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Abstract: The paper presents experimental investigations of the low-density air-helium jets. The paper
is aimed at the analysis of the flow conditions promoting the local absolute instability leading to
global flow oscillations. A number of the test cases are analysed with a wide range of the shear layer
thickness showing conditions favorable for the global modes and also mixing intensity triggered by
such a regime. It is shown that high mixing intensity is determined not only by the global regime
but also by the vortex pairing process. The results are compared with a recently proposed universal
scaling law for an onset into the global mode. The results turn out to be far from this scaling law and
the reasons for such discrepancies are discussed. The measurements show also that if the shear layer
at the nozzle exit is thin enough the global modes are suppressed. The mechanism leading to the
global mode suppression under such conditions is carefully analysed.
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1. Introduction

A concept of absolute instability was first proposed by Landau [1] as a perturbation growing in
time in contrast to the convective one in which the perturbation grows in space being swept away
from its source by a convective stream. Such a phenomenon was first observed in plasma physics [2]
and later it was shown theoretically by Huerre and Monkewitz [3] that it could be observed in simple
shear flows. In the case of absolute instability perturbation growing in time travels downstream
and upstream and contaminates the whole flow field. If a region of absolute instability is large
enough it could lead to global self-sustained flow oscillations [4]. Monkweitz and Sohn [5] using
spatio-temporal linear stability theory and Briggs-Bers criteria [2,6] showed that the absolute instability
can be triggered in low-density axis-symmetric free jets provided that a ratio of the jet density to
ambient fluid is lower than a critical value Scr ≈ 0.7. The main outcomes of the linear stability theory
were confirmed experimentally in cardinal papers for the case with changing density by heated jet by
Monkewitz et al. [7] and using helium-air mixture by Sreenivasan et al. [8] and Kyle and Sreenivasan [9],
respectively. For both types of density changing significant oscillations were visible for the low-density
cases. Using heated jet—studies reported by Monkewitz et al. [7], absolutely unstable modes were
noticed for a density characterised by density ratio lower than the critical one equal to Scr = 0.65.
This type of oscillation was called Mode II. For the air-helium mixture, used by Kyle and Sreenivasan [9],
the critical density of the oscillations appearance was lower than for heated jets and it was equal
Scr = 0.61 However, a characteristic feature of both cases was the presence of the axis-symmetric
vortices and pairing of these structures. In general, the characteristic oscillations frequencies had
a good agreement with the linear stability theory. There were also some differences in both cases.
The presence of extra oscillations, called Mode I was characteristic for heated jets experiments exactly
for density ratio S < 0.69. In turn, broadband oscillations were distinctive for air-helium jets provided
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a very thin shear layer at the nozzle exit. The origin of the two described kinds of oscillations is
still an open question. It is also puzzling that in another heated jet experiment, reported by Russ
and Strykowski [10], even for as low density as equal S = 0.5, no global instability was detected.
The significant mixing amelioration in the globally unstable low-density jet was detected in research
upon concentration in self-excited helium jet reported by Richards et al. [11]. In turn, in momentum
dominated helium jets experiment, performed by Yildirim and Agrawal [12], some buoyancy impact on
oscillations frequencies was shown. As a complement of all prior experimental researches, a universal
scaling law of the global mode frequency, based on the air-helium jet experiment, was formulated
by Hallberg and Strykowski [13]. A universal law for the onset of global instability was formulated
by Zhu et al. [14]. The global instability in helium jet using round and elliptical nozzles was studied
experimentally by Tierney et al. [15].

