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Abstract: The invention of reconfigurable manufacturing systems (RMSs) has created a challenging
problem: how to quickly and effectively modify an RMS to address dynamic changes in a
manufacturing system, such as processing failures and rework, machine breakdowns, addition
of new machines, addition of new products, removal of old machines, and changes in processing
routes induced by the competitive global market. This paper proposes a new model, the intelligent
colored token Petri net (ICTPN), to simulate dynamic changes or reconfigurations of a system. The
main idea is that intelligent colored tokens denote part types that represent real-time knowledge
about changes and status of a system. Thus, dynamic configurations of a system can be effectively
modeled. The developed ICTPN can model dynamic changes of a system in a modular manner,
resulting in the development of a very compact model. In addition, when configurations appear, only
the changed colored token of the part type from the current model has to be modified. Based on the
resultant ICTPN model, deadlock-free, conservative, and reversible behavioral properties, among
others, are guaranteed. The developed ICTPN model was tested and validated using the GPenSIM
tool and compared with existing methods from the literature.

Keywords: Reconfigurable manufacturing system; colored Petri net; modeling; simulation

1. Introduction

A manufacturing system (MS) is a conglomeration of robots, machine tools, fixtures, and buffers.
Several types of products enter the MS at separate points in time. The system can process these parts
based on a specified sequence of operations and resource sharing. In the competitive global market,
MSs must handle unpredictable and rapid market changes. To cope with these dynamic changes, MSs
need to execute quick changes in their software and hardware. Nevertheless, traditional manufacturing
systems cannot successfully meet this requirement because they need large capital investments. To
tackle these drawbacks in traditional manufacturing systems, reconfigurable manufacturing systems
(RMSs) were developed [1–3]. RMSs are a new class of manufacturing systems and are subject to
dynamic and random configurations in real time. These changes include processing failures and
rework, machine breakdowns, addition of new machines, addition of new products, removal of old
machines, and changes in processing routes.

Processes 2020, 8, 358; doi:10.3390/pr8030358 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0003-3608-013X
https://orcid.org/0000-0003-1547-5503
https://orcid.org/0000-0003-0013-5274
http://dx.doi.org/10.3390/pr8030358
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/8/3/358?type=check_update&version=2


Processes 2020, 8, 358 2 of 21

To address the dynamic change problem in manufacturing systems, several approaches with
Petri nets have been proposed. The study of Reference [4] presented a new higher-level deadlock
control technique for the serial and parallel configuration of RMSs. RMSs have been used to replace
traditional, large volume manufacturing systems, including dedicated production systems, providing
more convertibility and flexibility. A rule-based matrix approach was developed and implemented
in serial and parallel configurations. Higher-level deadlocks that are not prohibited by the existing
approach were found through this type of application in the example RMS.

The study of Reference [5] introduced an improved net rewriting system (INRS)-based approach to
automatically reconfigure an RMS supervisory controller based on Petri nets. Modifications to an RMS
configuration were established into rules for rewriting that were then implemented in the original Petri
net controller. First, the INRS was developed as the basis for reconfiguration. This can dynamically
modify the structure of a Petri net model. Second, the study provided a triple representation of an RMS
configuration and proposed an INRS-based approach to design a Petri net controller for an RMS. Finally,
the article focused on providing an INRS-based approach for quick and automatic reconfiguration of
this type of Petri net controller. In this approach, there is no verification or validation of the behavioral
properties, i.e., reversibility, boundedness, and liveness for a reconfigured system.

A new Petri net model, called an intelligent token Petri net (ITPN), was presented by Reference [6].
In this model, tokens representing job types carry real-time knowledge about system changes and
status, the same as intelligent cards in practice. An ITPN can model dynamic changes (adding new
machines and products) in modular form, resulting in the development of a very compact model. If
changes occur, only the changed part of the current model needs to be modified. To make an ITPN
deadlock-free and reversible, a deadlock-free control policy was presented based on the ITPN model.
In addition, when an ITPN is modified according to the system changes, the policy is still applicable
to the modified model. Therefore, when an ITPN model is modified, the control policy need not
be changed. However, the reconfiguration mechanism in ITPN needs to be further studied. Some
of dynamic changes do not clearly define the modularity that may bring confusion to engineers in
understanding and future redeveloping an RMS. Correctness of the system such as coherence of states
before and after reconfiguration of the system is not considered. In addition, there is no mention of
temporal constraints, which are of great significance in real-time systems.

The work of Reference [7] presented the reconfigurable finite-capacity Petri net (RFCPN) for
the dynamic configuration of a flexible MS. An RFCPN is a Petri net extension that can be used for
modeling, simulating, and validating simultaneous systems, which are subject to changes. Kahloul
et al. [8] used reconfigurable object nets (RONs) to model, simulate, and analyze RMSs. The study
proposed a formal approach to meet a new requirement (production of bricks used in slabs). A
new extrusion machine (EMS) and a new cutting machine (CMS) were included in the configuration.
The reconfiguration was defined as graph transformations, a simulation was performed using the
RON tool, and software tools such as TINA-tool [9] and PIPE-tool [10] were used in the analysis.

The work of Reference [11] explored the principles of various methods and took the best practices
from each one. Reconfiguration mechanisms were developed using Holonic and multiagent system
approaches to enable the systematic detection of faults for a reconfigurable distributed production
control system. The principle of service-oriented architecture was used to describe communication
interfaces. Using Petri net models, hybrid top-down and bottom-up approaches were presented.

