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Abstract: Combined heat and power (CHP) systems are attracting increasing attention for their
ability to improve the economics and sustainability of the electricity system. Determining how to best
operate these systems is difficult because they can consist of many generating units whose operation
is governed by complex nonlinear physics. Mathematical programming is a useful tool to support
the operation of CHP systems, and has been the subject of substantial research attention since the
early 1990s. This paper critically reviews the modeling and optimization work that has been done
on the CHP economic dispatch problem, and the CHP economic and emission dispatch problem.
A summary of the common models used for these problems is provided, along with comments on
future modeling work that would beneficial to the field. The majority of optimization approaches
studied for CHP system operation are metaheuristic algorithms. A discussion of the limitations and
benefits of metaheuristic algorithms is given. Finally, a case study optimizing five classic CHP system
test instances demonstrates the advantages of the using deterministic global search algorithms over
metaheuristic search algorithms.

Keywords: cogeneration; combined heat and power; global optimization; metaheuristic optimization;
economic dispatch; emission disptach

1. Introduction

1.1. Combined Heat and Power Background

Conventional centralized power generation using fossil fuels is highly inefficient due to the
accumulation of losses from the power plant to the end user. The average net thermal efficiency
of natural gas, coal, and petroleum power plants in the US for 2018 were 43.6%, 32.5%, and 30.8%,
respectively [1]. In comparison to other countries, the US has historically been roughly average in
terms of power generation efficiency, with many developing countries having far lower efficiencies [2].
Once the electricity is generated at the power plant it still needs to be transmitted and distributed to
the end users, resulting in an estimated loss of 5% of all electricity delivered [3].

The climate change crisis has created the need for the rapid penetration of renewable energy
sources into the electricity grid, but with 64.5% of global electricity production being fueled by fossil
fuels in 2017, up from 63.1% in 1990, the global adoption of renewables is not occurring rapidly enough
to offset the increased reliance on fossil fuels. The issue is worsened by the fact that global electricity
consumption has risen 117% over the same time period [4]. By all indications fossils fuels will play a
major role in global electricity production for decades [5]. Accordingly, economically viable methods
to reduce the environmental damage caused by fossil fuel electricity production are needed to ease the
transition towards a sustainable global electricity system.
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The major source of inefficiency in fossil fuel power generation is in the conversion from thermal
energy to mechanical energy, or converting heat to work through a turbine [6]. The majority of heat
entering the turbine is not converted to work, but rather leaves the system as a stream of waste
heat that cannot efficiently be converted to useful work for electricity generation [7]. The waste heat
stream has value in applications such as space heating, or thermally activated technologies such
as absorption chillers. With centralized power plants often being located many kilometers away
from consumers, there is no economically viable way of providing the waste heat to such consumers.
Instead, the waste heat is commonly sent to the atmosphere and most consumers heat and power
demands are met separately by receiving electricity from the utility, and also having on-site heating
and cooling equipment.

Considering the waste of valuable heat from centralized electricity production and the losses
arising from long-distance electrical transmission, the benefit of distributed power generation becomes
clear. In a decentralized grid the power is generated in close proximity to the consumer, enabling easy
delivery of the useful heat to the consumer for heating and/or cooling. Systems which meet consumer
heating and power needs simultaneously from the same energy source are known as cogeneration
systems, or combined heat and power (CHP) systems. Introducing thermally activated technologies
into the CHP system, such as absorption or adsorption chillers, enables the same energy source to
meet the cooling demand of the consumer, evolving the CHP system into a combined cooling, heating
and power system (CCHP), or trigeneration system [8]. Modern CHP and CCHP systems can achieve
thermal efficiencies of over 90%, enabling an overall reduction of environmental consequences from
conventional fossil fuel energy sources [9].

Although the concept and necessary technology for decentralized cogeneration has been around
for decades [10,11] without it becoming ubiquitous, the heightened social and economic interest
in a sustainable electricity system has seen it garner substantial research and industrial attention
in recent years [12]. In many situations, the economic advantages of cogeneration alone make it
preferred over separate thermal and electrical energy production. In other situations, the costs of
non-cogeneration and cogeneration systems are similar, but the environmental benefits of cogeneration
make it preferred [13].

1.2. Optimal Combined Heat and Power Dispatch

To take full advantage of the economic and environmental advantages of CHP systems, their
operation needs to be optimized. CHP systems can contain multiple power-only units, cogeneration
units, and heat-only units, all with unique physical limitations and performance characteristics.
As a result, it is nontrivial determining how to dispatch the available generating units to meet a
given heat and power demand, and especially challenging to determine the most cost-effective and
environmentally friendly dispatch. The CHP economic dispatch (CHP-ED) problem is to determine the
most cost effective use of the available generating units to meet consumer heat and power demands [14].
In addition to cost, CHP system operators often consider the emissions required to meet consumer
demands, resulting in the dispatch problem becoming multi-objective. We will refer to this extension
to multi-objective optimization (MOO) as the CHP economic and emission dispatch (CHP-EED)
problem [15].

In this paper, we summarize the modeling and optimization work that has been done on the CHP
dispatch problems to-date, and from the process systems engineering perspective comment on areas
that require further investigation. This paper is distinct from previous CHP dispatch review papers
because we critically assess the adequacy of the modeling and optimization approaches investigated
to-date through comparison to approaches used outside of the CHP dispatch literature. We also
provide some preliminary investigation into alternative modeling and optimization approaches for the
CHP dispatch problems which show potential. This is in contrast with other CHP dispatch review
papers which focused almost exclusively on comparing methodologies and results from within the
CHP dispatch literature.
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There has been substantial research on the CHP dispatch problem since the early 1990s [16],
with hundreds of papers exploring improved methods of solving the optimal CHP dispatch problems.
The vast majority of methods focused on metaheuristic optimization approaches, with seemingly
endless creativity in using naturally observable phenomena as justification for the merit of new solution
approaches. The well-established metaheuristic methods were thoroughly applied to the problem in
the years prior to 2010, such as ant colony search [17], the genetic algorithm [18–20], and particle swarm
optimization [21,22]. In the years since these pioneering works, the imaginativeness of researchers has
continued to flourish. New metaheuristic methods have been applied to the CHP dispatch problem such
as cuckoo search [23–26], invasive weed optimization [27], the artificial immune system algorithm [28],
the firefly algorithm [29], krill herd optimization [30], the harmony search algorithm [31–34], grey wolf
optimization [35,36], whale optimization [37], and the hybridizing bat algorithm with artificial bee
colony [38]. This is by no means an exhaustive list of metaheuristic approaches investigated.

Despite the study of optimal CHP dispatch being mature in the sense that there has been
an abundance of research conducted over several decades, from the process systems engineering
perspective there exists important questions that have not been answered in the current literature.
The first question is concerned with the widely used CHP dispatch model. In all of the aforementioned
studies the CHP dispatch model used has been largely the same. This is of concern because to our
knowledge there exists no literature that thoroughly validates the model components for their accurate
representation of the actual CHP system physics. Furthermore, over recent decades, novel modeling
techniques have been developed which can substantially aid the optimization of process systems.
For instance, surrogate models such as Kriging [39–44], radial basis functions [45–50], artificial neural
networks [51–56], splines [57,58], among others were shown to accurately represent complex physical
systems while aiding optimal search algorithms. No literature exists which explores the application of
such techniques to advance the study of CHP dispatch. A thorough understanding of the actual CHP
system physics should be established, and it should be modeled with consideration of accuracy and
computational simplicity in mind.