Large Eddy Simulations (LES) and/or Direct Numerical Simulations (DNS) bring new insight
into the understanding of low-density jets transition mechanisms. DNS predictions of low-density jets
with a wide range of density ratio and shear layer thickness were performed by Lesshafft et al. [16] for
the jet at ReD = 7500. The global mode frequency predicted with DNS agreed well with the absolute
frequency for the thickest shear layer at the global instability threshold density ratio. The frequency
shift towards slightly higher values, of global mode relative to the absolute one, was observed for two
groups of case types—for lower density ratio and for the thinner shear layer. However, the differences
in the second group became more evident. It was also shown that vortex pairing phenomenon is
characteristic only for a thin shear layer with ratio D/θ ≥ 15. LES predictions of the global mode in
round low-density jet at ReD = 7000 were presented by Foysi et al. [17] for the density ratio S = 0.14
and shear layer thickness D/θ = 27. According to the authors, this was the first LES of a globally
unstable round helium jet. They found excellent agreement with experimental data as far as oscillation
frequency is concerned. They observed also the vortex pairing and side jets phenomena confirming
the presence of global instability in the LES predictions. More recently, Boguslawski et al. [18] showed
LES results of low-density jets analyzing an influence of the shear layer thickness and the velocity
profile at the nozzle exit on the jet dynamics. By contrast to previous numerical results on low-density
jets, they showed mean and fluctuating velocity in the near jet field. It was shown that intense velocity
fluctuations of the order of 30% of the jet velocity are present for a low-density ratio S < 0.3. Global
oscillations in the case of a higher density ratio, closer to the critical one, were equally high only if
associated with the vortex pairing process observed for the sufficiently thin shear layer.

In most of the experimental studies of the low-density jets, the measurements were concentrated
mainly on frequency characteristics of the globally unstable jet while experimental data concerning the
velocity field and mixing intensity are still missing. The present paper is aimed at characteristics of
both frequencies of the global oscillations and their influence on the jet mean and fluctuating velocity
fields. The conditions of the experiment were also unique, for example, a very low level of disturbances
at the nozzle exit, characterised by the turbulence intensity of the order of 0.05%. The experimental
results presented were compared to two universal scaling laws: first one for the frequency the global
modes, proposed by Hallberg and Strykowski [13], and the second for the onset into the global modes,
proposed by Zhu et al. [14].

2. Experimental Set-Up and Measuring Apparatus

The vertical wind tunnel, shown in Figure 1, with the diameter of the nozzle exit D = 15 mm is
considered to be an experimental stand. For needs of the experiment reported the rig characterised
by a relatively high area contraction ratio of the nozzle was applied. The area contraction ratio was
defined as a ratio of the inlet (d) and outlet (D) nozzle diameters in the following way A = (d/D)2.
The value of this parameter A = 225 was high enough to provide an extremely low level of turbulence
intensity at the nozzle outlet about Tu ≈ 0.1%. The rig allowed the measurements at the range of
Reynolds number from 5000 to 20,000 and the range of shear layer parameter D/θ = 24−162 (where
θ—momentum thickness of the shear layer at the nozzle exit). The change in the layer thickness was
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accomplished by applying cylindrical nozzle tips to the stand with lengths in the range L/D = 1−25,
where L was a tip length.

The air and the helium were supplied at the bottom of the set-up. Fans, filters and ducts
were isolated from the measuring area and were located in the basement, not shown in the sketch.
In the beginning, the medium passed through the pre-chamber with electric heaters (A) prepared
for measurements in the heated air. Pre-chamber was filled with iron pellets (B) which increased
the heat capacity and made the flow more uniform. Next, the medium entered the settling chamber
(C) with seven wire gauzes (D) which also made the flow more uniform and reduced initial level
of perturbation. In the station, there were two porous filters made of bronze, the first in the air
supplying pipe (not shown here) and the second at the inlet to the settling chamber (E). Due to the
very sensitive nature of the phenomenon investigated, with an extremely low initial turbulence level,
the rig was placed on a thick plate mounted on vibro-insulators. The insulators reduced the impact
of the external vibrations. The outlet of the nozzle was also surrounded by a wire gauze to prevent
drafts and perturbations from natural convective motions in the laboratory. Helium was supplied
perpendicularly to the direction of main air flow, directly after the first filter, which guaranteed a good
mixing of helium with air and prevented backflow of helium. The helium stream was controlled using
an air rotameter scaled in such a way that it was possible to read the helium flow rate.

Figure 1. Sketch of the experimental rig.