From the perspective of multiagent systems, a reconfigurable MS formal model (RMSFM) was
developed in Reference [12], where two complementary formalisms (object-oriented Petri nets (ORPNs)
and π-calculus) were used as formalisms. The ORPN was used to model both the initial structure and
system behaviors of RMSs, while π-calculus was used to characterize the reconfiguration of RMSs.
Petri Nets and π-calculus supporting tools were used to evaluate, check, and validate the RMSFM.
π-calculus can analyze the reconfigurability mechanism and consistency of RMSs.

In the literature, several approaches with Petri nets were proposed to enhance dynamic change
problems in MSs. However, most of them did not provide a reconfiguration mechanism or algorithm,
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could not ensure the PN’s behavioral properties (i.e., boundedness, liveliness, and reversibility), or
could not guarantee the correctness, accuracy, or validity of the reconfiguration results. The aim of
this paper is to propose an intelligent colored token Petri net (ICTPN) based on a knowledge base for
a rapid and valid reconfiguration-based Petri net for RMS. The main idea is to use colored tokens
denoting part types that represent real-time knowledge about the changes and status of a system.
The knowledge is introduced in the transitions, and the transitions know where the colored tokens
should be located based on their colors and knowledge. The proposed ICTPN will cope with dynamic
changes such as processing failures and rework, machine breakdowns, addition of new machines,
addition of new products, removal of old machines, and change processing routes. The proposed
ICTPN will ensure that the PN’s behavioral properties, i.e., boundedness, liveliness, and reversibility,
indicate that the modeled MS has finite states, is deadlock-free, and operates cyclically, respectively.

The proposed ICTPN can be implemented to Mass Customization Manufacturing (MCM) to solve
its challenges, such as attempting to make the products available to customers in a timely manner,
keeping high-quality production of a high variety of products, and achieving costs low to match those
of standardized products. It can be introduced to the Lean Production (LP) concept, so that a company
can apply an RMS to optimize the use of the part of resources for particular product families, and
it can also decrease the waste induced by the part of an RMS’s idle resources. It can be applied for
Agile Manufacturing (AM) to increase rapid changeover between products, rapid introduction to new
products and unattended operation. It can be implemented to Flexible Manufacturing System (FMS) to
increase the speed of responsiveness to a variety of markets and customers. In addition, increasing
the scalability to the required products volume and convertibility to the existing systems, machines,
robots, and controls to match new production specifications.

The rest of the paper is organized as follows. Section 2 describes the ICTPN and synthesis.
Section 3 explains how to model dynamic configurations by ICTPN. Section 4 describes the qualitative
and quantitative properties of ICTPNs. Finally, Section 5 presents the conclusions and future research.

2. Preliminary

2.1. Definition of Intelligent Colored Token Petri Nets

Traditional Petri nets are popularly used to model, simulate, control, and analyze automated
manufacturing systems (AMSs). Existing traditional Petri net studies assumed one or more of the
following: (1) the system configuration is recognized and does not change throughout the operation,
(2) there is no addition of new machines and no removal of old machines, and machine failures are
not addressed, (3) rework is not required, and (4) products to be manufactured are identified, their
process routes are specified, and the addition of new products is not applicable [13–32]. This means
that traditional Petri net models do not undergo dynamic configurations, such as processing failures
and rework, machine breakdowns, addition of new machines, addition of new products, removal of
old machines, or change processing routes induced by the competitive global market. Therefore, an
ICTPN based on a knowledge base for a rapid and valid reconfiguration-based Petri net for an RMS is
proposed to deal with such dynamic changes. The main idea is that colored tokens denote part types
that represent real-time knowledge about the changes and status of a system. Transitions know where
the colored tokens should be located based on their colors and knowledge.

Definition 1. Let N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K) be a finite-capacity Petri net, where po is a common
load/unload place that represents a part type to be processed in the system, pr is a common transportation resource
that represents transportation resources in the system, and PA = {p1, p2, p2, . . . , pm} is a set of operation
resources and PA ∩ {pr} = ∅. T is a finite non-empty set of transitions. F ⊆ (P × T) ∪ (T × P) is said to be a
set of directed arcs of N that join the places to transitions or transitions to places, where P = PA ∪ {po} ∪ {pr}.
W: (P × T) ∪ (T × P)→ IN is a mapping that assigns an arc’s weight, where IN = {0, 1, 2, . . . }. Mo: P→ IN
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is an initial marking of N. K: P→ IN is a capacity function where K(p) represents the maximal number of tokens
that place p can hold at a time.

Definition 2. Let (N, Mo) be a finite-capacity Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K) and node
a ∈ PA ∪ {po} ∪ {pr} ∪ T. Then, •a = {b ∈ PA ∪ {po} ∪ {pr} ∪ T | (b, a) ∈ F} is named the pre-set of node a, and
a• = {b ∈ PA ∪ {po} ∪ {pr} ∪ T | (a, b) ∈ F} is named the post-set of node a.

Definition 3. Let (N, Mo) be a colored finite-capacity Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K, SC,
Cf, Nf, Af, Gf, If), where PA, po, pr, T, F, W, Mo, and K are defined in Definition 1. SC is a color set that contains
colors ci and the operations on the colors. Cf is the color function that maps pi ∈ PC into colors ci ∈SC. Nf is the
node function that maps F into (P × T) ∪ (T × P). Af is the arc function that maps each flow (arc) f ∈F into the
term e. Gf is the guard function that maps each transition ti ∈ T to a guard expression g that has a Boolean value.
If is the initialization function that maps each place pi ∈ PC into an initialization expression.

Definition 4. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
Ψ (p, cpi, cti, d)), where

1. Given p ∈ PA, M(p) is a marking of part type token with color as represented by M(p) = {cpi\cpi ∈ TC},
where TC represent the set of tokens with colors representing set of part types.