The second research question is concerned with the application of deterministic global
optimization techniques for solving the CHP dispatch problems. Deterministic global optimization
refers to numerical optimization methods which search for solution of the problem within some
predefined tolerance of the global optimum. Upon convergence, deterministic global optimization
methods provide theoretical guarantees that the solution returned is within the tolerance of the global
optimum, or the problem is infeasible. Methods of rigorously bounding function values from above
and below over the search space are central to deterministic global optimization. The global search
converges when the difference between the bounds on the objective value, known as the optimality gap,
is within the predefined tolerance. These optimization methods are deterministic in nature because
they do not need to use stochastic rules to explore the search space. Rather, they can rely solely on
a sequence of deterministic bounding operations to guide the search to convergence within a finite
number of iterations [59,60]. This is in contrast to metaheuristic search algorithms, which are referred
to as stochastic global optimization methods. Metaheuristic algorithms rely on stochastic rules to
explore the search space because they do not possess global information about the problem in the form
of rigorous function bounds. Metaheuristic algorithms do not perform a rigorous global search and
cannot provide theoretical guarantees for the solution they converge to. Accordingly, when we refer
global optimization throughout this paper, we are referring to deterministic global optimization.

Many researchers justified the need for metaheuristic optimization methods because of the
inability of classic optimization techniques to handle the nonconvex nature of the CHP dispatch
problems. Basu (2011) states that nonlinear optimization methods cannot handle the nonconvex
fuel cost functions of the generating units [61]. Mohammadi et al. (2013) reference the inability of
classic gradient-based optimization methods to guarantee finding the global optimum due to the
existence of multiple local minima [62]. Jayakumar et al. (2016) state that these methods are impractical
because they must approximate the modeling of cost curves which are actually highly nonlinear,
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non-monotonic, and can contain discontinuities [36]. Beigvand et al. (2016) reference the convergence
difficulties of more classical optimization techniques due to the structure of the CHP-ED dispatch
problem [63]. Murugan et al. (2018) reference the ineffectiveness of derivative-based optimization
approaches at solving nonconvex problems with complex search spaces and computationally expensive
cost functions [38]. Zou et al. (2019) state that the classical numerical methods can hardly handle
problems which simultaneously have nonconvexity, discontinuity and non-differentiability [64].

While the statements of the above researchers are true for classical deterministic local
gradient-based search methods, the ability of global optimization methods to handle the structure of
the CHP dispatch problems has seemingly been overlooked. Unlike metaheuristic search methods,
tuning of search parameters is not needed to maintain algorithm performance for global optimization
methods [65]. This is particularly important when solving the CHP dispatch problems for practical
applications where algorithm reliability is of paramount importance. The main drawback of global
optimizations methods is their computational complexity, which can limit their application to
large-scale nonconvex problems. To investigate the potential for global optimization methods to
handle the CHP-ED problem, we apply generic off-the-shelf global solvers in a case study with five
classic benchmarking test systems and compare their performance to the metaheuristic approaches
review by Nazari-Heris et al. 2018 [66].

The layout of this paper is as follows. Section 2 discusses the modeling of CHP systems,
with Section 2.1 introducing the widely used CHP-ED and CHP-EED models, and Section 2.2 discussing
potential areas for improving these models. This is followed by Section 3 where solution methods for
the CHP-ED and CHP-EED problems are discussed, with Section 3.1 discussing the widely studied
metaheuristic solution methods, and the case study in Section 3.2 investigating the application of global
optimization algorithms for solving the CHP-ED problem.

2. Modeling CHP Operation

2.1. Common CHP Dispatch Model

The CHP-ED problem is to determine the heat and power output of some number of cogeneration
units, power-only units, and heat-only units, so that operation cost is minimized while the heat
and power demand and other physical operating constraints are met. Tables 1–3 define the sets,
parameters, and variables used throughout the paper to model CHP dispatch. In the CHP-ED problem
all parameters are assumed to be constant and known with certainty. The objective function to
minimize is the total operating cost of the generating units, defined as:

min f1 = ∑
i∈Up

cp
i (pp

i ) + ∑
i∈Uc

cc
i (h

c
i , pc

i ) + ∑
i∈Uh

ch
i (h

h
i ). (1)

In the early CHP-ED literature the cost functions of all generating units were represented as
quadratic functions of heat and/or power [14,16–20,67]:
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i )

2 + Bpc
i pp

i + Cpc
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i + Chc
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Table 1. Sets used for modeling CHP dispatch.

Set Description

Uc Set of combined heat and power generating units
Uh Set of heat-only generating units
Up Set of power-only generating units
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Table 2. Parameters used for modeling CHP dispatch.

Parameter Description Unit

Acc
i , Bcc

i , Ccc
i , Cost-coefficients of CHP unit i $

MW2 , $
MW , $,

Dcc
i , Ecc

i , Fcc
i

$
MW , $

MW2

Ahc
i , Bhc

i , Chc
i Cost-coefficients of heat-only unit i $

MW2 , $
MW , $

Apc
i , Bpc

i , Cpc
i , Dpc

i , Epc
i Cost-coefficients of power-only unit i $

MW2 , $
MW , $, $, rad

MW
Ace

i Emission-coefficient of CHP unit i kg
MW

Ahe
i Emission-coefficient of heat-only unit i kg

MW
Ape

i , Bpe
i , Cpe

i , Dpe
i , Epe

i Emission-coefficients of power-only unit i kg
MW2 , kg

MW , kg, kg, 1
MW

Al
ij Coefficient of power loss between unit i and j 1

MW
Bl

i Coefficient of power loss of unit i −
Cl Constant system power loss MW
Hd System heat demand MW
Pd System power demand MW
Pmin

i , Pmax
i Minimum and maximum power output from power-only unit i MW

Hmin
i , Hmax

i Minimum and maximum heat output from heat-only unit i MW

Table 3. Variables used for modeling CHP dispatch. R≥0 is the set of all nonnegative real numbers.

Variable Description Unit Domain

cc
i , ch

i , cp
i Operating cost of cogeneration unit i, heat-only unit i, and power-only unit i $ R≥0

ec
i , eh

i , ep
i Operating emissions of cogeneration unit i, heat-only unit i, and power-only unit i kg R≥0

f1, f2 Objective value of CHP-ED problem, and CHP-EED problem $, kg R≥0
hc

i , hh
i Heat output of cogeneration unit i, and heat-only unit i MW R≥0

hmin
i (pc

i ), hmax
i (pc

i ) Minimum and maximum heat output of cogeneration unit i MW R≥0
as a function of unit i power output MW R≥0

pc
i , pp

i Power output of cogeneration unit i, and power-only unit i MW R≥0
pl Total system power loss MW R≥0
pmin

i (hc
i ), pmax

i (hc
i ) Minimum and maximum power output of cogeneration unit i MW R≥0

as a function of unit i heat output MW R≥0

However, it has long been well-known that the valve-point effects on the cost functions of steam
power generators cannot be sufficiently described by smooth quadratic functions. The cost function
of the power-only units is obtained by collecting operating data as the generator is varied across
its operating region. A rippling effects is seen in the cost curve as steam admission valves open
intermittently across the operating region, as seen in Figure 1 [68,69]. As a result, in more recent
CHP-ED literature its is common to consider a more accurate cost function for power-only units which
includes a rectified sinusoidal term, as follows [37,38,62,70–72]:

cp
i = Apc

i (pp
i )

2 + Bpc
i pp

i + Cpc
i + |Dpc

i sin(Epc
i (Pmin

i − pp
i ))| ∀i ∈ Up. (5)

Figure 1. Fuel input versus power output data provided in Walters and Sheble (1993) [68].
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Consideration of valve-point effects introduces nonconvexity into the objective function of
the CHP model. Without consideration of valve-point effects, the cost functions are all convex
quadratic functions.

