∇u)T

])
+ Fs + Fb (4)

where ρ and µ represent the fluid density and viscosity respectively, p is the macroscopic pressure,
Fb is the body force, and Fs is the surface tension force due to the presence of interface, which can be
calculated by [27]:

Fs = µφ∇φ (5)

in which µφ is the chemical potential of the binary-fluid system, which is defined by the derivative of
the volumetric free energy Ef with respect to the phase field φ:

µφ =
δEf

δφ
= 4βφ(φ− 1)(φ− 1/2) − κ∇2]φ (6)

where the volumetric free energy is given by [27,28]:

Ef =

∮ (
βΨ(φ) +

1
2
κ
∣∣∣∇φ∣∣∣2)dV (7)

in which the coefficients β = 12σ/ξ and κ = 3σξ/2 are related to the surface tension σ and the interface
thickness ξ, and Ψ(φ) is the bulk free energy and expressed as:

Ψ(φ) = φ2(1−φ)2 (8)

It should be noted that in the above equations, the gradient and Laplacian of the phase field φ are
computed using a second-order isotropic central difference scheme. This scheme avoids the occurrence
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of a fourth-order derivative when solving the Laplacian in Equation (6) [13,25], and the combination
of central and biased differences that was employed in previous studies [11,12], which weakens
the numerical dispersion and maintains the conservation of mass and momentum. Therefore,
the phase-field LB model is prone to numerical stability at large density ratios.

2.1.2. LBE for Interface Tracking

The following LBE has been recovered into Equation (1) by Geier et al. [29], which can be used to
track the gas-liquid interface:

hα(x + eαδt, t + δt) = hα(x, t) −
hα(x, t) − heq

α (x, t)
τφ + 1/2

(9)

where hα is the phase-field distribution function, τφ is the phase-field relaxation time, eα represents the
lattice-related mesoscopic velocity set. For the lattice of D2Q9 model, eα is given by [30]:

eα = c


(0, 0), α = 0
(cosθα, sinθα), θα = (α− 1)π/2, α = 1 ∼ 4
(cosθα, sinθα)

√
2, θα = (2α− 9)π/4, α = 5 ∼ 8

(10)

where c = δx/δt = 1, δx and δt represent the unit lattice length and unit time, respectively, and both δx
and δt are set to one in uniform grids. heq

α is the equilibrium phase-field distribution function, which is
expressed as:

heq
α = φ Γα + wα

M
c2

s

[4
ξ
φ(1−φ)

]
(eα · n̂) (11)

in which

Γα = wα

1 + eα · u
c2

s
+

(eα · u)
2

2c4
s
−

u · u
2c2

s

 (12)

In Equations (11) and (12), cs is the lattice sound speed and cs = c/
√

3, and wα represents the
lattice-related weight coefficient set [30], where w0 = 4/9, w1–4 = 1/9, w5–8 = 1/36. Mobility M is positively
correlated with the phase-field relaxation time τφ as:

M = τφc2
sδt (13)

After the calculation of a two-step collision-streaming sequence, the phase field is updated by
taking the zeroth moment of the phase-field distribution function:

φ =
∑
α

hα (14)

and subsequently the density ρ can be obtained by linear interpolation:

ρ = ρg + φ
(
ρl − ρg

)
(15)

where ρg and ρl represent the densities of the gas and liquid, respectively.

2.1.3. LBE for Hydrodynamics

An improved hydrodynamic LBE based on HCZ model [9] was developed by Fakhari et al. [17] to
update pressure and velocity fields in nearly incompressible multiphase flows:

gα(x + eαδt, t + δt) = gα(x, t) + Ωα(x, t) + Fα(x, t) (16)
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where gα is called the modified hydrodynamic distribution function, and Fα is the forcing term, which is
calculated by [20]:

Fα(x, t) = δt
[
(Γα −wα)

(
ρl − ρg

)
c2

s + Γαµφ
]
(eα − u) · ∇φ+ δtΓα(eα − u) · Fb (17)

Ωα is the collision operator, here the collision operator with a multiple-relaxation-time (MRT)
model [31] is employed because its performance is more stable in the implementation than the
Bhatnagar-Gross-Krook (BGK) model:

Ωα(x, t) = −M−1ŜM
(
gα − geq

α

)
(18)

where geq
α is called the modified equilibrium distribution function and is given by:

geq
α = geq

α −
1
2

Fα (19)

in which the equilibrium distribution function geq
α is defined as:

geq
α = pwα + ρc2

s (Γα −wα) (20)

M is an orthogonal transformation matrix to transform the distribution functions from physical
space into moment space [31] and M−1 is its inverse matrix, and Ŝ is a diagonal relaxation matrix.
For the D2Q9 lattice, Ŝ can be selected as:

Ŝ = diag(1, 1, 1, 1, 1, 1, 1, sv, sv) (21)

in which
sv =

1
τ+ 1/2

(22)

where τ is the hydrodynamic relaxation time, which is calculated according to the dynamic viscosity
derived by linear interpolation:

µ = µg + φ
(
µl − µg

)
(23)

and
τ =

µ

ρc2
s

(24)

Among them, µg and µl represent the dynamic viscosities of the gas and liquid, respectively.
After solving the modified hydrodynamic distribution function according to the two-step

calculation sequence of collision-streaming, the hydrodynamic properties are obtained by:

u =
1
ρc2

s

∑
α

gαeα +
δt
2ρ

(Fs + Fb) (25)

p =
∑
α

gα +
δt
2

(
ρl − ρg

)
c2

s u · ∇φ (26)

Note that the calculation of pressure p requires the updated velocity u, so the update sequence of
velocity must precede the pressure.