2. Given p = pr, M(p) is a marking of transportation resource token with color as represented by
M(p) = {cti\cti ∈ RC}, where RC represent the set of colors of transportation resources types.

3. Given p ∈ PA ∪ {pr}, cpi ∈ TC, and cti ∈ RC, Ψ (p, cpi, cti, d) is a knowledge function mapping tokens
types cpi and cti in place p at time d to a transition t, in which cpi and cti can be used to enable t, as represented
by Ψ (p, cpi, cti, d)= {t\t ∈ T}.

Definition 5. Let N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K, Ψ (p, cpi, cti, d)) be an ICTPN. An ICTPN with a
marking is said to be acceptably marked if the following conditions are satisfied: (1) Mo(po) ≥ 1, (2) Mo(pr) ≥ 1,
and (3) Mo(p) = 0, ∀p ∈ PA.

Definition 6. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W,
Mo, K, Ψ (p, cpi, cti, d)). A transition t ∈ T is enabled at marking M if the following conditions are satisfied:
∀p ∈ •t ∩ (PA ∪ {pr}), ∃ cpi ∈ M(•t ∩ PA), ∃ cti ∈ M(•t ∩ {pr}), t ∈ Ψ (p, cpi, cti, d), M(t• ∩ PA) − {cpi}
< K(t• ∩ PA), and M(t• ∩ {pr}) − {cpi} < K(t• ∩ {pr}).

Definition 7. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
Ψ (p, cpi, cti, d)). N has a self-loop if for all a, b ∈ PA ∪ {po} ∪ {pr} ∪ T, W(a, b) > 0 implies W(b, a) > 0.

Definition 8. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
Ψ (p, cpi, cti, d)). N is self-loop free if for all a, b ∈ PA ∪ {po} ∪ {pr} ∪ T, W(a, b) > 0 implies W(b, a) = 0.

Definition 9. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, Mo, K,
Ψ (p, cpi, cti, d)). A transition t ∈ T that is enabled at marking M by cpi and cti may fire. The marking of the
ICTPN can be changed from M to M′ as follows:

M′(p) =



M(p) −
{
cpi

}
if p ∈ •t∩ PA

M(p) +
{
cpi

}
if p ∈ t• ∩ PA

M(p) − {cti} if p ∈ •t∩
{
pr

}
M(p) − {cti} if p ∈ t• ∩

{
pr

}
M(p) Otherwise


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Definition 10. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
Ψ (p, cpi, cti, d)). N is known as an ordinary net if ∀(p, t) ∈ F, W(p, t) = 1, where N = (P, T, F). N is named a
weighted net if there is an arc between x and y such that W(x, y) >1.

Definition 11. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
Ψ (p, cpi, cti, d)). The set of markings that are reachable from M in N is named the set of reachability of the Petri
net model (N, M), denoted by R (N, M). A transition t ∈ T is live if for all M ∈ R(N, M), there exists a reachable
marking M′ ∈ R(N, M) such that M′[ t〉 holds. A net system (N, M0) is dead at Mo if there does not exist t ∈ T
such that Mo[ t〉 holds.

Definition 12. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
Ψ (p, cpi, cti, d)). A marking Mo is a reversible if, for each marking M′ ∈ R(N, Mo), Mo is reachable from M′.

Definition 13. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
Ψ (p, cpi, cti, d)). A marking M′ is a coverable if there exists a marking M” ∈ R(N, Mo) such that M”(p) ≥M′(p)
for each p in the N.

Definition 14. Let ICTPN be an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
Ψ (p, cpi, cti, d)). [N] is said to be the incidence matrix of net N, where [N] is an integer matrix that consists of
|T| columns and |P| rows with [N](p, t) =W(t, p) −W(p, t).

Definition 15. Let ICTPN be an intelligent colored token Petri nets with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
Ψ (p, cpi, cti, d)). A marking M′ is said to be reachable from M if there exist a finite transition sequence δ = t1 t2
t3 . . . tn that can be fired, and markings M1, M2, M3, . . . , and Mn−1 such that M[ t1〉M1[ t2〉M 2[ t3〉M 2 . . .

Mn−1[ tn〉M′, denoted as M[δ〉M′, satisfies the state equation M′ =M + [N]
→

δ , where
→

δ : T→ IN maps t in T
to the number of appearances of t in δ and is called a Parikh vector or a firing count vector.

2.2. Design of Intelligent Colored Token Petri Nets

In AMS, let OR = {OR1, OR2, OR3, . . . , ORn} be all possible routes and should be manufactured in
a system for all types of parts PT, where ORi is Ro→ Ri1→ Ri2→ . . . . . . → RiFi→ Ro, n, Fi are large
integer numbers, Ro denotes a load/unload station of the system with infinite capacity, and Ri(i , 0)
may be a buffer or machine, which is named an operation resource. An operation route starts from Ro

and ends at Ro. For each part, if there exists more than one operation route such that Ri→ Rj(i , j), it is
said that there is a path from Ri to Rj. When a part transfers from Ri to Rj, namely it is transported by a
material handling device, such as an AGV or robot that is named a transportation resource.

In Definition 4, Ψ (p, cpi, cti, d) knows where colored tokens cpi and cti should go based on their
colors and knowledge and knows the system configuration and the state of the tokens themselves.
Because of this, cpi and cti are named intelligent colored tokens. An approach can be used to synthesize
the ICTPN irrespective of how complicated the system operation routes are.