In comparison to the CHP-ED problem, the CHP-EED problem has been studied much less.
To extend the CHP-ED problem to the CHP-EED problem the total emissions from the CHP dispatch
must also be minimized. The following objective for total emissions is widely accepted in the literature
addressing the CHP-EED problem [15,66,73–77]:

min f2 = ∑
i∈Up

ep
i (pp

i ) + ∑
i∈Uc

ec
i (h

c
i , pc

i ) + ∑
i∈Uh

eh
i (h

h
i ), (6)

where the emissions for each unit are defined as:
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i (pp
i )
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i pp

i + Cpe
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i exp(Epe
i pp

i ) ∀i ∈ Up, (7)
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i = Ace

i pc
i ∀i ∈ Uc, (8)
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i hh
i ∀i ∈ Uh. (9)

The constraints enforcing the heat and power demand to be met are defined as:

∑
i∈Up

pp
i + ∑

i∈Uc
pc

i = Pd + pl (10)

∑
i∈Uc

hc
i + ∑

i∈Uh

hh
i = Hd (11)

(12)

The power loss pl variable in Equation (10) is needed to account for the power transmission losses
in the system. The total system power loss is a function of the power production of all units, and in
CHP dispatch literature is commonly accounted for using the following B-matrix method [62,66]:

pl =
|Up |

∑
i=1

|Up |

∑
j=1
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p
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|Up |

∑
i=1

|Uc |
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ij p
c
j +
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∑
i=1

|Uc |

∑
j=1
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ij p
c
j +
|Up |

∑
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i +
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∑
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Bl
i pc

i + Cl (13)

The physical limitations of the generating units are described through:

Pmin
i ≤ pp

i ≤ Pmax
i ∀i ∈ Up (14)

pmin
i (hc

i ) ≤ pc
i ≤ pmax

i (hc
i ) ∀i ∈ Uc (15)

hmin
i (pc

i ) ≤ hc
i ≤ hmax

i (pc
i ), ∀i ∈ Uc (16)

Hmin
i ≤ hh

i ≤ Hmax
i , ∀i ∈ Uh. (17)

Equations (15) and (16) capture the interdependence of heat and power production for
cogeneration units, with the power and heat limits being dependent on the heat and power output,
respectively. Combing these limits yields the two-dimensional feasible operating region of the
cogeneration units, {(hc

i , pc
i ) : pmin

i (hc
i ) ≤ pc

i ≤ pmax
i (hc

i ), pmin
i (hc

i ) ≤ pc
i ≤ pmax

i (hc
i )} . The feasible

operating region of a set of typical cogeneration units are shown in Figure 2. It can be seen that the
feasible operating region of cogeneration units is a potential source of model nonconvexity [17].
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Figure 2. Several typical cogeneration feasible operating regions [66].

2.2. Discussion of Common CHP Dispatch Model

For nearly three decades the CHP-ED dispatch model has remained largely unchanged. Looking at
the earliest considerations of optimizing the CHP-ED problem of Rooijers and Amerongen (1994) [16] and
Guo et al. (1996) [14], and contrasting these to some of the most recent considerations [33,34,37,78,79], the only
differences present are consideration of valve-point effects for the power-only units, and power transmission
losses. The addition of these terms is not a result of a better understanding of the physical system, as valve-point
effects and power transmission losses were understood as early as 1971 [80], and being applied in power
economic dispatch problems as early as 1993 [68]. There were substantial technological advances in power
plants since 1971, and advances in process system modeling techniques, so it begs the question if some
improvements to the CHP dispatch model are necessary. There are hundreds of publications investigating
different metaheuristics for solving the CHP-ED problem, but none justified their choice of model used, except to
cite earlier metaheuristic research.

In this section, we discuss some areas of CHP dispatch models which require further investigation.
Section 2.2.1 addresses the modeling of the fuel cost functions for the generation units. We discuss the
lack of validation of the fuel cost functions since their introduction several decades ago. We pay special
attention to the modeling of valve-point effects of power-only units. We discuss the computational
complexity of the commonly employed rectified sinusoidal method of describing valve-point effects.
The question of the applicability of the rectified sinusoidal term is raised by demonstrating the error it
contains when predicting real thermal power unit operating data. Section 2.2.2 addresses the combined
unit commitment and ED scheduling problem. We discuss the increased computational challenge of
this problem, necessitating a less accurate CHP-ED model to remain tractable. Surrogate modeling
techniques are introduced which may allow increased CHP-ED model accuracy, while maintaining a
reasonable level of computational complexity.
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2.2.1. Fuel Cost Functions of Generating Units

Both the CHP-ED and CHP-EED problems are directly concerned with minimizing the fuel cost
of operating the generating units to meet heat and power demand. Accordingly, the accuracy of the
relationships used to describe the fuel cost over the feasible operating region of the generators is
critical for solution quality. It is especially important to validate the relationships describing the fuel
cost of generating units as they are not theoretically derived, but rather empirically derived from
process data [81–84]. There are two questions that should be answered regarding the current CHP
fuel cost functions. First, have technological advances been made since the introduction of the CHP
generating unit fuel cost functions in 1994 which require different functions to accurately describe?
Second, are the most appropriate functions being used to describe the CHP generating unit fuel costs
with consideration of both accuracy and computational complexity?

To the best of our knowledge, the first publication on the CHP-ED was by Rooijers and Amerongen
in (1994) [16]. In this paper the authors state that the cost function of a conventional power-only unit
and heat-only unit have quadratic cost functions, such as those shown in Equations (2) and (4). They
also state that the practice at the time was to use the quadratic function of Equation (3) to model
the cogeneration unit cost function. Recent papers addressing the CHP-ED consider valve-point
effects on the cost function of thermal power-only units, which was known to be important as early
as 1971 [80]. As a result, the cost function of power-only units which is currently widely accepted in
CHP-ED literature is now Equation (5). However, the quadratic fuel cost function of cogeneration
units has remained unchanged in CHP dispatch literature since the initial 1994 publication, which
provides no validation or citation to justify the function. It is especially intriguing from the engineering
perspective as certain cogeneration units consist of thermal power units with heat recovery. In these
cases the mechanistic relationship describing the cost of producing power from a power-only unit or
cogeneration unit should be the similar, suggesting that valve-point effects should be present in the
cost function of this type of cogeneration unit.

With the lack of recent literature validating the cost function of the power-only units that considers
valve-point effects, it is possible that advancements have been made in thermal power engineering
which requires radically different modeling of valve-point effects since their initial discussion in
1971. This is nothing more than conjecture, we only point it out because of the scientific issues of not
reassessing the applicability of a model of a technological system which has advanced substantially
over the past 5 decades [2,85–88].

For the sake of discussion we will assume the valve-point effects shown in Figure 1 to still be
of relevance to thermal power units today, as other researchers have. The question then becomes if
the rectified sinusoidal term (|Dpc

i sin(Epc
i (Pmin

i − pp
i ))|) is the most appropriate method of modeling

valve-point effects. It is assumed that the first introduction of this term was by Walters and Sheble
in 1993 to describe the input-output curve data shown in Figure 1, as they provide no citation upon
its introduction [68]. Walters and Sheble provide no statistics on the goodness of fit of the rectified
sinusoidal term they chose.

When considering adding a component to an optimization model two main factors need to be
weighed. One of these factor is the importance of the component to the model, which often means how
the accuracy of the model is effected by the inclusion of the component under consideration. The other
factor is the complexity of the component, or the computational cost associated with solving a model
that contains the component. In general, the more complex the component under consideration is,
the more important it must be to justify its use in the model. The rectified sinusoidal term of Walters
and Sheble is highly complex as it adds both nonconvexity and nonsmoothness to the optimization
problem, prohibiting many classical optimization methods from being applied to models that contain it.
As a result, using the rectified sinusoidal term to capture valve-point effects has major implications on
the efficient solution of CHP dispatch problems. Evidence of the importance of the rectified sinusoidal
term is needed to justify its complexity. We cannot find such evidence in the existing literature, so we
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perform a simple investigation of the ability of Equation (5) to capturing the fuel input versus power
output data provided by Walters and Sheble in Figure 1 [68].

Figure 3a shows the fuel rate data provided by Walters and Sheble, and the predicted fuel rate
data using Equation (5) to capture valve-point effects. It is clear that the rectified sinusoidal term
cannot fully describe the inconsistent periods of the valve-point effects. The discontinuity of the
rectified sinusoidal term does not predict the discontinuity of operating Valve B, resulting in 4.03%
error in the predicted fuel rate where Valve B is actually operated. However, it can also be concluded
that the rectified sinusoidal term helps predict the actual data better than just a quadratic prediction
would, with some of the periodic deviation from a quadratic curve being captured.