2.2. Numerical Implementation

2.2.1. Discretization

As described in Section 2.1, a second-order isotropic central difference scheme for the phase field
is adopted in the phase-field LB model, which is conducive to stable implementation while retaining
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the second-order accuracy. In detail, the gradient terms used in Equations (5), (17), and (26) and the
Laplacian term in Equation (6) are computed according to the following discrete schemes:

∇φ =
1

2c2
sδt

8∑
α=1

eαwα[φ(x + eαδt) −φ(x− eαδt)] (27)

∇
2φ =

1
c2

sδt2

8∑
α=1

wα[φ(x + eαδt) − 2φ(x) + φ(x− eαδt)] (28)

2.2.2. Curved Boundary Treatment

If the solid walls are set in the computational domain, the interaction between the fluids and the
solid walls can be described by imposing a specified contact angle at the solid boundary [28]:

n̂w · ∇φ
∣∣∣
xw

= Θφw(1−φw) (29)

where xw is the position of a point on the solid boundary, n̂w is a unit vector normal to the solid
boundary, with its direction pointing away from the solid wall, and φw is the phase field value of the
point on the solid boundary. Θ is related to the equilibrium contact angle θ and is written as:

Θ = −

√
2β
κ

cosθ (30)

As shown in Figure 1, the solid (black dots) is presented with a curved solid boundary (black
solid line); then Equation (29) is modified to [20]:

n̂w · ∇φ
∣∣∣
xw

=
∂φ

∂nw

∣∣∣∣∣∣
xw

=
φm −φi, j

2h
= Θφw(1−φw) (31)

where φm is the phase field value of the interpolated point in the fluid (blue dots), and h = |xm − xw| is
the distance from the interpolated point to the solid boundary. φw is estimated by interpolation:

φw =
φm + φi, j

2
(32)

Figure 1. Schematic of curved boundary treatment.
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Equation (31) can be solved by replacing φw with Equation (32):

φi, j =
1
a

(
1 + a−

√
(1 + a)2

− 4aφm

)
−φm (33)

where

a = hΘ = −h

√
2β
κ

cosθ , 0(θ , 90◦) (34)

As for the neutral wetting conditions (θ = 90◦), Equation (31) has a trivial solution φi,j = φm.
To find φi,j and impose the contact angle conditions on the solid boundary, φm is the only unknown
parameter, which can be obtained by the bidirectional interpolation scheme by utilizing the phase field
values of four nearby nodes, and the coordinate positions of nearby nodes are depicted in Figure 1.
If the unknown φi,j is required for interpolation, it is replaced by the φi,j from the previous time step.

After specifying the wetting boundary conditions, the unknown incoming distribution functions
from the solid boundary nodes towards the fluid nodes can be determined by referring to the model of
Yu et al. [32]:

h∗α−(xs) = h∗α(xf) (35)

g∗α−(xs) =
∆

1 + ∆

[
g∗α−(xf) + g∗α(xf)

]
+

1− ∆
1 + ∆

g∗α(xff) (36)

where
∆ =

|xf − xw|

|xf − xs|
(37)

The subscript α− denotes the incoming distribution functions, such that eα− = −eα, and the
superscript asterisk denotes the pre-streaming or post-collision state of the distribution functions.

3. Numerical Validation

3.1. Laplace Law

Laplace law states that the pressure difference between the inside and outside of a stationary
bubble is proportional to the surface tension and inversely proportional to the bubble radius, which is
often used to verify the numerical accuracy of the multiphase LB model [8,11,16,17]. The Laplace law
for a two-dimensional bubble is written as:

∆p = pin − pout =
σ

Rb
(38)

where Rb is the radius of the bubble. The computational domain of this verification is a square domain
with 201 × 201 grids, and periodic boundary conditions are applied at its four boundaries. At the
initial moment of the simulation, the center of the single bubble is located at (101,101), and the bubble
is immersed in the liquid phase without any external force. The physical properties of the liquid and
bubble are fixed as ρl/ρg = 1000 and µl/µg = 100. Zheng et al. [16] found that the simulation results
were in better agreement with the analytical solutions and the spurious current was smaller when the
interface thickness was greater than 4.5 lattice units (lu). Thus, the interface thickness is fixed to 6 lu in
this Laplace-law test, and the bubble radius and surface tension are adjusted in the range of 10–50 lu
and 0.01–0.1, respectively.

Figure 2a,b show the phase field contour of a bubble that has reached a stable state and
the distribution curve of the phase field in the radial direction through the bubble, respectively.
The analytical curve of the phase field distribution in Figure 2b is derived from the equilibrium phase
field profile of diffuse-interface models:

φ(x) =
1
2

[
1− tanh

(
|x− x0|

ξ/2

)]
(39)
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where x0 is the location of the bubble interface. By comparison, it can be seen that the numerical results
are almost the same as the analytical solutions.

Figure 2. Phase field distribution contour (a) of the stable bubble and phase field distribution comparison
in the radial direction (b) through the bubble.

The relationship between pressure difference, surface tension, and radius of the bubble is plotted
in Figure 3, which is found to be highly consistent with Laplace law with deviations less than 3% and
proves the accuracy of the current phase-field LB model quantitatively.