According to part routing information and transportation requirements, the modeling of operation
and transportation resources is stated as follows:
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Algorithm 1: Modeling operation and transportation resources

Initialization: Build a common load/unload place po and common transportation resource place pr, π = {Ro}, c = 0, j=0,
and h = 0.

for (1, n, i++), choose ORi ∈ OR, do
while j < Fi, do

j = j + 1
if Rij ∈ π, then

Build the place that corresponds to Ri(j-1), which is pa

Build the place that corresponds to Rij, which is pb
Build a transition tabhi and knowledge function Ψ (pa, cpi, dabhi)

Build an arc from pa to tabhi and an arc from tabhi to pb
if tabhi needs common place pr to transport part i from pa to pb, then

Update a knowledge function to Ψ (pa, pr, cpi, cti, dabhi)
Insert an arc from pr to tabhi and an arc from tabhi to pr.

end if
else

π = π ∪ {Rij}
c = c + 1
Build a place and name it pc

Identify the place that corresponds to Ri(j-1), which is pa

Build a transition tachi and knowledge function Ψ (pa, cpi, dachi)
Build an arc from pa to tachi and an arc from tachi to pc

if tachi needs common place pr to transport part i from pa to pc, then
Update a knowledge function to Ψ (pa, pr, cpi, cti, dachi)
Insert an arc from pr to tachi and an arc from tachi to pr.

end if
end if

end while
Identify the place that corresponds to RiFi, which is pa

Build a transition ta0hi and knowledge function Ψ (pa, cpi, da0hi)
Build an arc from pa to ta0hi and an arc from ta0hi to po

if ta0hi needs common place pr to transport part i from pa to po, then
Update a knowledge function to Ψ (pa, pr, cpi, cti, da0hi)
Insert an arc from pr to ta0hi and an arc from ta0hi to pr.

end if
end for
/ * Define the initial marking of the system */

• Place tokens with colors into common load/unload place po such that Mo(po) = {cp1, cp2, cp3, . . . cpn} ⊂ TC, where
cpi ∈ TC, i∈ PT, which denotes that a part type i to be processed in the system.

• Place tokens with colors into common transportation resource place pr such that Mo(pr ) = {ct1, ct2, ct3, . . . ctk} ⊂
RC, where cti ∈ RC, which denotes a transportation resource in the system.

• Mo(p) = 0, for all p ∈ PA.

Output: The ICTPN model

To demonstrate the synthesis of an ICTPN, consider an AMS example, shown in Figure 1a. The
AMS Petri net model is given in Chen et al. [33], Piroddi et al. [34], Chen and Li [35], Chen et al. [36],
and Kaid et al. [37]. The system is composed of four machines (M1, M2, M3 and M4; each machine
can process one part at a time) and two robots (Ro1 and Ro2; each robot can hold a part at a time).
There is a loading/unloading buffer. Two part-types, A and B, are considered to be processed in the
system. The operations sequences of these two part-types are shown in Figure 1b. The operation
and transportation resources model is shown in Figure 2, for operation resources, p1, p2, p3, and p4
model M1, M2, M3, and M4, respectively. The process route of Part A is constructed by po→ t011A→ p1
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→ t130A→ p3→ t300A→ p0, or po→ t022A→ p2→ t230A→ p3→ t300A→ p0. The process route of Part B
is constructed by po → t040B → p4 → t420B → p2 → t200B → p0, for transportation resources, common
place pr models Ro1 and Ro2.
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To model the transportation operations of part types, transition t011A denotes loading part A to
p1 and transition t022A denotes loading part A to p2, where Ro1 is needed. Transition t300A denotes
unloading part A from p3, where Ro2 is needed. Transitions t040B denotes loading part B to p4, where
Ro2 is needed, and transition t200B denotes unloading part B from p2, where Ro1 is needed. These
operations can be done by developed common place pr. Thus, common place pr and arcs (pr, t011A),
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(t011A, pr), (pr, t022A), (t022A, pr), (pr, t300A), (t300A, pr), (pr, t040B), (t040B, pr), (pr, t200B), and (t200B, pr) are
inserted into the model. Transporting part A between p1 and p3 (Ro1 is needed) or p2 and p3 (Ro1 is
needed) is represented by transitions t130A or t230A, respectively. Transporting part B between p4 and
p2 (Ro1 is needed) is represented by transitions t420B. Thus, common place pr and arcs (pr, t130A), (t130A,
pr), (pr, t230A), (t230A, pr), (pr, t420B), and (t420B, pr) are inserted into the model.

Note that in ICTPN, transition t has one input place from p ∈ PA, one input place from pr, one
output place to p ∈ PA, and one output place to pr. Next, to define the initial marking of the system,
place tokens with colors into place po such that Mo(po) = {cp1, cp2}, where cp1 and cp2 denote a part type
A and part type B, respectively. Place tokens with colors into place pr such that Mo(pr) = {ct1, ct2}, where
ct1 and ct2 denote transportation resources in the system Ro1 and Ro2, respectively.