Figure 3. Actual input-output curve data versus predicted input-output curve using Equation (5) in A,
and using a piecewise-linear function in B.

We have more well-established modeling techniques at our disposal today than Walters and
Sheble did when they introduced the rectified sinusoidal term in 1993. The choice of how to
capture valve-point effects is not just whether or not a rectified sinusoidal term should be used,
but also whether other surrogate models could be used to accurately capture the valve-point effects
while introducing less complexity in the model. Given the simple 1-dimensional relationship of
the input-output curve, more advanced surrogate modeling techniques such as Kriging or neural
networks are unnecessary, although could be applied. Instead, we choose to investigate the ability
of a piecewise-linear function to capture the valve-point effects of thermal power units. Figure 3b
shows the fuel rate data provided by Walters and Sheble and the fuel rate data predicted using
a piecewise-linear function. The piecewise-linear function is made up of 8 linear segments and
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has a maximum absolute relative approximation error of 1%. By comparing Figure 3a,b it is clear
that this relatively simple piecewise-linear function is able to approximate the valve-point effects
of thermal power units more accurately than the quadratic function with the rectified sinusoidal
term. There are many instances where the computational complexity of complex nonlinear process
system models is greatly simplified through piecewise-linear approximation [89–93], and in the case of
valve-point effects the piecewise-linear approximation can be more accurate than the current widely
used nonlinear model.

2.2.2. Combined Unit Commitment and Economic Dispatch

In the classic CHP-ED problem it is assumed that the number of generating units available for
heat and/or power production is known, or the number of units to “commit” is known. It is further
assumed that the heat and power demands are constant. In reality, the heat and power demands
are frequently changing, resulting in the most economical operating policy being one that commits
and decommits units as the changing heat and power demands dictate. To commit a generating unit
requires ramping it up to the desired output level over time [94]. The dynamics of ramping units
up are longer than the dynamics of the heat and power demands. As a result, the most economic
unit commitment (UC) policy must be determined in advance by scheduling the unit commitment
according to a forecast of the expected heat and power demands.

The UC scheduling problem typically considers a time horizon ranging from days to a week.
The time horizon is then broken into multiple periods, often at hourly intervals [95]. The UC problem is
much more difficult than the ED problem because it essentially involves solving multiple ED problems
that are linked through the ramping constraints, and integer variables denoting which generating units
are committed [88]. The increased difficulty of the UC problem results in the ED subproblem often
being less detailed than the CHP-ED model previously introduced. The approach taken by the vast
majority of researchers has been to approximate the fuel cost functions of generating units as linear or
convex piecewise-linear functions, and their feasible operating regions as convex polytopes [96–98].
The resulting problems are mixed-integer linear programs (MILPs) that only require binary variables
to indicate whether a particular unit is committed at each time period.

Solving the UC problem with the simplified CHP-ED model results in an operating schedule that
is likely to be less economical than the best-possible operating schedule, due to model error. Further, it
is possible that the convex approximations of the feasible operating windows of cogeneration units
will result in determining operating schedules which are infeasible in practice. This can be avoided if
it is ensured that the convex approximation is a restriction of the actual feasible operating window,
but the sacrifice is solution quality as feasible operating regions which may yield more economical
operation are removed.

Developing a surrogate model of the CHP-ED subproblem may be useful to reduce model
complexity while maintaining a higher level of accuracy than the conventional simplification
approaches that were previously employed. Given that many of the UC models to-date have been
MILPs, owing to their tractability, it is natural to use a surrogate modeling approach which can be
embedded in an MILP. Piecewise-linear surrogate models are easily implemented in MILPs, for which
there is substantial research attention recently. Rectified neural networks are known to be continuous
piecewise-linear functions with the universal approximation ability [99]. As a result, they are a
subject of interest for capturing complex nonlinear physics in MILPs [51,100]. Neural networks are
popular because of their ability to model large high-dimensional data-sets; however they also possess
drawbacks when considering their application in modeling for use in an MILP. One of the reasons
deep rectified neural networks are able to approximate large data-sets well, despite being trained by
algorithms that are likely to converge to suboptimal solutions, is that they produce piecewise-linear
functions with many more linear segments than necessary. In essence, the suboptimal convergence
is overcome by using a piecewise-linear superstructure that is much larger than would be needed
if convergence to the global optimum were possible. This is a drawback for embedding rectified
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neural networks in MILPs because the number of combinations of active/inactive binary variables
is directly proportional to the number of linear segments in the piecewise-linear function, and so
unnecessary complexity is likely to be introduced. As a result, when globally optimal piecewise-linear
function generating methods are able to be applied, they should be used. For instance, the convex
piecewise-linear function generating technique introduced by Toriello and Vielma (2012) is particularly
well-used [101]. The obvious limitation of globally optimal piecewise-linear function generating
methods is that they quickly become intractable as the number of data-points and linear segments grow.

3. Optimizing CHP Operation

3.1. Past Metaheuristic Approaches

The approaches used to solve the CHP-ED problem to-date were largely metaheuristic,
and of the metaheuristics applied to the CHP-ED problem the vast majority were nature-inspired.
The advantageous property of nature-inspired algorithms is their ability to perform a complex search of
the search space through coordination of entities that follow simple rules.The coordination of the search
entities is achieved through simple algebraic calculations which do not require any differential calculus,
resulting in their ability to be applied to non-differentiable functions. Naturally observable phenomena
provided a rich source of ideas for metaheuristic algorithms because nature is composed of many
instances of entities that follow simple rules to achieve a complex objective with remarkable success.
The ability for ants to find the shortest path from their nest to a food source while relying solely on the
secretion of pheromone trails has inspired ant colony optimization, which has shown to be especially
useful for certain discrete NP-hard problems such as the traveling salesman problem [102]. Particle
swarm optimization is built on the hypothesis that individual members in schools of fish profit from the
experiences of all other members in the school during the search for food, and this benefit outweighs the
disadvantages when the food resource is unpredictably distributed in patches. This hypothesis easily
extends to other groups of social animals, such as flocks of birds, and the particle swarm optimization
algorithm is most easily understood as simulating the choreography of a flock of birds flying to forage
for food [103]. Particle swarm optimization has been shown to efficiently solve certain unconstrained
continuous non-convex optimization problems. The ability for a colony of bees to efficiently find
sources of nectar by simple interactions between employed bees, onlooker bees, and scout bees, has
inspired bee colony optimization, which has also shown to be useful for solving certain unconstrained
continuous non-convex optimization problems [104]. The ability for natural selection and the evolution
of genetics to produce offspring which are increasingly more suitable for surviving their environment
by simple mutation, recombination and selection operators has inspired genetic algorithms [105].

An abundance of other natural phenomena inspired metaheuristic methods similar to those
mentioned above. However, there are common limitations that all nature-inspired metaheuristics suffer
from because nature cannot provide simple answers for some of the most fundamental issues faced in
optimization problems. These common limitations are the ability to handle constraints, and the premature
convergence of the search algorithm to solutions that are not the true global optimum [17,18,71].

3.1.1. Difficulty of Handling Constraints

Nature inspired metaheuristic methods do not explicitly consider constraints because the entities
they are inspired by do not use simple mechanism to obey the constraints they are subject to, or they
are not subject to the types of constraints that exist in many optimization problems. For instance,
when ants are foraging for food and come across impassable terrain they are able to sense this through
complex physiological processes and avoid it. When considering a constrained continuous optimization
problem, there is no simple way to provide these same senses to the search agents in the ant colony
optimization algorithm to avoid them from traversing into infeasible search spaces. Or consider a
school of fish searching for food in a particular river, it is not possible for any fish in this school to
discover a food source in a disjoint body of water. When considering optimization problems with
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disjoint feasible regions, there is no simple way to ensure the particles searching in particle swarm
optimization algorithms move between the disjoint feasible regions to discover the globally optimal
solution because this is not a situation dealt with by the natural organisms which they were inspired by.