Figure 3. Relationship between pressure difference, surface tension, and radius of the bubble.

3.2. Bubble Deformation

The rising process of a single bubble under buoyancy action in a rectangular liquid-filled channel
is often studied and used to test numerical models [33–36]. The single bubble will reach a relatively
stable state with a constant rising velocity and terminal shape after rising for some time. In our
simulations, a static circular bubble with a diameter Db = Nx/5 is initially placed at (Nx/2, Ny/4) in a
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rectangular computational domain discretized with Nx × Ny = 512 × 1536 grid cells. A volumetric
buoyancy force Fb = (ρ− ρl)Gyŷ, where Gy is the magnitude of the gravitational acceleration and ŷ is
a unit vector with a vertical downward direction, is continuously imposed on the bubble. The periodic
boundary conditions are used at the left and right boundaries of the computational domain, while the
bounce-back boundary schemes are applied at the top and bottom boundaries. The density and
viscosity ratios of the liquid and bubble are fixed as ρl/ρg = 1000 and µl/µg = 100. Besides, there are
several dimensionless parameters for characterizing bubble dynamics:

(1) The gravity Reynolds number (ReGr),

ReGr =

√
Gyρl

(
ρl − ρg

)
D3

b

µl
(40)

(2) The Eötvös number (Eo),

Eo =
Gy

(
ρl − ρg

)
D2

b

σ
(41)

(3) The Morton number (Mo),

Mo =
Gy

(
ρl − ρg

)
µ4

l

σ3ρ2
l

(42)

(4) The above three are not independent, since Mo = Eo3/Re4
Gr.

Table 1 lists the terminal bubble shapes under different ReGr and Eo obtained by present LBM and
other experimental or numerical methods [33–37]. By comparison, the terminal bubble shapes in our
simulations can be observed to be highly similar to other research results, which achieves numerical
stability under large liquid-to-gas density ratio conditions and demonstrates the qualitative accuracy
of the current LB model.

Table 1. Comparison of terminal bubble shapes observed in experiments and predicted by front
tracking method, previous and present LBMs.

Case ReGr Eo
Experiments

(Bhaga and Weber,
1981) [37]

Front Tracking
Method (Hua and

Lou, 2007) [33]

LBM (Liang et al.,
2019) [36] Present LBM

A1 1.67 17.7

A2 79.88 32.2

A3 134.63 115

A4 30.83 339

A5 49.72 641
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During the bubble rising, the Reynolds number of the bubble Re = ugDbρl/µl is continuously
recorded. The comparison between the Re obtained from the present LBM and the experimental
results is listed in Table 2. The acceptable relative errors further confirm the numerical accuracy of the
phase-field LB model.

Table 2. Comparison of Re obtained from the present LBM and the experimental results.

Case Re of Experiments [37] Re of Present LBM Relative Error (%)

A1 0.232 0.211 9.05
A2 55.3 47.8 13.56
A3 94.0 87.5 6.91
A4 18.3 16.4 10.38
A5 30.3 27.5 9.24

4. Numerical Results and Discussion

4.1. Channel Construction and Numerical Initialization

Figure 4 shows the schematics of two computational domains in 2D Cartesian systems for
the bubble rising problem in complex channels, in which the lateral boundaries are set as periodic
boundaries, while the bounce-back boundary schemes are adopted at the top and bottom. Among them,
the blue circular areas represent the gas bubbles, the red areas are the liquid that fills the channels and
surrounds the bubbles, and the white circular and semicircular areas are the artificially constructed
bounce-back domains, which are referred to as solid particles and not involved in the iterative
computations of phase field and hydrodynamic properties.

Figure 4. Schematics of wavy vertical channel (a) and S-shaped curved channel (b).

As depicted in Figure 4, two types of symmetric channels are formed by arranging the solid
particles in rectangular and triangular matrices, and they are named wavy vertical channel and S-shaped
curved channel, respectively. Db and Dp marked in the figures are the bubble and particle diameters,
the horizontal spacing L of the particles refers to the shortest distance between two horizontally adjacent
particles and similarly the vertical spacing H is the shortest distance between two vertically adjacent
particles, and S represents the shortest distance between two diagonally adjacent particles. Hereinafter
we use the particle spacing normalized by the bubble diameter to characterize the channel width.
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Initially, a static and stable circular bubble is placed in the middle of the channel and submerged
in the liquid with a diameter Db and a volumetric buoyancy force Fb = (ρ− ρl)Gyŷ. The phase field in
the solid particles is fixed to 0, and in other computational domains the phase field is initialized by the
following hyperbolic tangent profile:

φ(x) =
1
2

[
1 + tanh

(
R(x) −R0

ξ/2

)]
(43)

where R0 is the initial bubble radius and represents the position of the gas-liquid interface in the radial
direction of the bubble, and R(x) is the distance from any position x in the flow domains to the center
of the bubble. Unless otherwise specified, in the following simulations, the initial bubble diameter and
particle diameter are set as Db = Dp = 51 lu. The density and viscosity ratios of the liquid and gas
are fixed to ρl/ρg = 1000 and µl/µg = 100, respectively. Taking into account the balance of numerical
stability and accuracy at large density ratios [22], the mobility and interface thickness are taken as
M = 0.03 and ξ = 5 lu in the present simulations, respectively. As for the wetting properties, the contact
angle of gas-liquid interface on particle surfaces is specified as 40◦.