Consider the ICTPN model shown in Figure 2. If the condition given in Definition 6 is satisfied,
then we can say that t is enabled by cpi and cti. By Definition 9, the marking of the ICTPN can be
changed as follows. When transition t011A (Ψ (po, pr, cp1, ct1, d011A)) fires for duration d011A, it selects
only one token with color cp1 from input place po and one token with color ct1 from input place pr. If
t011A fires, then it transfers only one token with color cp1 to output place p1 and one token with color ct1
to output place pr. When transition t022A (Ψ (po, pr, cp1, ct1, d022A)) fires for duration d022A, then it selects
only one token with color cp1 from input place po and one token with color ct1 from input place pr. If
t022A fires, it transfers only one token with color cp1 to output place p2 and one token with color ct1 to
output place pr. When transition t040B (Ψ (po, pr, cp2, ct2, d040B)) fires for duration d040B, then it selects
only one token with color cp2 from input place po and one token with color ct2 from input place pr. If
t040B fires, it transfers only one token with color cp2 to output place p4 and one token with color ct2
to output place pr. In addition, if transition t130A (Ψ (p1, pr, cp1, ct1, d130A)) fires for duration d130A, it
selects only one token with color cp1 from input place p1 and one token with color ct1 from input place
pr. If t130A fires, it transfers only one token with color cp1 to output place p3 and one token with color
ct1 to output place pr. Moreover, when transition t230A (Ψ (p2, pr, cp1, ct1, d230A)) fires for duration d230A,
it selects only one token with color cp1 from input place p2 and one token with color ct1 from input
place pr. If t230A fired, it transfers only one token with color cp1 to output place p3 and one token with
color ct1 to output place pr. If transition t420B (Ψ (p4, pr, cp2, ct1, d420B)) fires for duration d420B, it selects
only one token with color cp2 from input place p4 and one token with color ct1 from input place pr. If
t420B fires, it transfers only one token with color cp2 to output place p2 and one token with color ct1 to
output place pr. Then, when transition t200B (Ψ (p2, pr, cp2, ct1, d200B)) fires for duration d200B, it selects
only one token with color cp2 from input place p2 and one token with color ct1 from input place pr. If
t200B fires, it transfers only one token with color cp2 to output place po and one token with color ct1 to
output place pr. Finally, if transition t300A (Ψ (p3, pr, cp1, ct2, d300A)) fires for duration d300A, it selects
only one token with color cp1 from input place p3 and one token with color ct2 from input place pr. If
t300A fires, it transfers only one token with color cp1 to output place po and one token with color ct2 to
output place pr.

3. RMS Configuration Changes Modeling Based on ICTPN

3.1. Machine Breakdowns

In an automated manufacturing system, the breakdown of its machines is usually caused by
quality out-of-control signals, missing or defective part programs or tools, damaged tools, or the failure
of sensing and actuating systems. For example, if a machine breakdown is detected, the operations that
use the broken machine need to be performed by another machine. In this case, some processing routes
are changed, which implies a modification to the structure of its Petri net model. Reconsider the ICTPN
model shown in Figure 2. There are four machine tools, denoted by p1, p2, p3, and p4. Assume that p1

is down and p4 will perform the operations that were previously performed by itself and performed
by p1. Therefore, the structure of the ICTPN model is changed and will be re-designed such that the
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system with the removal of resource p1 can operate continuously without stoppage. Hence, to model
the reconfigured system, consider the following procedures:

Step 1: Disable the transitions connected to the place corresponding to the breakdown machine
and remove or disable this place p1.
Step 2: Change the names of transitions based on new machine p4

Step 3: Change the operation route from po→ t011A→ p1→ t130A→ p3→ t300A→ p0 to po→ t041A
→ p4→ t430A→ p3→ t300A→ p0.
Step 4: Connect the transitions to the new machine p4.
Step 5: Change the names of the knowledge function of transitions based on new machine p4.

t041A = Ψ (po, pr, cp1, ct1, d041A)

t430A = Ψ (p4, pr, cp1, ct1, d430A)

An ICTPN for the reconfigured system by machine breakdowns is shown in Figure 3.
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3.2. Addition of New Product

The second automated manufacturing system reconfiguration involves the addition of a new
product. When a new product is added to a system, it means that a new route is added, which
implies a modification to the structure of its Petri net model. To model the newly added route by
using the ICTPN synthesis procedure, reconsider the ICTPN model shown in Figure 2. Assume that a
new product part C is added. It processing route is constructed by load/unload station→M4→M3
→ load/unload station. To transport part C between the load/unload station and M4, Ro2 is needed,
and to transport part C between M4 and M3, Ro1 is needed. Hence, to model the reconfigured system,
consider the following procedures:

Step 1: Add a new operation route from po→ t040C→ p4→ t430C→ p3→ t300C→ p0.
Step 2: Add the transportation operation of part C. Transition t040C denotes loading part C to
p4, and Ro2 is needed; t430C denotes transporting part C to p3 and Ro1 is needed. Transition
t300C denotes unloading part C from p3 and Ro2 is needed. These operations can be done by
common place pr.
Step 3: Add the knowledge function of transitions based on a new operation route.
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t040C = Ψ (po, pr, cp3, ct2, d040C)

t430C = Ψ (p4, pr, cp3, ct1, d430C)

t300C = Ψ (p3, pr, cp3, ct2, d300C).

Step 4: Place the token with color cp3 into place po, which denotes a part C that will be processed
in the system.

An ICTPN for the reconfigured system by the addition of a new product is shown in Figure 4.Processes 2019, 7, x FOR PEER REVIEW 10 of 21 
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3.3. Addition of New Machine

The third system reconfiguration includes the addition of a new machine. In this case, a new
machine is added to the system. Operations for new or used parts are conducted by the newly added
machine. Moreover, new job processing routes can be generated, which implies the modification of the
structure of the Petri net model. To model the newly added machine by using the ICTPN synthesis
procedure, new places and transitions can be added based on the original ICTPN.