A hot-wire method was used for measurements of the mean and fluctuating velocity fields in
this variable-density flow. It was quite a controversial method due to the change in flow density
along the jet, however, for each density the probe was calibrated in the flow with testing density.
The measurement method can be considered appropriate because the phenomena occurring close to
the nozzle outlet were still analysed in the region where the density was uniform. The same method
was also used by Hallberg and Strykowski [13] for measurements of helium and nitrogen mixtures and
by Zhu et al. [14] for helium-air jets. The measurements analysed in the paper were performed for two
Reynolds numbers Re = 5000 and 10,000 with various lengths of nozzle tips resulting in a wide range
of D/θ = 27.2 − 97.4. The choice of the Reynolds number range was dictated by the ranges used in
the cited experimental and numerical publications. Due to the very high aerodynamic drag of the rig,
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related to the conditions ensuring an extremely low level of fluctuations at the outlet of the nozzle the
tests carried out on the presented stand are limited to the Reynolds number Re = 20,000 for technical
reasons. However, tests carried out on the stand showed that for such a high value of this parameter,
the sought structures do not exist. Parameters of all the test cases analysed in the current experiment
are gathered in Table 1 (where H—stands for the shape parameter of the shear layer at the nozzle exit).

Table 1. The shear layer parameters at the nozzle exit for all the test cases analysed.

Test Case L/D Re D/θ H

LD1Re5 1 5000 70.6 2.596
LD1Re10 10,000 97.4 2.591

LD7Re5 7 5000 41.8 2.544
LD7Re10 10,000 53 2.608

LD15Re5 15 5000 30.2 2.502
LD15Re10 10,000 38.8 2.507

LD25Re5 25 5000 27.2 2.588
LD25Re10 10,000 30.4 2.581

3. Linear Stability Theory Results

The experimental data were completed with sample spatio-temporal linear stability theory
results, extracted from the work of Jendoubi and Strykowski [19] and Boguslawski et al. [18]. In both
studies the base laminar flow velocity profile was approximated by the hyperbolic tangent function
and the density distribution was derived from the Busemann-Crocco relation [20]. In the work of
Jendoubi and Strykowski [19] the stability equations were solved by the shooting method while
Boguslawski et al. [18] applied the spectral “tau” approach with the eigenfunctions approximated
by the series of Chebyshev polynomials [21] to obtain complete maps of ω(k) (ω-complex frequency,
k-complex wavenumber). Then to find precisely the branch point ω0 for the absolutely unstable mode
an iterative algorithm proposed by Monkewitz and Sohn [5] with the shooting method was applied.

4. Results

Figure 2 shows the mean and fluctuating velocity profiles along the jet axis for various density
ratios and for Reynolds number Re = 5000 for the case with a relatively thin shear layer D/θ = 41.8
(the test case LD7Re5). It can readily be seen that lowering the jet density caused a faster decay of the
mean velocity associated with an increased level of fluctuations. However, from the results shown it is
not possible to distinguish an onset to the global mode. It is known from the experimental studies [9]
that in the case of global oscillations especially for low-density ratio S < 0.3 a peak of the fluctuations
in the near jet field at the level of 30% of the jet velocity can be observed. For higher density ratio
closer to the critical one, as pointed out by numerical studies [18], such a high level of fluctuations was
always associated with the vortex pairing process. If the vortex pairing was not observed the level of
the fluctuations was much lower despite that the jet was in the self-excited mode. Hence, a level of
fluctuations cannot be considered as a single indication of the global mode. Global modes triggered by
absolute instability are characterised by strong periodic vortices. Velocity spectra could be another tool
to distinguish convective and global instability.

Figure 3 shows an evolution of the velocity spectra along the jet axis for the density ratio S = 0.9
and Re = 5000. For this density ratio, much higher than the critical one, the jet undergoes the classical
convective Kelvin-Helmholtz transition. It can be seen a broadband peak emerging in the spectrum
with the central non-dimensional frequency StD ≈ 0.59 at the distance x/D = 3 indicating the primary
vortex development. Further downstream, at the distance x/D = 5, one can see much stronger
oscillations with an order of magnitude higher amplitude. This is a distance, close to the end of the
potential core, that is characterised by fully developed coherent vortices. At the distance of x/D = 7,
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the amplitude is not higher than in the previous location but a subharmonic is emerging indicating
the vortex pairing process leading further downstream to the vortex breakdown and fully developed
turbulent flow. At the distance of the highest level of the fluctuating velocity x/D = 9 the flow is
dominated by large scale coherent structures formed by the vortex pairing process characterised by
the frequency StD = 0.59.

(a) (b)

Figure 2. (a) Mean and (b) fluctuating velocity profiles along the jet axis, L/D = 7, Re = 5000.