After initialization, the bubble rises through the channel under the action of buoyancy,
and simultaneously undergoes a series of evolutions such as deformation, fragmentation,
and coalescence. During these processes, as an important dimensionless parameter related to
the bubble dynamics, the drag coefficient (CD) is constantly monitored:

CD =
4Gy

(
ρl − ρg

)
Db

3ρlu2
g

(44)

where ug is the average velocity of bubbles rising, which is obtained by averaging the instantaneous
y-direction velocities over all gas-phase nodes (ρ <

(
ρl + ρg

)
/2).

4.2. Grid Independence

The channel structure and the effect of the channel on the bubble are greatly affected by the grid,
so the case of the bubble rising in a rectangular channel without particles at ReGr = 100 and Eo = 20 is
selected for testing the grid independence. Five different grids with Nx × Ny = 96 × 1536, 128 × 1536,
176 × 1536, 256 × 1536 and 512 × 1536 grid cells are applied in the bubble rising problem, respectively.
The number of grid cells in the y-direction is sufficiently large and constant because its influence on the
bubble steady velocity is negligible. The rising velocity variation of the bubble with Db = Nx/5 over
the dimensionless time is present in Figure 5, and the gravity-based dimensionless time is defined as
t∗ = t

√
Gy/Db. It can be observed that when the grid cells are less than 176 × 1536, the bubble terminal

velocity is unstable, and the calculation deviation is unacceptable. Thus, the minimum number of grid
cells used in the following simulations is set to 176 × 1536.

Figure 5. Variations of the bubble rising velocity with dimensionless time using five different grids.
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According to the grid independence test results, considering that the channel width is one of the
investigated variables affecting the bubble movement, the two computational domains of wavy and
S-shaped channels are discretized using 176 × 1536 to 512 × 1536 and 192 × 1536 to 512 × 1536 grid
cells, respectively.

4.3. Mass Conservation

In order to verify the mass conservation of the current model, the evolution of the total system
mass versus the dimensionless time is recorded in Figure 6 during a numerical simulation of bubble
rising in a wavy vertical channel with L/Db = 0.719 and H/Db = 0.875 at ReGr = 100 and Eo = 20. It is
observed that the variation of the normalized total system mass M/M0 is much less than 10−6 over a
long period of time, indicating that the mass of the gas-liquid two-phase system is conserved well
using current phase-field LB model.

Figure 6. Variation of the normalized total system mass with dimensionless time.

4.4. Channel Width Effect

Undoubtedly, one of the variables that has the most obvious impact on bubble movement in the
aforementioned channels is the channel width.

Figure 7 shows the evolution curves of bubbles rising velocity and drag coefficient versus the
dimensionless time at ReGr = 100 and Eo = 20. In the wavy vertical channel, the bubble is prone to
a stabilized state with a periodically fluctuating terminal velocity, along with CD fluctuating within
the certain ranges. In Figure 7, compared with the channel without particles, the rising velocity of
the bubble is lower, and the drag coefficient is larger in the channel when the particles are arranged,
which indicates that the presence of particles has a significant hindrance to the movement of the bubble.

ug and CD under different channel widths are given in Figure 8, which are calculated by averaging
the regularly fluctuating ug and CD over a certain period of time in Figure 7. CD is found to be lower
as the channel width becomes wider, and the bubble rises faster. The same results are observed by
Patel et al. [38] in the studies on the effects of the amplitude of the sinusoidal channel walls on bubble
dynamics. In addition, the horizontal spacing between particles has a more severe impact on the bubble
movement than the vertical spacing of the particles. Because the horizontal spacing of the particles
directly affects the interaction between the bubble and the particles, and determines the difficulty for
the bubble to pass through each gap, while the vertical spacing affects the fluctuation frequency of the
bubble drag force, which can only indirectly act on the drag force. In view of this, unless otherwise stated,
the following numerical results are obtained from the simulations in the channels with H/Db = 0.875.
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Figure 7. Variations of ug (a) and CD (b) with dimensionless time at ReGr = 100 and Eo = 20.

Figure 8. Variations of ug (a) and CD (b) with channel width at ReGr = 100 and Eo = 20.
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4.5. Surface Tension Effect

Surface tension is an important parameter to characterize the deformation properties of the
gas-liquid interface. As for the bubble, a large surface tension means that the bubble is not easy to
deform and break. In our study, since the total bubble mass is well conserved, we count the ratio of the
total length of the gas-liquid interface to the area occupied by the bubble to measure the deformation
rate of the bubble. As shown in Figure 9, the bubble deformation rate is proved to reduce with the
increase of surface tension, which confirms that the bubble with large surface tension tends to maintain
its original shape and resist deformation.

Figure 9. Variation of bubble deformation rate with surface tension at ReGr = 100 and Eo = 20.

Furthermore, the declining ug and ascending CD are observed in Figure 10 when the surface
tension is gradually increasing. This is because the bubble resists deformation more strongly when
colliding with the particles, which restricts the bubble rising velocity. In contrast, the bubble with
smaller surface tension is more likely to pass through the narrow gaps in the channel by deforming or
even breaking. This phenomenon is consistent with the numerical results of Patel et al. [38], and similar
to the studies on the effect of surface tension on liquid penetration by Shi et al. [39].