Consider the ICTPN model shown in Figure 2. Assume that a new machine M5 is added to
process part B. The processing route of part B is constructed by load/unload station → M4 or M5
→M2→ load/unload station. To transport part B between the load/unload station and M4 or M5, Ro2
is needed, and to transport part B between M4 or M5 and M2, Ro1 is needed. Hence, to model the
reconfigured system, consider the following procedures:

Step 1: Add process routes of part B as route 1: po → t041B → p4 → t420B → p2 → t200B → p0, or
route 2: po→ t052B→ p5→ t520B→ p2→ t200B→ p0

Step 2: Add the transportation operation of part B. Transitions t041B and t052B denote loading part
B to p4 and p5, respectively, where Ro2 is needed; t420B and t520B denote transporting part B to p2,
where Ro1 is needed; these operations can be done by common place pr.
Step 3: Add the knowledge function of transitions based on a new machine
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t041B = Ψ (po, pr, cp2, ct2, d041B)

t052B = Ψ (po, pr, cp2, ct2, d052B)

t520B = Ψ (p4, pr, cp3, ct1, d520B)

An ICTPN for the reconfigured system with the addition of a new machine is shown in Figure 5.Processes 2019, 7, x FOR PEER REVIEW 11 of 21 
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3.4. Removal of Old Machine

The fourth system reconfiguration includes the removal of an old machine. This indicates that
the operations that use the removed machine need to be performed by another machine. Thus, some
processing routes are changed, which implies a modification to the structure of its Petri net model.
Reconsider the ICTPN model shown in Figure 2. Assume that machine 1 p1 is removed from the
system, and p2 will perform the operations that are previously performed by itself and performed by
p1. Therefore, the structure of the ICTPN model is changed and will be re-designed, such that the
system with the removal of machine p1 can operate continuously without stoppage. Hence, to model
the reconfigured system, consider the following procedures:

Step 1: Delete all the transitions connected to the place corresponding to the removed machine p1

and remove this place p1.
Step 2: One operation route will be considered, which is po → t020A → p2 → t230A
→ p3→ t300A→ p0.
Step 3: Delete the old knowledge function of transitions based on removed machine p1.

t011A = Ψ (po, pr, cp1, ct1, d011A)

t130A = Ψ (p4, pr, cp1, ct1, d130A)

An ICTPN for the reconfigured system by removal of an old machine is shown in Figure 6.
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3.5. Change Processing Routes

The fifth system reconfiguration includes the change of processing routes. In this case, processing
routes of parts are changed in the system, which implies a modification of the structure of its Petri net
model. Reconsidering the ICTPN model shown in Figure 2, assume that the processing route of part A
changes from po → p1→ p3 → p0, or po → p2 → p3 → p0 to po → p4→ p3 → p0, or po → p2 → p3 → p0,
and the processing route of part B changes from po→ p4→ p2→ p0 to po→ p1→ p2→ p0. Therefore, the
structure of the ICTPN model is changed and redesigned, such that the system works with changed
processing routes. Hence, to model the reconfigured system, consider the following procedures:

Step 1: Change the names of transitions based on processing routes.
Step 2: Change the operation route of part A from po→ t011A→ p1→ t130A→ p3→ t300A→ p0 to
po→ t041A→ p4→ t430A→ p3→ t300A→ p0.
Step 3: Change the operation route of part A from po→ t040B→ p4→ t420B→ p2→ t200B→ p0 to
po→ t010B→ p1→ t120B→ p2→ t200B→ p0.
Step 4: Update the knowledge function of transitions based on removed machine p1.

t041A = Ψ (po, pr, cp1, ct1, d041A)

t430A = Ψ (p4, pr, cp1, ct1, d430A)

t010B = Ψ (po, pr, cp1, ct2, d010B)

t120B = Ψ (p1, pr, cp2, ct1, d120B)

An ICTPN for the reconfigured system by the removal of an old machine is shown in Figure 7.
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3.6. Rework

The sixth system reconfiguration includes rework. In this case, a part may be inspected when
some of its operations are finished. If the reconfiguration is performed properly, then the system
will continue based on an original route. Otherwise, rework is required. By using an ICTPN, the
manufacturing operations of the reworked part can be easily and exactly modeled by considering
rework operations as alternative routes. Reconsider the ICTPN model shown in Figure 2. Assume that
M3 is an inspection machine and that part A is processed in M1 or M2. Then, part A is transported to
an inspection machine M3 by Robot 1 to determine if there are defects in part A. If part A performs
properly, then it will depart the system by Robot 2. Otherwise, if part A has defects, rework is required,
and part A is removed and transported to M1 by Robot 2. Thus, part A has four possible routes:

1. Load–unload station→M1→ inspection machine M3→ load–unload station,
2. Load–unload station→M2→ inspection machine M3→ load–unload station,
3. Load–unload station → M1 → inspection machine M3 → M1 → inspection machine

M3→ load–unload station, or
4. Load–unload station → M2→ inspection machine M3 → M1 → inspection machine

M3→ load–unload station.

Therefore, to model two routes by using the ICTPN synthesis procedure, a new transition can be
added based on the original ICTPN. Hence, to model the reconfigured system, consider the following
procedures:

Step 1: Add the process routes of part B as route 1: po→ t011A→ p1→ t130A→ p3→ t300A→ p0,
route 2: po → t022A → p2 → t230A → p3 → t300A → p0, route 3: po → t011A → p1 → t130A → p3 →

t310A→ p1→ t130A→ p3→ t300A→ p0, or route 4: po→ t022A→ p1→ t230A→ p3→ t310A→ p1→

t130A→ p3→ t300A→ p0.
Step 2: Add the knowledge function of transition based on rework:

T310A = Ψ (p3, pr, cp1, ct2, d310B)

An ICTPN for the reconfigured system by rework is shown in Figure 8.
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4. Qualitative and Quantitative Study of ICTPN

4.1. Deadlock

A deadlock is a situation in which each process in a set of processes enters a waiting state because
a requested resource is being held by another waiting process, which in turn is waiting for another
resource. Thus, deadlocks should be avoided or prevented.