(a) (b)

(c) (d)

Figure 3. Evolution of spectra of axial velocity fluctuations, S = 0.9, L/D = 7, Re = 5000: (a) x/D = 3,
(b) x/D = 5, (c) x/D = 7, (d) x/D = 9.

Figure 4 shows the mean and fluctuating velocity profiles for the test case LD7Re10. The flow
dynamics in this case are different comparing to the previous case. The differences are caused by
both the thinner shear layer and higher Reynolds number in this case. It can be seen that the velocity
decays faster than in the case analysed previously and that the maximum of fluctuating velocity is
closer to the nozzle exit. It is worth noting that for the smallest density ratio S = 0.5 a strong peak
of the fluctuating velocity is observed at the distance x/D ≈ 4. The level of oscillations exceeds 30%
of the jet velocity as reported by Kyle and Sreenivasan [9] in helium jet. Spectra for this case and the
density ratio S = 0.9, much higher than the critical one for an onset to global oscillations, are shown in
Figure 5. As can be seen from Table 1 this case is characterised by the momentum thickness D/θ = 53,
slightly higher than for the lower Reynolds number. It is known from the linear stability theory [22]
that a thinner shear layer leads to a higher frequency and growth rate of the Kelvin-Helmholtz mode.
However, as can be seen in Figure 5 the situation, in this case, is slightly more complicated than for
the lower Reynolds number and thicker shear layer. It should be noted that the shear layer thickness
is now higher than the critical value D/θ = 50 allowing triggering a self-sustained convective mode



Processes 2020, 8, 1667 6 of 15

reported by Boguslawski et al. [23–25] and Wawrzak et al. [26]. The self-sustained convective mode for
D/θ = 53 is characterised by the oscillations with the characteristic frequency StD = 0.75 as shown
by Wawrzak et al. [26]. It can be seen from Figure 5 that at the distance x/D = 3 two distinct peaks
are seen in the velocity spectrum. The one with a higher frequency is characterised by StD = 0.7,
which means close to the frequency of the self-sustained convective mode, and the second one with a
lower frequency StD ≈ 0.6 that can be interpreted as the Kelvin-Helmholtz mode. The existence of
both peaks suggests that the Kelvin-Helmholtz mode and the synchronised self-sustained mode are
present in the flow alternately. It is known from the numerical works [25,26] that the self-sustained
convective mode is very sensitive to external disturbances and a hot-wire probe can easily suppress this
instability regime. Indeed, further downstream at the distance x/D = 4 these two peaks merge into one
broadband oscillation with growing a subharmonic indicating the vortex pairing process. Finally, at the
distance x/D = 5 only the subharmonic is visible with the frequency of StD = 0.36. Summing up the
results obtained for the density ratio much higher than the critical one for global instability it is clear
that under such conditions one deals with the classical convective Kelvin-Helmholtz instability. In the
case of a lower Reynolds number and thicker shear layer one sees that the instability is characterised
by a lower frequency and develops further from the nozzle exit than in the case of a thinner shear layer
obtained for the Reynolds number Re = 10,000.

(a) (b)

Figure 4. (a) Mean and (b) fluctuating velocity profiles along the jet axis, L/D = 7, Re = 10,000.

(a) (b)

(c)

Figure 5. Evolution of spectra of axial velocity fluctuations, S = 0.9, L/D = 7, Re = 10,000:
(a) x/D = 3, (b) x/D = 4, (c) x/D = 5 .
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Having known the flow dynamics with a density ratio above the critical value we will analyse
the flow structure decreasing the density ratio to identify the onset into the global mode regime.
Figure 6 shows boundaries between convective and absolute instability according to the linear stability
theory compared with the onset scaling law proposed by Zhu et al. [14]. The solid line in Figure 6
corresponds to the results of the linear stability theory showed by Jendoubi and Strykowski [19].
They assumed the hyperbolic tangent velocity profile and the density distribution established with the
Busemann-Crocco relation [20]. Boguslawski et al. [18] proposed a correction of this line assuming
the Blasius velocity profile at the nozzle exit and a rectangular profile for the density (dashed line in
Figure 6). Consequently, the density profile used in the linear stability calculations was much steeper
than the velocity profile and shifted outward from the jet axis with respect to the velocity profile.
The remaining lines correspond to the scaling law ([14]) for two Reynolds numbers used in the current
experiment. Moreover, the points in Figure 6 show D/θ the parameters for all the test cases in the
current experiment for the density ratio S = 0.5. It can be seen that according to the onset scaling law
in the current experiment only three test cases correspond to the global instability conditions, namely
the test cases LD1Re5 and LD1Re10 for the shortest extension tube and the thinnest shear layers for
both Reynolds numbers and the test case LD7Re10. By contrast, using the linear stability theory with
shifted density and velocity profile two additional test cases LD7Re5 and LD15Re10 are in the global
mode region.