Figure 10. Variations of ug (a) and CD (b) with surface tension at ReGr = 100 and Eo = 20.
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4.6. Bubble Diameter Effect

The effects of bubble diameter on bubble dynamics are depicted in Figure 11. The bubble diameter
in this part is not equivalent to the particle diameter; it varies in the range of 25–204 lu, but the particle
diameter is still fixed at 51 lu. Figure 11a indicates that it is more difficult for a bubble with larger
diameter to pass through the channel due to the greater blocking effects of the particles, so the bubble
rising velocity is slowed down, resulting in the ascent of drag coefficient, as demonstrated in Figure 11b.

Figure 11. Variations of ug (a) and CD (b) with bubble diameter at ReGr = 100 and Eo = 20.

4.7. Driving Force Effect

An additional driving force source term Fd can be added to the right side of the governing
Equation (4) to simulate the changes in the pressure difference of the packed bed in the actual industry.
Here we use the dimensionless ratio Fd/(Gy·ρl) to measure the magnitude of the driving force.

As illustrated in Figure 12, when the incremental additional driving forces are imposed on the
bubble based on the presence of buoyancy force, ug increases linearly while CD decreases rapidly.
Because the additional driving force pushes the bubble to pass through the channel faster and more
smoothly, the rising velocity is significantly increased, so that ug increases and CD decreases.
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Figure 12. Variations of ug (a) and CD (b) with additional driving force at ReGr = 100 and Eo = 20.

4.8. Bubble Flow Pattern

During the numerical simulations, we found that the fluid properties and operating conditions
set in the numerical initializations have significant impacts on the evolutions of the bubble. In order to
classify the different bubble evolution processes, the gravity Reynolds number and Eötvös number
that include fluid property and operating condition parameters are used as the classification criteria.

For the wavy vertical channel, mainly four types of bubble flow patterns are identified, and their
detailed bubble evolution diagrams are listed in Figure 13. The four flow patterns are named Aw, Bw,
Cw, and Dw, respectively; their subscript “w” represents the wavy vertical channel, and the capital
letters are used to distinguish different flow patterns.

By observing Figure 13, the flow pattern Aw describes that the bubble is completely blocked
by the two particles at the entrance of the channel, and even cannot enter the channel. It is inferred
from the small Eo that the bubble surface tension in this flow pattern is relatively large, which makes
it difficult for the bubble to enter the channel through deformation when encountering obstacles.
In contrast, the bubble in the flow pattern Bw will become elongated when it flows into the narrow
gaps thanks to the reduced surface tension, thus passing through the channel integrally. In flow pattern
Cw, whenever the bubble crosses the gaps and collides with the particles, some secondary bubbles
are split from the tail of the parent bubble. Then these secondary bubbles will gradually merge and
expand following the parent bubble, and the coalesced secondary bubble with smaller rising resistance
will catch up with and merge into the parent bubble finally. As for the flow pattern Dw, compared to
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the flow pattern Cw, more secondary bubbles are generated after the parent bubble interacts with the
particles due to the extremely small surface tension, and the parent bubble will eventually be split
into multiple secondary bubbles and dispersed in the liquid. As a summary, a lower Eo leads to a
steady rise of the bubble, while a higher Eo instigates the dynamics instability and causes a multiple
breakup in the form of secondary bubbles, which is in good agreement with the numerical results of
Patel et al. [38] on bubble dynamics in sinusoidal channels using the level set method.

Figure 13. Cont.
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Figure 13. Bubble evolution diagrams of flow patterns Aw (a), Bw (b), Cw (c), and Dw (d) in the wavy
vertical channel with L/Db = 0.719.

For the S-shaped curved channel, according to different bubble evolutions, five flow patterns
As, Bs, Cs, Ds, and Es are distinguished, as illustrated in Figure 14. Among them, flow pattern As
is described as the bubble cannot enter and pass through the channel due to the obstruction of the
narrow channel. In flow pattern Bs, the bubble enters the channel by being squeezed and elongated,
and it shuttles left and right to rise through the channel. For flow patterns As and Bs, the bubbles
retain good integrity because of the higher surface tension. As for the flow pattern Cs, the bubble first
splits into two after colliding with the particle, and then the two secondary bubbles will coalesce under
their interaction. In another case, the two separated secondary bubbles will rise simultaneously with
negligible mutual interference due to their far distance, which is named flow pattern Es. Similar to
the flow pattern Dw, the bubble in flow pattern Ds is gradually broken into multiple small secondary
bubbles and they are dispersed in the liquid phase, continuously breaking and coalescing. It is worth
mentioning that the bubbles in the flow patterns Dw and Ds have better dispersibility and higher
specific surface area, which are more conducive to gas-liquid mixing and mass transfer in actual
industrial production.
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Figure 14. Cont.
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Figure 14. Bubble evolution diagrams of flow patterns As (a), Bs (b), Cs (c), Ds (d), and Es (e) in the
S-shaped curved channel.

In our studies, multiple sets of simulations have been executed within the ReGr range of 0–350 and
Eo range of 0–250. Figure 15 depicts the divisions of flow patterns while changing ReGr and Eo with
fixed channel widths L/Db = 0.719 and H/Db = 0.875 in the wavy vertical channel and L/Db = 1.344 and
H/Db = 0.875 in the S-shaped curved channel. Eo is found to have more significant effects on the flow
patterns compared to ReGr, and lower Eo numbers often correspond to the bubbles with higher integrity
because the surface tension that is related to Eo number plays a leading role in bubble deformation.
In the S-shaped channel, the flow pattern Ds occupies a wider range than the flow pattern Dw in
the wavy channel, indicating that the bubbles are more likely to reach the state of fragmentation and
dispersion because of more frequent collisions with particles.
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Figure 15. Flow pattern divisions according to ReGr and Eo in the wavy vertical channel (a) and
S-shaped curved channel (b).