Theorem 1. The ICTPN is an intelligent colored token Petri net with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,
and Ψ (p, cpi, cti, d)), and is deadlock-free (live).

Proof. There is a need to prove that all transitions T in the ICTPN are live. It does not matter how
the system changes. For all t ∈ T, if ∀pi ∈

•t and MC(pi) > 0, then t can fire in any case because it is
uncontrollable. �

To demonstrate the liveness of an ICTPN, consider the ICTPN model shown in Figure 2. Figure 9
shows the reachability graph of the ICTPN, and the system is live.
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4.2. Conservativeness

Conservativeness is one of the main characteristics of ICTPN, where a transition, t, has one input
place and one output place in pr, i.e., |•t ∩ {pr}| = |t• ∩ {pr}|=1, and one input place and one output place
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in PA, i.e., |•t ∩ PA | = |t• ∩ PA | = 1. Therefore, in the incidence matrix D for an ICTPN, there is one –1
and one 1 in each row. Thus, if y = (1, 1, . . . , 1)T, Dy = 0 must hold. For instance, reconsider the ICTPN
model shown in Figure 2. We have P = (po, p1, p2, p3, p4, pr) and T= (t011A, t022A, t040B, t130A, t230A, t420B,
t200B, t300A). The incidence matrix D of ICTPN model shown in Figure 2 is stated as follows:

D =

−1 0 1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 0 1
0 0 −1 0 1 0
0 0 0 −1 1 0
0 0 0 1 0 −1
1 0 0 −1 0 0
1 0 0 0 −1 0

Thus, Dy = 0 is satisfied with y = (1, 1, 1, 1, 1, 1)T

−1 0 1 0 0 0
−1 0 0 1 0 0 1 0
−1 0 0 0 0 1 1 0
0 0 −1 0 1 0 1 0
0 0 0 −1 1 0 × 1 = 0
0 0 0 1 0 −1 1 0
1 0 0 −1 0 0 1 0
1 0 0 0 −1 0

4.3. Reversibility

An ICTPN is reversible if its initial marking can be reached from any other reachable marking.

Theorem 2. Assume that: (1) in an I CTPN, any part type has at least a route Ro→ R1→ R2→ R3 . . . . . .
→ Rn→ Ro to complete it, and (2) after any reconfiguration, assumption 1 is still met. Then, the ICTPN that
builds the configurations of the system is reversible.

Proof. The dynamic changes in an AMS can be effectively constructed by an ICTPN, and the system
can be controlled to be reversible if the suppositions given in Theorem 2 are met. Suppositions 1 and 2
ensure that for any cpi, there is at least a route Ro→ R1→ R2→ R3 . . . . . . → Rn→ Ro that starts from
po, moves through some operation places other than po, and ends at po. It does not matter how the
system is modified. Hence, the operation places can always be unmarked or are reversible. �

To demonstrate the reachability of an ICTPN, consider the ICTPN model shown in Figure 2.
Figure 9 shows the reachability graph of the ICTPN, and the system is reversible.

4.4. Structural Complexity

The structural complexity depends on the fact that Algorithm 1 can model an ICTPN N = (PA
∪ {po} ∪ {pr}, T, F, W, Mo, K, and Ψ (p, cpi, cti, d)) with fewer places, transitions, and arcs, which leads
to a decrease in software and hardware costs. First, we compare the results of the ICTPN model of
Figure 2 with the traditional PN methods in the studies of Chen et al. [33], Piroddi et al. [34], Chen and
Li [35], Chen et al. [36], and Kaid et al. [37]. Table 1 lists the results for the numbers of idle process
places, operation places, resource places, transportation places, transitions, monitors, arcs, as well as
liveness, and reachable markings. We observe that the proposed ICTPN model is minimal compared
with other techniques used by Chen et al. [33], Piroddi et al. [34], Chen and Li [35], Chen et al. [36],
and Kaid et al. [37].
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Table 1. Structural complexity comparison with the existing policies.

Parameters Chen
et al. [33]

Piroddi
et al. [34]

Chen and
Li [35]

Chen
et al. [36]

Kaid
et al. [37]

Proposed
ICTPN Model

No. idle process places 2 2 2 2 2 1
No. operation places 12 12 12 12 12 4
No. resource places 4 4 4 4 4 0
No. transportation

places 2 2 2 2 2 1

No. transitions 14 14 14 14 14 8
Monitors 8 5 2 2 1 0

Arcs 37 23 12 12 9 0
Liveness Live Live Live Live Live Live

Reachable marking 205 205 205 205 205 6

4.5. Validation and Behavioral Permissiveness of ICTPN Model

To test and validate the developed ICTPN model, we coded an ICTPN model using the GPenSIM
tool [37,38], and the code is validated and compared with Chen et al. [33], Piroddi et al. [34], Chen and
Li [35], Chen et al. [36], and Kaid et al. [37]. We created three files: (1) the Petri net definition file (PDF),
which defines the static ICTPN model by declaring the sets of places, transitions, and arcs, (2) the
common processor file (COMMON_PRE file), which defines the conditions for the enabled transitions
to start firing based on the intelligent colored tokens, and (3) the main simulation file (MSF) to compute
the simulation results. The GPenSIM code was also built in MATLAB.