Figure 6. Convective/absolute/global boundary. Linear stability theory results of Jendoubi and
Strykowski [19] and Boguslawski et al. [18] compared with a universal scaling law of onset into the
global mode proposed by Zhu et al. [14].

Figure 7 shows mean and fluctuating velocity profiles for the density ratio S = 0.5 and Re = 5000
for all the extension tubes used in the current experiment. According to the onset scaling law only the
test case LD1Re5 is under the global mode conditions for Re = 5000. Looking at the fluctuating velocity
profile one can observe that the profile for the thinnest shear layer is indeed very much different from
the profiles for the cases LD7Re5 and LD15Re5 which could indicate a change of the transition regime.
Moreover, looking more carefully at the fluctuating velocity profiles along the jet axis with a decreasing
shear layer thickness it can readily be seen an exponential growth of the velocity perturbation in a
range x/D = 5 − 9 characteristic for a development of the Kelvin-Helmholtz instability for the case
LD25Re5 that is not recorded in the cases with thinner shear layers. In these cases, the perturbations
start growing closer to the nozzle exit for thinner shear layers but the growth rate is independent of
shear layer thickness that could indicate global instability.
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(a) (b)

Figure 7. (a) Mean and (b) fluctuating velocity profiles along the jet axis, S = 0.5, Re = 5000.

A deeper insight into the flow dynamics requires analysis of the spectral content of the velocity
oscillations. Figure 8 shows sample spectra for the flow with the density ratio S = 0.5 of the test case
LD25Re5. Spectra are characterised with quite broadband oscillations similar to the spectra shown
in Figure 3 for much higher density ratio indicating for the classical Kelvin-Helmholtz instability.
However, in this case no traces of the vortex pairing process are observed due to a thick shear layer.
A significant change of the spectra is observed for the test case LD15Re5 characterised by a thinner
shear layer shown in Figure 9. In this case, one can see peaks with higher amplitudes within a narrow
band of frequencies with many harmonics characteristic for the global instability. A similar spectra
were obtained for the next test case LD7Re5 shown in Figure 10. In this case one can also see sharp
peaks with many harmonics indicating the onset into the global modes. Significantly different spectra
were observed in turn for the test case LD1Re5 shown in Figure 11. Further downstream from the
nozzle at the distance x/D > 3 there is visible only one broadband oscillation without harmonics.
It seems that an explanation of the mechanism of the transition in this case, characterised by quite a
thin shear layer characterised by D/θ ≈ 70, can be found in the near jet field. Close to the nozzle exit
at the distance x/D = 2, there are three peaks visible. The one with the highest frequency StD ≈ 0.6
is associated with its subharmonic. In between the primary peak and its subharmonic, there is an
equally high peak characterised by the Strouhal number StD = 0.48. It seems that in this region there
are two different modes appearing alternately. The self-sustained convective mode StD ≈ 0.6 [23,25]
for which very characteristic vortex pairing process close to the nozzle is manifested by the presence
of subharmonic and the absolute mode characterised by StD ≈ 0.48. These two modes compete in
the near jet field, however, further downstream large scale structures generated by the vortex pairing
prevent absolute mode generation. It should be stressed that Kyle and Sreenivasan [9] observed also
broadband flow oscillations in the helium jet characterised by a very thin shear layer. The results of
the current experiment suggest that the origin of the broadband oscillations and suppression of the
absolute mode could be the convective self-sustained mode which is present in jets with a thin shear
layer. The rapid growth of the convective instability, in this case, can trigger a back-flow leading to the
flow synchronisation [23] disturbing conditions for global mode.
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(a) (b)

(c)

Figure 8. Evolution of spectra of axial velocity fluctuations, S = 0.5, L/D = 25, Re = 5000: (a) x/D = 6,
(b) x/D = 8, (c) x/D = 10 .