To deal with the inability of metaheuristic algorithms to deal with constraints, it is common to
remove the constraints from the problem and penalize their violation in the objective function using a
penalty factor which diminishes as the search progresses, yielding an effect similar to an annealing
schedule [17,18,71]. This is not a perfect fix though, because a penalty factor that is set too large initially
will cause premature convergence to suboptimal solutions, and a penalty factor set too small initially
can dramatically increase solution times because many candidate solutions will be produced which are
infeasible. Further, the penalty functions are often ill conditioned near the boundaries of the feasible
region, where optimal solutions are commonly located [19]. As a result, the most difficult aspect of
the penalty function method is determining the progression of penalty factors which yields desirable
algorithm convergence [20]. There exists no theory to determine the correct choice of the penalty
factor progression for a given optimization problem, or even for instances of the same optimization
problem, and so practitioners have no choice but to tune the penalty factor progression manually until
desirable algorithm performance is obtained. This is a serious concern for practical problems such
as the CHP-ED and CHP-EED which need to be resolved frequently as heat and power demands
change. The penalty factor progression tuned offline cannot guarantee good algorithm performance
when deployed online, putting the reliability of decision support tools based on metaheuristics into
question. Table 4 summarizes the methods used to handle constraints by the metaheuristics applied to
the CHP-ED and CHP-EED.

3.1.2. Premature Convergence Issues

Despite metaheuristics being referred to as stochastic global search algorithms, they do not possess
global information about the optimization problem throughout the course of their search. From this,
it is impossible for metaheuristic algorithms to guarantee convergence to globally optimal solutions
because they cannot assess candidate solutions based on global information. The gradient-free nature of
metaheuristic methods means that convergence to locally optimal solutions cannot even be guaranteed.
These theoretical shortcomings give rise to the need for metaheuristics to balance the exploitation of
the best-known candidate solutions at any stage, with the exploration of the search space in hopes of
finding improved candidate solutions. Exploration of the search space is achieved by coding stochastic
behavior in the algorithm which gives rise to some probability of search entities randomly selecting
solutions outside of the candidate solutions. In ant colony optimization this is typically achieved
by search agents selecting the node to move to based on a probabilistic rule that is a function of
pheromone level connecting their current node with the prospective node. In bee colony optimization
the stochastic behavior is achieved by scout bees which randomly search for new candidate solutions,
and stochastic neighborhood search around known candidate solutions. In genetic algorithms the
recombination of randomly selected parent genes and the random mutation operator contributes to the
discovery of new candidate solutions in a stochastic way. Table 4 summarizes the stochastic rules used
by the metaheuristics that were applied to the CHP-ED and CHP-EED to achieve random exploration.

The performance of an algorithm which is imbalanced between the competing objectives of
exploitation and exploration will suffer. An algorithm which is overly greedy, or prioritizes exploitation
of the best-known candidate solutions, will suffer from premature convergence to solutions that are not
of high-quality. An algorithm which prioritizes exploration will suffer from long convergence times,
or possibly complete lack of convergence. Like the progression of the penalty factor for constraint
handling, in general there are no theoretical results to automate the tuning of parameters effecting the
balance between exploration and exploitation. Practitioners are left to manually tune these parameters
to achieve desirable performance for the problem instance at hand, but are left with no guarantees that
these same parameters will extend to other problem instances. As a result of the random choices in
metaheuristic algorithms, the final solution and computing times are actually random variables [106].



Processes 2020, 8, 441 13 of 29

This means that repeatedly solving the same problem instance using a metaheuristic is likely to return
several different solutions, with a variety of different solution times. This fact compounds the issue of
reliability when implementing metaheuristic algorithms in decision support settings where repeatedly
obtaining high quality solutions over varying problem instances is required.

3.1.3. Benefits for Multi-Objective Optimization

In MOO problems the objectives are often conflicting, resulting in many solutions which are
equally good in the sense that each is better than the rest in at least one objective. These solutions are
all optimal solutions because no other solutions exist which can yield an improvement in one objective
without making at least one objective worse. These solutions are often referred to as non-dominated
and they form what is known as the Pareto-optimal front [107]. A distinct benefit of metaheuristic
algorithms is that they can easily be extended to MOO problems, owing to the fact that they naturally
generate solutions throughout their search which can be compared to determine which of them are
non-dominated. By storing the non-dominated solutions and iteratively applying heuristics to search
for possible improvements, a search for the Pareto-optimal front is achieved.

Deterministic global optimization methods cannot so easily be extended to generate the
Pareto-optimal front during the course of their natural search. For instance, the well-known
branch-and-bound method relies on removing areas of the feasible region through refining bounds
on a single objective function for each area. If just one of the objective functions from the MOO problem
are chosen as the metric for bounding areas in the branch-and-bound algorithm, then areas which contain
solutions on the Pareto-optimal front will be discarded without discovering the non-dominated solutions
they contain. As a result, such a method can only generate a single point on the Pareto-optimal front
with confidence. To overcome this, a linear weighted sum of the objective functions is often employed.
The linear weighted sum of objective functions can repeatedly be solved with different weights, with each
solution producing a point on the Pareto-optimal front. This approach is limiting due to the computational
burden required to repeatedly solve the problem, but the most serious drawback is that it is usually
not true that each Pareto-optimal point can be obtained through a suitable choice weights. The linear
weighted sum method cannot generate portions of the Pareto-optimal front when its shape is non-convex,
regardless of the weight combinations used, meaning it commonly fails for non-convex problems [108].

Evolutionary algorithms are the type of metaheuristic algorithm investigated the most for solving
the CHP-EED problem. Of these algorithms is the multi-objective line-up competition algorithm
(MO-LCA). The MO-LCA uses a composite fitness function to evaluation "families" (candidate
solutions) based on their ranks for each of the objective functions. New generations of families
are produced within a random distance of the previous generation of families, whose maximum range
decreases as the composite fitness value of the family increases, and as the algorithm progresses.
After the new generation of families is produced, their composite fitness values are compared to the
fitness values of their parents, with the more fit family evolving to the next generation. In this way,
the solutions which are non-dominated in the candidate solution set are preserved but allowed to
make local searches for solutions which are globally non-dominated [109].

Another evolutionary algorithm which has been investigated for solving the CHP-EED is the
non-dominated sorting genetic algorithm II (MO-NSGA-II). In this algorithm, solutions are first ranked
based on their non-domination level, and a secondary rank in ascending order of crowding distance is
assigned. The mating pool is then constructed using random tournament selection based primarily on
the non-domination level and secondarily on the crowding distance. Crossover and mutation of the
mating pool is then used to produce a child population, which is finally ranked alongside the parent
population for selection to the next generation [73].

Recently a hybrid metaheuristic approach combining aspects from MO-NSGA-II and multi-objective
particle swarm optimization has been proposed. At each iteration of this algorithm the higher ranked half
of the population evolves using standard genetic algorithm principles, and the lower ranked half of the
population searches using standard particle swarm optimization principles [77].
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Table 4. Summary of key characteristics of past metaheuristic optimization approaches applied to the CHP-ED and CHP-EED.