It is worth reminding that the trend of the boundaries between different flow patterns in an
S-shaped curved channel is similar to the shape regime curve of the single bubble under gravitational
motion in the work of Clift et al. [40].

It can be qualitatively summarized from Figure 15 that the bubble becomes more broken and
dispersed as ReGr and Eo increase, and this is attributed to the changes in liquid viscosity and bubble
surface tension that have significant impacts on the gas-liquid interface. The increase of ReGr and Eo
leads to the reduction of liquid viscosity and surface tension, respectively. The reduced liquid viscosity
causes the weakening of the viscous effects, which results in the increase of bubble wobbling [38],
and the lowered surface tension further promotes bubble deformation and breakup.

In addition to the ReGr and Eo, channel width also has an important influence on the bubble flow
patterns. The flow pattern divisions according to the channel widths of two types of channels are
demonstrated in Figure 16. The horizontal spacing between particles is found to have more obvious
impacts on the flow of bubbles compared to the vertical spacing. The horizontal spacing of the particles
directly affects the interaction between the bubble and the particles, thereby affecting the bubble shapes
and flow patterns.
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Figure 16. Flow pattern divisions according to the channel widths of the wavy vertical channel (a) and
S-shaped curved channel (b) at ReGr = 100 and Eo = 20.

On the other hand, in the wavy channel, the changes in channel width do not contribute much to
the transitions of bubble flow patterns while maintaining the same ReGr and Eo. Conversely, in the
relatively complex S-shaped channel, the transitions of the flow patterns are more sensitive to the
variations of channel width; four different flow patterns are revealed by changing the channel width.
Under this ReGr and Eo condition, the flow pattern Cs is more conducive to the even distribution of the
dispersed phase in practice because too-small channel width is not prone to the disintegration and
flow of the dispersed phase, and too large channel width reduces the contact between the dispersed
phase and the particles.

5. Conclusions

In this paper, the numerical studies on two-dimensional bubble rising in complex channels
saturated with liquid at large density ratios within a wide range of gravity Reynolds numbers and
Eötvös numbers have been implemented using phase-field LB model. The main research conclusions
of this work are as follows:

(1) The present LB model is tested through three aspects of Laplace law, bubble deformation, and mass
conservation, and it has been proven to have good stability, accuracy, and conservation from both
qualitative and quantitative perspectives.
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(2) In the simulations of bubble rising in complex channels, the effects of channel width, surface
tension, bubble diameter and additional driving force on bubble motion are investigated in detail.
The larger channel width and additional driving force as well as smaller bubble diameter and
surface tension lead to lower drag coefficients, which are conducive to smooth passage through
the channels for the bubble.

(3) Four and five types of bubble flow patterns are divided according to different bubble evolution
processes under different ReGr, Eo and channel structures conditions in the wavy vertical channel
and S-shaped curved channel, respectively. The detailed flow pattern diagrams are drawn for flow
pattern recognition. To some extent, this study has some guiding significance for the regulation
of bubble flow patterns in the industrial packed beds.
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Abbreviations

Symbols
cs Lattice sound speed
CD Drag coefficient
Db Bubble diameter
Dp Particle diameter
eα Lattice-related mesoscopic velocity set
Ef Volumetric free energy
Eo Eötvös number
Fα Forcing term of the hydrodynamic LBE
Fb Body force
Fd Additional driving force
Fs Surface tension force
geq
α Equilibrium hydrodynamic distribution function

gα Modified hydrodynamic distribution function
geq
α Modified equilibrium hydrodynamic distribution function

Gy Gravitational acceleration
hα Phase-field distribution function
heq
α Equilibrium phase-field distribution function

H Vertical spacing between two vertically adjacent particles
L Horizontal spacing between two horizontally adjacent particles
M Mobility
M Orthogonal transformation matrix
M Total mass of the gas-liquid system
M0 Initial total mass of the gas-liquid system
Mo Morton number
n̂ Unit vector normal to the gas-liquid interface
n̂w Unit vector normal to the solid boundary
p Macroscopic pressure
∆p Pressure difference between inside and outside the bubble
Rb Bubble radius
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Re Reynolds number of the rising bubble
ReGr Gravity Reynolds number
S Shortest spacing between two diagonally adjacent particles
^
S Diagonal relaxation matrix

t Time
t* Gravity-based dimensionless time
u Macroscopic velocity vector
ug Bubble rising velocity
wα Lattice-related weight coefficient set
x Coordinates of the lattice nodes
xw Position of the point on the solid boundary
ŷ Unit vector with a vertical downward direction
δt Unit time
δx Unit lattice length
ξ Interface thickness
µ Fluid mixed viscosity
µg Gas viscosity
µl Liquid viscosity
µφ Chemical potential
φ Phase-field variable
φm Phase field value of the interpolated point
φw Phase field value of the point on the solid boundary
ρ Fluid mixed density
ρg Gas density
ρl Liquid density
σ Surface tension
τ Hydrodynamic relaxation time
τφ Phase-field relaxation time
θ Contact angle
Ωα Collision operator of the hydrodynamic LBE
Ψ(φ) Bulk free energy