(a) (b)

(c)

Figure 9. Evolution of spectra of axial velocity fluctuations, S = 0.5, L/D = 15, Re = 5000: (a) x/D = 4,
(b) x/D = 6, (c) x/D = 8 .

(a) (b)

(c)

Figure 10. Evolution of spectra of axial velocity fluctuations, S = 0.5, L/D = 7, Re = 5000: (a) x/D = 3,
(b) x/D = 4, (c) x/D = 5 .
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(a) (b)

(c)

Figure 11. Evolution of spectra of axial velocity fluctuations, S = 0.5, L/D = 1, Re = 5000: (a) x/D = 2,
(b) x/D = 4, (c) x/D = 5 .

Similar measurements were performed for the same density ratio S = 0.5 but for a higher
Reynolds number Re = 10,000. The mean and fluctuating velocities along the jet axis for these cases are
presented in Figure 12. For the higher Reynolds number, an influence of the shear layer thickness is not
so strong as in the previous case, however, some important differences can be observed. For the thickest
shear layer in the test case LD25Re10 again an exponential growth of the fluctuating velocity starts at
the distance x/D ≈ 2 which is typical for Kelvin-Helmholtz instability. For the cases with thinner
shear layers, the rapid growth of fluctuations starts more upstream and the growth rate is independent
of the shear layer thickness what is typical for global modes. In the case LD7Re10 especially high
oscillations are observed of the level of 35% of the jet velocity as observed for helium jets by Kyle
and Sreenivasan [9]. In the case LD1Re5 a level of fluctuations is much lower. A confirmation of
these observations based on the mean and fluctuating velocity fields can be found in spectra of the
flow oscillations. Figure 13 shows spectra for the case LD25Re10. There are broadband oscillations
around the StD ≈ 0.4 quite similar to the spectra shown previously for the test case LD25Re10. As in
the previous test case we conclude that global oscillations were not detected. By contrast, in the two
next test cases spectra of which are shown in Figures 14 and 15 sharp peaks undoubtedly indicate
presence of the global mode. It is interesting to note that in the case LD7Re10 a strong subharmonic of
the primary mode is visible already at the distance x/D = 2 manifesting the beginning of the vortex
pairing process which further downstream leads to a very strong peak in spectrum at the distance
x/D = 4 corresponding to the maximum of the fluctuating velocity. For the thinnest shear layer in the
case LD1Re10 spectra of which are shown in Figure 16 it is evident again that the global oscillations are
suppressed. Close to the nozzle exit at the distance x/D = 1 a peak with StD ≈ 0.6 is visible which
could indicate the convective self-sustained mode which is associated with broadband oscillations
around StD ≈ 0.4 probably resulting from an interaction of the subharmonic of the convective mode
and the absolute mode. Further downstream only the broadband mode is present.
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(a) (b)

Figure 12. (a) Mean and (b) fluctuating velocity profiles along the jet axis, S = 0.5, Re = 10,000.

(a) (b)

(c)

Figure 13. Evolution of spectra of axial velocity fluctuations, S = 0.5, L/D = 25, Re = 10,000:
(a) x/D = 2, (b) x/D = 4, (c) x/D = 6 .

(a) (b)

(c)

Figure 14. Evolution of spectra of axial velocity fluctuations, S = 0.5, L/D = 15, Re = 10,000:
(a) x/D = 2, (b) x/D = 4, (c) x/D = 6 .
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(a) (b)

(c)

Figure 15. Evolution of spectra of axial velocity fluctuations, S = 0.5, L/D = 7, Re = 10,000:
(a) x/D = 2, (b) x/D = 4, (c) x/D = 6 .

(a) (b)

(c)

Figure 16. Evolution of spectra of axial velocity fluctuations, S = 0.5, L/D = 1, Re = 10,000:
(a) x/D = 1, (b) x/D = 2, (c) x/D = 3 .

Figure 17 shows non-dimensional frequencies of all the test cases analysed above indicating these
ones that correspond to the global instability. It can be seen a monotonic growth of the frequency of
the global mode as a function of the D/θ in qualitative agreement with the linear stability analysis and
LES predictions shown by Boguslawski et al. [18]. The two cases with the thinnest shear layer namely
LD1Re5 and LD1Re10 where broadband oscillations were detected are clearly of this line. Finally, all the
test cases are confronted with the universal scaling law for the non-dimensional frequency of the global
mode proposed by Hallberg and Strykowski [13]. Surprisingly, the results for all the test cases are
located along the universal scaling law line (as shown in Figure 18). It shows that the detection of
the global mode requires careful analysis of various flow characteristics and cannot be based on the
comparison of the frequency with the universal scaling law.