Behavioral permissiveness leads to the better time performance in an ICTPN, such as utilization of
the robots and machines, total throughput, work-in-process (WIP), and total time in system (throughput
time). The simulation was undertaken for 480 min. After running and simulating the ICTPN model in
MATLAB, we obtained the results summarized in Table 2. Table 2 illustrates the results in terms of the
aforementioned time performance criteria. In terms of the resource utilization, overall, the proposed
model can obtain better utilization than the other techniques, as illustrated in Figure 10. Moreover,
from the viewpoint the throughput, the proposed model can provide greater throughput than the other
techniques, as illustrated in Figure 11. With respect to the throughput time per part, the proposed model
can obtain less throughput time than other techniques, as illustrated in Figure 12. Finally, in terms of
WIP, the proposed model leads to better WIP than the other techniques, as illustrated in Figure 13.

Table 2. Time performance comparison with the existing policies.

Parameter Chen
et al. [33]

Piroddi
et al. [34]

Chen and
Li [35]

Chen
et al. [36]

Kaid
et al. [37]

Proposed
ICTPN Model

M 1 utilization% 18.75 17.7083 17.7083 17.7083 17.7083 30.625

M 2 utilization% 35 33.3333 33.3333 33.3333 33.9583 36.4583

M 3 utilization% 12.5 13.75 14.375 14.375 12.5 51.25

M 4 utilization% 22.5 21.6667 20.8333 20.8333 22.5 15

R 1 utilization% 39.5833 40 40.4167 40.4167 39.5833 44.583

R 2 utilization% 29.375 30 30 30 30 61.25

Total throughput of Parts 46 46 46 46 47 49

Work-In-Process 3.9271 3.93331 3.8480 3.9667 3.3854 3.31222

Throughput time per part (min) 10.3321 10.2325 10.5554 10.6635 10.2127 9.7959
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4.6. Computational Complexity

Algorithm 1 models an ICTPN with N = (PA ∪ {po} ∪ {pr}, T, F, W, Mo, K,Ψ (p, cpi, cti, d)). Algorithm
1 is used to model the operation and transportation resources and initial marking of the ICTPN.
Obviously, all possible routes OR = {OR1, OR2, OR3, . . . , ORn} in a system for all types of parts are
modeled. Based on the fact that each route OR in a system has Ro→ Ri1→ Ri2→ . . . . . . → RiFi→ Ro.
Each sub-route R requires place pa that corresponds to Ri(j-1), place pa that corresponds to Rij, and
transition t, an arc from pa to t, an arc from t to pb, an arc from common place pr to t, and an arc from
t to common place pr. Note that one common transportation resource pr is added and represents all
transportation resources in the system. Therefore, let x be the number of possible routes, OR, i.e., |OR| = x.
The number of each sub-route Fi is expressed by y, i.e., |Fi| = y. The number of corresponding places,
transitions, and arcs to each sub-route is expressed by I, i.e., |I| = z. The number of transportation
resources pr is 1, i.e., |pr| = 1. The “FOR loop” is executed (xyz) times to model an ICTPN. Thus, the
computational complexity is O(xyz). In the proposed algorithm by Wu and Zhou [6], all transportation
resources are required to be added; thus, the number of transportation resources pri is expressed as k,
i.e., |pri| = k. Therefore, the computational complexity of the proposed algorithm in the study of Wu
and Zhou [6] is O(xyz + k). Thus, Algorithm 1 has minimal computational complexity compared with
that of Wu and Zhou [6] and can be implemented in a large-scale system. In fact, Algorithm 1 has
polynomial time complexity.

5. Conclusions

This paper presented a new model named an intelligent colored token Petri net for automatic
reconfiguration of RMS to face the dynamical changes in the manufacturing system. The main idea is
that intelligent colored tokens denote product types that represent real-time knowledge about changes
and status of a system. Thus, dynamical configurations of a system can be effectively modelled. The
developed ICTPN can model dynamical changes of a system in a modular manner, resulting in an
easily compact model. In addition, when configurations appear, only the changed colored token from
the current model has to be modified. The developed ICTPN model was tested and validated using
the GPenSIM tool and compared with the existing methods from the literature.

The main advantages of the proposed method are: (1) The proposed ICTPN model is more
powerful, has a simpler structure, does not need to calculate reachability graphs, and has low-overhead
computation compared with Chen et al. [33], Piroddi et al. [34], Chen and Li [35], Chen et al. [36],
and Kaid et al. [37]. (2) It can easily handle any dynamical changes in RMS compared with Lee and
Tilbury [4], Li et al. [5], and Wu and Zhou [6]. (3) It can obtain one common transportation resource
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place to transport all part types compared with Wu and Zhou [6]. (4) GPenSIM code is developed
for simulation, validation, and performance comparison compared with Li et al. [5], and Wu and
Zhou [6]. (5) The proposed ICTPN model can dynamically change the structure of a PN without
damaging its behavioral properties, i.e., liveness, conservativeness, boundedness, and reversibility. (6)
We provided a representation of a RMS configuration and presented an ICTPN model for designing
a modular. (7) The proposed ICTPN model can be applicable to other types of complex AMSs such
as semiconductor fabrication system and liquid-crystal display factory, including automated storage
and retrieval systems, automated guided vehicle, and machines. (8) The proposed ICTPN model can
consider systems with sequential and complex resource requirements.

The main limitation of the proposed method is that the the ICTPN model lacks an efficient
conversion method from the ICTPN model into industrial control languages for application. Therefore,
our future research will investigate the proposed model to have an automatic way to test the applicability
of the ICTPN model for real world systems. It is crucial to come up with a means to convert the
ICTPN model into ladder diagrams (LDs) for implementation on programmable logic controllers
(PLCs) [24], using adaptive control techniques [39], or using surveillance systems [40]. We will also
consider to model and schedule automated manufacturing systems [41] and social networks [42] using
the proposed model methodology.
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