Metaheuristic Characteristic

Type Publications Constraint Handling Method Exploration Method

Evolutionary algorithm GA (1998) [18], EP (2002) [110], Constraint violation penalty function Random recombination and mutations
RGA (2003) [111], IGA-MU (2004) [19], and constraint repair step of offspring away from parent genes
SARGA (2009) [20], MO-LCA (2013) [109],
MO-NSGA-II (2013) [73], HSGA (2013) [112],
RCGA-IMM (2016) [71], DE (2016) [72]

Ant colony search algorithm ACSA (1999) [17] Diminishing penalty factor Probabilistic node selection rule as
function of arc pheromone level

Harmony search algorithm HS (2007) [67] Penalty factor Random component to selection of
new harmony value

Particle Swarm Optimization SPSO (2009) [22], TVAC-PSO (2013) [62], Penalty factor and Randomly weighted particle acceleration
MPSO (2015) [113] constraint repair step

Bee colony optimization BCO (2011) [61] Constraint repair step Random local search around
solutions of previous iteration

Artificial immune system algorithm AIS (2012) [28] Constraint repair step Random local search around
solutions of previous iteration

Firefly algorithm FA (2013) [29] Penalty factor Random component to attraction of
fireflys as function of light intensity

Group search optimization IGSO (2014) [114] Constraint repair step Scroungers randomly walking
towards the producer

Invasive weed optimization IWO (2014) [27] Penalty factor Weeds move randomly around previous
position each iteration

Oppositional teaching learning TLBO (2014) [70] Reinitialization of student Random component to grade
based optimization who violates constraints updating rule
Grey wolf optimization GWO (2015) [35] Constraint satisfaction procedure Random components to updating

between iterations direction and position of wolves
Crisscross optimization CSO (2015) [115] Penalty factor combined with Random component to the combination

inequality constraint repairing step of parent solutions to produce new solutions
Gravitational search algorithm GSA (2016) [63] Penalty factor and constraint Randomly weighted sum of gravitational

repair step forces exerted on particle
Exchange market algorithm EMA (2016) [116] Penalty factor Random component to number of

shares traded
Cuckoo optimization algorithm COA (2016) [24] Penalty factor combined with Nest updating includes random

slack technique combination of previous solutions
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3.2. Comparison with Global Optimization

Global optimization algorithms are not subject to the theoretical and practical shortcomings
identified for the abundance of metaheuristics discussed in the previous section. Practitioners
applying global optimization algorithms do not need to set parameters that influence the algorithm
performance, and upon algorithm convergence a solution within any desired tolerance of the true
global optimum is returned, or the problem is determined to be infeasible. The most serious limitation
of global optimization techniques for solving NP-hard problems, such as the CHP-ED problem, is the
computational complexity associated with the theoretical guarantees that are provided. However,
if global optimization of the problem at hand can be solved within times useful for practical application,
it is undeniably the preferred choice over metaheuristic algorithms, if not for the guaranteed global
optimality of the solution returned, for the algorithm reliability that is ensured.

In this section, we investigate the ability for a global optimization algorithm to solve the five
CHP-ED problem test instances that are commonly investigated in the literature. In all test instances
the relative optimality gap is set at 0.01%. The objective values of the solutions reported are all rounded
up to the nearest whole number to reflect the precision of the optimality gap. The details of these
test instances can be found in Appendix A. For the first two test instance valve-point effects are not
considered and so no rectified sinusoidal terms are present in the CHP-ED model. For these two
test instance the global optimizer BARON version 18.11.12 was used to solve the problems [117,118].
For the remaining three test instance valve-point effects are considered, so the global optimizer we
use is COUENNE version 26.1.0 because of its ability to handle the rectified sinusoidal terms [119].
The optimization software used for the case study was GAMS version 26.1.1 [120]. In all trials GAMS
was ran using a single thread on an Oracle VirtualBox version 5.1.26 with the Ubuntu 16.04 operating
system, a CPU frequency of 3.60GHz, and 4GB of RAM.

We use the metaheuristic algorithm results on these five test instances summarized by the review
paper of Nazari-Heris et al. (2018) [66] for comparison to the results we obtain for the deterministic
search algorithm. We note that many publications in the field of CHP-ED optimization reported
solution times but did not report the hardware used to achieve such times. With solution times on the
order of tens of seconds, comparison of solutions times is meaningless because differences may be
due to the hardware used rather than the search algorithm itself. Regardless, we provide the solution
times reported in the literature when available, simply to provide reference as to what were acceptable
solution times in the field to-date.

3.2.1. Test Instance 1

Test instance 1 is made up of one poweronly unit without valve-point effects, two cogeneration
units, and one heat-only unit. Of the two cogeneration units, one has a convex feasible operating range
and one has a non-convex feasible operating range. Power transmission losses are not considered in
this test instance. Table 5 summarizes the performance of 29 metaheuristic approaches and BARON
for solving test instance 1. The high, median, and low columns in the table represent the highest
value reported for the 29 metaheuristics, the median value of the 29 metaheuristics, and lowest value
reported for the 29 metaheuristics. It can be seen that BARON is sufficient for handling CHP-ED
problems of this size, with it reducing the relative optimality gap less than 0.01% in 0.06s. In the form
of P = (P1, ..., P3), H = (H2, ..., H4), the optimal solution found by BARON for this test instance 1 is:

P = (0, 160, 40), H = (40, 75, 0).

It should be noted that of the 29 metaheuristic solutions provided by Nazari-Heris et al. (2018), 10
of the solutions provided were infeasible. Three of these infeasible solutions were due to violations
of the cogeneration unit’s feasible region, and seven were because the solution provided was more
than 0.1MW short of the heat or power demand. Even for this simple test instance, of which the
researchers were able to tune the constraint handling and premature convergence parameters to be
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tailored to this test instance specifically, feasibility and optimality issues were present in the many of
the metaheuristic algorithms.

Table 5. Comparison of BARON solver versus past metaheuristic algorithm performance for test
instance 1. Please note that optimal values reported for metaheuristics are only for feasible solutions.

Metric BARON 29 Metaheuristics

Optimal Value ($) 9258 High Median Low

13427 9258 9258

Solution Time (s) 0.06 High Median Low

3.76 1.34 0.59

Solution Quality Within 0.01% of Infeasible Feasible Within 0.01% of Global Optimum

Global Optimum 10 19 16

3.2.2. Test Instance 2

Test instance 2 is made up of one power-only unit without valve-point effects, three cogeneration
units, and one heat-only unit. Of the three cogeneration units, one has a convex feasible operating range
and two have a non-convex feasible operating range. Power transmission losses are not considered in
this test instance. Table 6 summarizes the performance for 12 metaheuristic approaches and BARON
for solving test instance 2, of which three heat and power demand profiles are studied. It can be
seen that BARON still has good performance on this larger CHP-ED test instance, with it reducing
the relative optimality gap to less than 0.01% for all profiles in under 0.07s. Of the 12 metaheuristic
algorithms, seven were able to find feasible solutions for all three demand profiles. Of these seven
search algorithms, five were able to find solutions with objective values within 0.01% of the global
optimum on all three demand profiles. In the form of P = (P1, ..., P4), H = (H2, ..., H5), the optimal
solutions found by BARON for test instance 2 are:

Demand Profile 1: P = (135, 40.769, 19.231, 105), H = (73.595, 36.777, 0, 39.628),

Demand Profile 2: P = (135, 40, 10, 65), H = (75, 40, 14.404, 45.596),

Demand Profile 3: P = (42.306, 64.674, 10, 43.020), H = (96.354, 40, 23.646, 60).

3.2.3. Test Instance 3

Test instance 3 is made up of four power-only units with valve-point effects, two cogeneration
units, and one heat-only unit. Of the two cogeneration units, one has a convex feasible operating
range and one has a non-convex feasible operating range. Power transmission losses are considered
in this test instance. Table 7 summarizes the performance for 16 metaheuristic approaches and
COUENNE for solving test instance 3. It can be seen that COUENNE has good performance on this
test instance, with it reducing the relative optimality gap to less than 0.01% in 1.39s. In the form of
P = (P1, ..., P4), H = (H5, ..., H6), the optimal solution found by COUENNE for test instance 3 is:

P = (45.760, 98.540, 112.673, 209.816, 94.061, 40), H = (27.900, 75, 47.100).