Summing up the results discussed above for the Reynolds number Re = 5000 and the density
ratio S = 0.5 the global instability was identified in the two test cases LD15Re5 and LD7Re5 that
are characterised by D/θ = 30 and 40, respectively. As can be seen from Figure 6, according to
the onset into the global mode scaling law [14], a required shear layer for S = 0.5 and Re = 5000
to release the global instability should be characterised by D/θ > 55. For the Reynolds number
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Re = 10,000 the universal scaling law indicates the critical shear layer thickness as D/θ = 45 while
in the current experiment the global modes were identified in the test cases LD15Re10 and LD7Re10

for which D/θ = 38.8 and 53, respectively. According to the linear stability calculations (see Figure 6)
for an inviscid flow with the density profile shifted outward with respect to the velocity one in the
case of S = 0.5 the D/θ > 35 leads to the absolutely unstable mode. A question arises why the current
results are in contradiction with the onset law proposed by Zhu et al. [14]. The authors assumed that
the universal scaling law for the onset into the global instability could be formulated by analogy to the
scaling law for global mode frequency proposed by Hallberg and Strykowski [13] with the use of the
density ratio, shear layer thickness and Reynolds number as the governing parameters. It seems that in
the case of the onset into global instability one more parameter should be taken into account, which is
unimportant as far as the global mode frequency is concerned, namely turbulence characteristics at
the nozzle exit. One can easily imagine that for certain flow conditions the absolute instability could
trigger the global modes if the flow at the nozzle exit is quiet enough while it is not possible at an
increased level of inlet perturbation. In the current experiment due to a very high contraction in the
nozzle and all the precautions applied in the settling chamber a turbulence level at the nozzle exit
was very low, that could explain why the boundary between the convective and global instability was
identified closer to the results of linear stability theory for an inviscid flow than to the scaling law
proposed by [14] in which the level of perturbation at the nozzle exit was not defined.

Figure 17. Non-dimensional frequency as a function of the D/θ parameter.

Figure 18. Experimental results vs. universal scaling law ([13]).
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5. Concluding Remarks

The main goal of the research was to investigate the dynamics of the low-density air-helium
jets aimed at an identification of the global flow oscillations stemming from the absolute instability.
The global modes were identified looking at the fluctuations intensity, fluctuation growth rate and
spectral distribution of the flow oscillations. It was shown that even that the jet is undoubtedly in
the global instability regime the fluctuations level is not as high as for pure helium jets, however,
if amplified by the vortex pairing phenomenon a very high mixing intensity can be observed even in
the case of the density ratio close to the critical one. The results were compared with the universal
scaling law for the onset into the global mode proposed by Zhu et al. [14]. It was shown that the onset
into the global regime was possible for the shear layers much thicker than indicated by the scaling
law. It seems that in a universal scaling law for the onset into the global mode the turbulence intensity
at the nozzle exit should be added as an additional flow governing parameter. Finally, in the case
of thin shear layer a suppression of the global modes was clearly shown, as reported by Kyle and
Sreenivasan [9]. It seems that in the case of a sufficiently thin shear layer Kelvin-Helmholtz modes
grow rapidly enough to create a back-flow that disturbs the flow at the nozzle exit distorting conditions
for the absolute instability. The experimental studies performed shed new light on the dynamics of
the low-density jets under global instability. It was clearly shown that mixing intensity controlled by
the global modes depends significantly on the vortex pairing process leading to the fluctuations level
higher than 30%. It was shown that for a sufficiently thin shear layer the global modes were suppressed.
This if effect stemmed from the back-flow triggered by the Kelvin-Helmholtz instability that disturbed
laminar flow at the nozzle exit. The results obtained coincide very well with the universal scaling
low for the frequency of the global modes while some significant differences were observed with the
scaling law for the onset into the global mode instability. It was concluded that universal scaling law
for the onset into global instability has to take into account the turbulence level at the nozzle exit as an
important governing parameter for low-density jet.
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