References

1. Tailleur, R.G.; Hernandez, J.; Rojas, A. Selective hydrogenation of olefins with mass transfer control in a
structured packed bed reactor. Fuel 2008, 87, 3694–3705. [CrossRef]

2. Yuan, R.; He, Z.; Zhang, Y.; Wang, W.; Chen, C.; Wu, H.; Zhan, Z. Partial oxidation of methane to syngas in a
packed bed catalyst membrane reactor. AIChE J. 2016, 62, 2170–2176. [CrossRef]

3. Miladinovic, N.; Weatherley, L.R. Intensification of ammonia removal in a combined ion-exchange and
nitrification column. Chem. Eng. J. 2008, 135, 15–24. [CrossRef]

4. Huggins, T.M.; Haeger, A.; Biffinger, J.C.; Ren, Z.J. Granular biochar compared with activated carbon for
wastewater treatment and resource recovery. Water Res. 2016, 94, 225–232. [CrossRef]

5. Li, Q.; Luo, K.H.; Kang, Q.J.; He, Y.L.; Chen, Q.; Liu, Q. Lattice Boltzmann methods for multiphase flow and
phase-change heat transfer. Prog. Energy Combust. Sci. 2016, 52, 62–105. [CrossRef]

6. Gunstensen, A.K.; Rothman, D.H.; Zaleski, S.; Zanetti, G. Lattice Boltzmann model of immiscible fluids.
Phys. Rev. A 1991, 43, 4320–4327. [CrossRef] [PubMed]

7. Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components.
Phys. Rev. E 1993, 47, 1815–1819. [CrossRef]

8. Swift, M.R.; Osborn, W.R.; Yeomans, J.M. Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett.
1995, 75, 830–833. [CrossRef]

9. He, X.; Chen, S.; Zhang, R. A lattice Boltzmann scheme for incompressible multiphase flow and its application
in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 1999, 152, 642–663. [CrossRef]

10. Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N. A lattice Boltzmann method for incompressible two-phase
flows with large density differences. J. Comput. Phys. 2004, 198, 628–644. [CrossRef]

http://dx.doi.org/10.1016/j.fuel.2008.07.012
http://dx.doi.org/10.1002/aic.15202
http://dx.doi.org/10.1016/j.cej.2007.02.030
http://dx.doi.org/10.1016/j.watres.2016.02.059
http://dx.doi.org/10.1016/j.pecs.2015.10.001
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://www.ncbi.nlm.nih.gov/pubmed/9905534
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1016/j.jcp.2004.01.019


Processes 2020, 8, 1608 25 of 26

11. Lee, T.; Lin, C.L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible
two-phase flows at high density ratio. J. Comput. Phys. 2005, 206, 16–47. [CrossRef]

12. Lee, T.; Liu, L. Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. J. Comput. Phys.
2010, 229, 8045–8063. [CrossRef]

13. Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 1958,
28, 258–267.

14. Chiappini, D.; Bella, G.; Succi, S.; Toschi, F.; Ubertini, S. Improved lattice Boltzmann without parasitic
currents for Rayleigh-Taylor instability. Commun. Comput. Phys. 2010, 7, 423–444. [CrossRef]

15. Guo, Z.; Zheng, C.; Shi, B. Force imbalance in lattice Boltzmann equation for two-phase flows. Phys. Rev. E
2011, 83, 036707. [CrossRef]

16. Zheng, H.W.; Shu, C.; Chew, Y.T. A lattice Boltzmann model for multiphase flows with large density ratio.
J. Comput. Phys. 2006, 218, 353–371. [CrossRef]

17. Fakhari, A.; Rahimian, M.H. Phase-field modeling by the method of lattice Boltzmann equations. Phys. Rev.
E 2010, 81, 036707. [CrossRef]

18. Fakhari, A.; Lee, T. Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-
refinement technique. Phys. Rev. E 2014, 89, 033310. [CrossRef]

19. Fakhari, A.; Geier, M.; Lee, T. A mass-conserving lattice Boltzmann method with dynamic grid refinement
for immiscible two-phase flows. J. Comput. Phys. 2016, 315, 434–457. [CrossRef]

20. Fakhari, A.; Bolster, D. Diffuse interface modeling of three-phase contact line dynamics on curved boundaries:
A lattice Boltzmann model for large density and viscosity ratios. J. Comput. Phys. 2017, 334, 620–638.
[CrossRef]

21. Fakhari, A.; Mitchell, T.; Leonardi, C.; Bolster, D. Improved locality of the phase-field lattice-Boltzmann
model for immiscible fluids at high density ratios. Phys. Rev. E 2017, 96, 053301. [CrossRef] [PubMed]

22. Fakhari, A.; Bolster, D.; Luo, L.S. A weighted multiple-relaxation-time lattice Boltzmann method for
multiphase flows and its application to partial coalescence cascades. J. Comput. Phys. 2017, 341, 22–43.
[CrossRef]

23. Fakhari, A.; Li, Y.; Bolster, D.; Christensen, K.T. A phase-field lattice Boltzmann model for simulating
multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at
pore scale. Adv. Water Resour. 2018, 114, 119–134. [CrossRef]

24. Mitchell, T.; Leonardi, C.; Fakhari, A. Development of a three-dimensional phase-field lattice Boltzmann
method for the study of immiscible fluids at high density ratios. Int. J. Multiph. Flow 2018, 107, 1–15.
[CrossRef]