Of the five classic test instances considered, this is the only test instance that considers both
valve-point effects and power transmission losses. Of the 16 metaheuristic results provided by
Nazari-Heris et al. (2018), only 6 met the power demand constraint within a reasonable tolerance.
The majority of other metaheuristics significantly overproduced power, in the region of 6-8MW being
overproduced. It should also be noted that Beigvand et al. (2016) [63] inaccurately claim to obtain
the best possible solution with an objective value of $9913. Evaluating the solution provided by
Beigvand et al. (2016) yields an objective value of $10113, which is inferior to the global optimum.
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Table 6. Comparison of BARON solver versus past metaheuristic algorithm performance for test
instance 2. Please note that optimal values reported for metaheuristics are only for feasible solutions.

Profile Metric BARON 12 Metaheuristics

1

Optimal Value ($) 13673 High Median Low

13723 13673 13673

Solution Time (s) 0.07 High Median Low

18.21 1.51 1.42

Solution Quality Within 0.01% of Infeasible Feasible Within 0.01% of Global Optimum

Global Optimum 5 7 5

2

Optimal Value ($) 12117 High Median Low

12503 12118 12117

Solution Time (s) 0.06 *

Solution Quality Within 0.01% of Infeasible Feasible Within 0.01% of Global Optimum

Global Optimum 4 8 5

3

Optimal Value ($) 11756 High Median Low

11811 11759 11756

Solution Time (s) 0.07 *

Solution Quality Within 0.01% of Infeasible Feasible Within 0.01% of Global Optimum

Global Optimum 5 7 5

* Value not reported in the literature.

Table 7. Comparison of COUENNE solver versus past metaheuristic algorithm performance for test
instance 3. Please note that optimal values reported for metaheuristics are only for feasible solutions.

Metric COUENNE 16 Metaheuristics

Optimal Value ($) 10095 High Median Low

10326 10101 10095

Solution Time (s) 1.39 High Median Low

20.34 3.27 0.43

Solution Quality Within 0.01% of Infeasible Feasible Within 0.01% of Global Optimum

Global Optimum 9 7 3

3.2.4. Test Instance 4

Test instance 4 makes a substantial leap in the CHP system size to consider 13 power-only units
with valve-point effects, six cogeneration units, and five heat-only units. Of the six cogeneration
units, three have convex feasible operating regions, and three have non-convex feasible operating
regions. Power transmission losses are not considered in this test instance. Figure 4 shows the search
progression of COUENNE over time, which converged to a solution with an objective value of $57826
at 16.47 s. The upper bound represents the objective value of the best-known feasible solution at that
time, and the lower bound represents the best-possible objective value known at that time. As the
search progresses the upper and lower bounds are refined through a branch-and-bound procedure,
until the best-known feasible solution’s objective value is within the set tolerance of 0.01% of the
best-possible objective value. Figure 4 shows that although COUENNE took 16.47 s to reduce the
optimality gap less than 0.01%, at points much earlier in the search feasible solutions were found
which were superior to many of those found by the metaheuristic algorithms. The feasible solution
found at 4.96 s with an objective value of $57900 is superior to seven of the metaheuristic solutions
shown, and COUENNE arrived at the final solution 9.61 s into the search, despite not being certain
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of its objective value being within 0.01% of the best-possible value until 16.47 s. Further, three of the
four metaheuristic solutions with a superior objective value than the COUENNE solution found at
4.96 s are infeasible with respect to the feasible operating regions of the cogeneration units. It should
be noted that the solution found by MPSO in the paper by Basu (2015) [113] has not been identified as
infeasible previously, but our inspection clearly shows a violation of the feasible operating regions of
the cogeneration units identified as units 15 and 17. In the form of P = (P1, ..., P19), H = (H14, ..., H24),
the optimal solution determined by COUENNE for test instance 4 is:

P = (628.319, 299.199, 299.199, 60, 109.867, 109.867, 109.867, 109.867, 109.867, 76.950,

40, 55, 55, 81, 40, 81, 40, 10, 35),

H = (104.800, 75, 104.800, 75, 40, 20, 470.400, 60, 60, 120, 120).

Figure 4. Search progression of COUENNE compared with optimal values obtained using metaheuristic
search algorithms for test instance 4. Red triangles represent solutions which violate generating unit
operating bounds.

3.2.5. Test Instance 5

Test instance 5 doubles the test instance 4 CHP system size, for a total of 26 power-only units with
valve-point effects, 12 cogeneration units, and 10 heat-only units. Of the 12 cogeneration units, six
have convex feasible operation regions, and six have non-convex feasible operating regions. Power
transmission losses are not considered in this test instance. Figure 5 shows the search progression of
COUENNE over time, which converged to a solution with an objective value of $115612 at 51.39 s.
While it took 51.39 s for COUENNE to reduce the relative optimality gap to less than 0.01%, the final
solution was found at 24.17 s. Additionally, the initial feasible solution found by COUENNE at 13.95 s
was superior to all but one of the metaheuristic solutions. Three of the 10 metaheuristic solutions are
shown to be infeasible, with the OTLBO and GSA solutions violating a cogeneration unit’s feasible
operating region. The MPSO solution from Basu (2015) [113] has not been identified as infeasible
previously, but the the total heat production for that solution is clearly 70MW below the total heat
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demand. Further investigation of the metaheuristic solutions also found that the PSO and TVAC-PSO
solutions reported by Mohammadi-Ivatloo et al. (2013) [62], and the GSA solution from Beigvand et al.
(2016) [63], all had reported objective values at least $1000 less than the actual objective value of their
reported solutions. In the form of P = (P1, ..., P38), H = (H27, ..., H48), the optimal solution determined
by COUENNE for test instance 5 is:

P = (628.3185, 224.3995, 299.1993, 159.7331, 109.8665, 109.8666, 109.8666, 109.8665, 109.8666, 40,

40, 55, 55, 628.3185, 298.2999, 299.1991, 109.8665, 109.8665, 109.8666, 109.8666, 109.8666,

109.8666, 40, 40, 55, 55, 81, 40, 81, 40, 10, 35, 81, 40, 81, 40, 10, 35),

H = (104.800, 75, 104.800, 75, 40, 20, 104.800, 75, 104.800, 75, 40, 20, 470.399, 60, 60, 120, 120,

470.401, 60, 60, 120, 120).

Figure 5. Search progression of COUENNE compared with optimal values obtained using metaheuristic
search algorithms for test instance 5. Red triangles represent solutions which violate generating unit
operating bounds.

4. Summary

In this critical review, we discussed the modeling and optimization of the CHP-ED and CHP-EED
problems. With respect to the modeling of CHP systems, we raised two distinct questions. Namely, are
the models introduced in the 1990s still valid for CHP systems today, and are the most appropriate
CHP dispatch model components being selected with consideration of both accuracy and complexity?
Addressing the latter of these questions, we demonstrate that the commonly employed rectified
sinusoidal method of modeling the valve-point effects of thermal power units does not fully describe
the inconsistent periods associated with the operation of steam admission valves. We show that a
simple piecewise-linear function has the potential to describe valve-point effects more accurately,
while introducing less complexity to the CHP dispatch model. A study that validates the relationships
describing CHP system operation by comparison with industrial CHP system data would be beneficial
to the field. Once the relationships describing CHP system operation were validated, the choice of how
to model these relationships can be made. Each relationship should be modeled with both accuracy
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and computational complexity in mind. A study that justifies the model chosen for each relationship
on the basis of these factors is needed. Such a study would likely benefit from investigating current
surrogate modeling techniques. We also discussed the combined UC and ED problem, which has
received far less research attention than the ED problem alone. Current combined UC and ED literature
considers a simplified ED subproblem, which is likely to result in suboptimal and possibly infeasible
solutions. Future research attention on both the modeling and optimization of the combined UC and
ED problem is needed to improve the scheduling of the generating units in CHP systems.