25. Magaletti, F.; Picano, F.; Chinappi, M.; Marino, L.; Casciola, C.M. The sharp-interface limit of the
Cahn-Hilliard/Navier-Stokes model for binary fluids. J. Fluid Mech. 2013, 714, 95–126. [CrossRef]

26. Chiu, P.H.; Lin, Y.T. A conservative phase field method for solving incompressible two-phase flows.
J. Comput. Phys. 2011, 230, 185–204. [CrossRef]

27. Jacqmin, D. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 1999,
155, 96–127. [CrossRef]

28. Jacqmin, D. Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 2000, 402, 57–88. [CrossRef]
29. Geier, M.; Fakhari, A.; Lee, T. Conservative phase-field lattice Boltzmann model for interface tracking

equation. Phys. Rev. E 2015, 91, 063309. [CrossRef]
30. He, X.; Luo, L.S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice

Boltzmann equation. Phys. Rev. E 1997, 56, 6811–6817. [CrossRef]
31. Lallemand, P.; Luo, L.S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean

invariance, and stability. Phys. Rev. E 2000, 61, 6546–6562. [CrossRef]
32. Yu, D.; Mei, R.; Shyy, W. A unified boundary treatment in lattice Boltzmann method. AIAA J. 2003. [CrossRef]
33. Hua, J.; Lou, J. Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 2007, 222, 769–795.

[CrossRef]
34. Fakhari, A.; Rahimian, M.H. Simulation of an axisymmetric rising bubble by a multiple relaxation time

lattice Boltzmann method. Int. J. Mod. Phys. B 2009, 23, 4907–4932. [CrossRef]
35. Huang, H.; Huang, J.J.; Lu, X.Y. A mass-conserving axisymmetric multiphase lattice Boltzmann method and

its application in simulation of bubble rising. J. Comput. Phys. 2014, 269, 386–402. [CrossRef]

http://dx.doi.org/10.1016/j.jcp.2004.12.001
http://dx.doi.org/10.1016/j.jcp.2010.07.007
http://dx.doi.org/10.4208/cicp.2009.09.018
http://dx.doi.org/10.1103/PhysRevE.83.036707
http://dx.doi.org/10.1016/j.jcp.2006.02.015
http://dx.doi.org/10.1103/PhysRevE.81.036707
http://dx.doi.org/10.1103/PhysRevE.89.033310
http://dx.doi.org/10.1016/j.jcp.2016.03.058
http://dx.doi.org/10.1016/j.jcp.2017.01.025
http://dx.doi.org/10.1103/PhysRevE.96.053301
http://www.ncbi.nlm.nih.gov/pubmed/29347689
http://dx.doi.org/10.1016/j.jcp.2017.03.062
http://dx.doi.org/10.1016/j.advwatres.2018.02.005
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2018.05.004
http://dx.doi.org/10.1017/jfm.2012.461
http://dx.doi.org/10.1016/j.jcp.2010.09.021
http://dx.doi.org/10.1006/jcph.1999.6332
http://dx.doi.org/10.1017/S0022112099006874
http://dx.doi.org/10.1103/PhysRevE.91.063309
http://dx.doi.org/10.1103/PhysRevE.56.6811
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/10.2514/6
http://dx.doi.org/10.1016/j.jcp.2006.08.008
http://dx.doi.org/10.1142/S0217979209053965
http://dx.doi.org/10.1016/j.jcp.2014.03.028


Processes 2020, 8, 1608 26 of 26

36. Liang, H.; Li, Y.; Chen, J.; Xu, J. Axisymmetric lattice Boltzmann model for multiphase flows with large
density ratio. Int. J. Heat Mass Transf. 2019, 130, 1189–1205. [CrossRef]

37. Bhaga, D.; Weber, M.E. Bubbles in viscous liquids: Shapes, wakes and velocities. J. Fluid Mech. 1981,
105, 61–85. [CrossRef]

38. Patel, T.; Patel, D.; Thakkar, N.; Lakdawala, A. A numerical study on bubble dynamics in sinusoidal channels.
Phys. Fluids 2019, 31, 052103. [CrossRef]

39. Shi, Y.; Tang, G.H.; Lin, H.F.; Zhao, P.X.; Cheng, L.H. Dynamics of droplet and liquid layer penetration in
three-dimensional porous media: A lattice Boltzmann study. Phys. Fluids 2019, 31, 042106. [CrossRef]

40. Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops, and Particles; Academic Press: New York, NY, USA, 1978.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.050
http://dx.doi.org/10.1017/S002211208100311X
http://dx.doi.org/10.1063/1.5092870
http://dx.doi.org/10.1063/1.5091481
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Numerical Method 
	Phase-Field LB Model 
	Macroscopic Governing Equations 
	LBE for Interface Tracking 
	LBE for Hydrodynamics 

	Numerical Implementation 
	Discretization 
	Curved Boundary Treatment 


	Numerical Validation 
	Laplace Law 
	Bubble Deformation 

	Numerical Results and Discussion 
	Channel Construction and Numerical Initialization 
	Grid Independence 
	Mass Conservation 
	Channel Width Effect 
	Surface Tension Effect 
	Bubble Diameter Effect 
	Driving Force Effect 
	Bubble Flow Pattern 

	Conclusions 
	References