With respect to solving the CHP-ED problem, we question the suitability of metaheuristic
algorithms and demonstrate the strong advantages of using global optimization methods. We discuss
the issues of constraint handling and premature convergence that are common among all metaheuristic
algorithms. These issues are particularly concerning for practical applications where frequently
resolving the problem subject to different operating conditions is required, such as the CHP-ED
and CHP-EED problems. A case study is performed on five classic CHP-ED test instances and the
computational performance of metaheurstic algorithms and commercial global solvers is compared.
The global solvers were shown to converge to a solution within 0.01% of the global optimum in all
test instances, and achieved this in solution times comparable to those reported for the metaheuristic
methods in all instances. The success of these generic global solvers should inspire future research to
focus on the global optimization of CHP dispatch. Based on the success of the naive application of
global optimization here, it is likely that more advanced global optimization techniques that exploit
the problem structure and composition of model relationships could yield significant improvements in
computational performance.

We review the solution methods of the CHP-EED problem, and identify the advantageous
properties of metaheuristic algorithms which make them well suited for addressing MOO problems.
The CHP-EED problem is important because one of the main benefits of CHP systems is their lower
emissions compared with conventional fossil fuel electricity generation. However, metaheuristics suffer
the same limitations in solving MOO problems as they do in single objective problems, and so further
research in their application to solving the CHP-EED problem is needed. A synergistic approach which
integrates classic global optimization techniques alongside metaheuristic techniques could be useful in
overcoming the constraint handling and premature convergence issues of metaheursitic algorithms,
while also mitigating the theoretical challenges associated with applying global optimization to MOO
problems. Research in this direction could be useful to the CHP-EED problem, and potential many
other MOO problems.
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Appendix A. Test Instance Parameters

Appendix A.1. Test Instance 1

Pdem = 200 MW, Hdem = 115 MW

Table A1. Sets used test instance 1.

Set Description

Uc {2,3}
Uh {4}
Up {1}

Table A2. Cost functions and operating limits of generating units for test instance 1.

i Apc
i Bpc

i Cpc
i Dpc

i Epc
i Operating Limits (Pmin

i , Pmax
i )

1 0 50 0 0 0 (0,150)

Acc
i Bcc

i Ccc
i Dcc

i Ecc
i Fcc

i Feasible Region Vertices Coordinates (Pc, Hc)

2 0.0345 14.5 2650 0.030 4.200 0.031 (98.8,0),(81,104.8),(215,180),(24,0)
3 0.0435 36.0 1250 0.027 0.600 0.011 (44,0),(44,15.9),(40,75),(110.2,135.6),(125.8,32.4),(125.8,0)

Ahc
i Bhc

i Chc
i Operating Limits (Hmin

i ,Hmax
i )

4 0 23.4 0 (0,150)

Appendix A.2. Test Instance 2

Profile 1: Pdem = 300 MW, Hdem = 150 MW

Profile 2: Pdem = 250 MW, Hdem = 175 MW

Profile 3: Pdem = 160 MW, Hdem = 220 MW

Table A3. Sets used test instance 2.

Set Description

Uc {2,3,4}
Uh {5}
Up {1}

Table A4. Cost functions and operating limits of generating units for test instance 2.

i Apc
i Bpc

i Cpc
i Dpc

i Epc
i Fpc

i Operating Limits (Pmin
i , Pmax

i )

1 0.00172 7.6997 254.8863 0 0 0.000115 (35,135)

Acc
i Bcc

i Ccc
i Dcc

i Ecc
i Fcc

i Feasible Region Vertices Coordinates (Pc, Hc)

2 0.0435 36.0 1250 0.027 0.600 0.011 (44,0),(44,15.9),(40,75),(110.2,135.6),(125.8,32.4),(125.8,0)
3 0.1035 34.5 2650 0.025 2.203 0.051 (20,0),(10,40),(45,55),(60,0)
4 0.072 20 1565 0.02 2.3 0.04 (35,0),(35,20),(90,45),(90,25),(105,0)

Ahc
i Bhc

i Chc
i Operating Limits (Hmin

i ,Hmax
i )

5 0.038 2.0109 950 (0,60)

Please note that the cost function for the power-only generating unit in test instance 2 is of the
following form:

cp
i = Fpc

i (pp
i )

3 + Apc
i (pp

i )
2 + Bpc

i pp
i + Cpc

i ∀i ∈ Up.
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Appendix A.3. Test Instance 3

Pdem = 600 MW, Hdem = 150 MW

Al =



49 14 15 15 20 25
14 45 16 20 18 19
15 16 39 10 12 15
15 20 10 40 14 11
20 18 12 14 35 17
25 19 15 11 17 39


× 10−7

Bl =
[
−0.3908 −0.1297 0.7047 0.0591 0.2161 −0.6635

]
× 10−3

Cl = 0.056

Table A5. Sets used test instance 3.

Set Description

Uc {5,6}
Uh {7}
Up {1,2,3,4}

Table A6. Cost functions and operating limits of generating units for test instance 3.

i Apc
i Bpc

i Cpc
i Dpc

i Epc
i Operating Limits (Pmin

i , Pmax
i )

1 0.008 2 25 100 0.042 (10,75)
2 0.003 1.8 60 140 0.04 (20,125)
3 0.0012 2.1 100 160 0.038 (30,175)
4 0.001 2 120 180 0.037 (40,250)

Acc
i Bcc

i Ccc
i Dcc

i Ecc
i Fcc

i Feasible Region Vertices Coordinates (Pc, Hc)

5 0.0345 14.5 2650 0.030 4.200 0.031 (98.8,0),(81,104.8),(215,180),(24,0)
6 0.0435 36.0 1250 0.027 0.600 0.011 (44,0),(44,15.9),(40,75),(110.2,135.6),(125.8,32.4),(125.8,0)

Ahc
i Bhc

i Chc
i Operating Limits (Hmin

i ,Hmax
i )

7 0.038 2.0109 950 (0,2695.2)

Appendix A.4. Test Instance 4

Pdem = 2350 MW, Hdem = 1250 MW

Table A7. Sets used test instance 4.

Set Description

Uc {14,15,16,17,18,19}
Uh {20,21,22,23,24}
Up {1,2,3,4,5,6,7,8,9,10,11,12,13}
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Table A8. Cost functions and operating limits of generating units for test instance 4.

i Apc
i Bpc

i Cpc
i Dpc

i Epc
i Operating Limits (Pmin

i , Pmax
i )

1 0.00028 8.1 550 300 0.035 (0,680)
2 0.00056 8.1 309 200 0.042 (0,360)
3 0.00056 8.1 309 200 0.042 (0,360)
4 0.00324 7.74 240 150 0.063 (60,180)
5 0.00324 7.74 240 150 0.063 (60,180)
6 0.00324 7.74 240 150 0.063 (60,180)
7 0.00324 7.74 240 150 0.063 (60,180)
8 0.00324 7.74 240 150 0.063 (60,180)
9 0.00324 7.74 240 150 0.063 (60,180)
10 0.00284 8.6 126 100 0.084 (40,120)
11 0.00284 8.6 126 100 0.084 (40,120)
12 0.00284 8.6 126 100 0.084 (55,120)
13 0.00284 8.6 126 100 0.084 (55,120)

Acc
i Bcc

i Ccc
i Dcc

i Ecc
i Fcc

i Feasible Region Vertices Coordinates (Pc, Hc)

14 0.0345 14.5 2650 0.030 4.200 0.031 (98.8,0),(81,104.8),(215,180),(24,0)
15 0.0435 36.0 1250 0.027 0.600 0.011 (44,0),(44,15.9),(40,75),(110.2,135.6),(125.8,32.4),(125.8,0)
16 0.0345 14.5 2650 0.030 4.200 0.031 (98.8,0),(81,104.8),(215,180),(24,0)
17 0.0435 36.0 1250 0.027 0.600 0.011 (44,0),(44,15.9),(40,75),(110.2,135.6),(125.8,32.4),(125.8,0)
18 0.1035 34.5 2650 0.025 2.203 0.051 (20,0),(10,40),(45,55),(60,0)
19 0.072 20 1565 0.02 2.3 0.04 (35,0),(35,20),(90,45),(90,25),(105,0)

Ahc
i Bhc

i Chc
i Operating Limits (Hmin

i ,Hmax
i )

20 0.038 2.0109 950 (0,2695.2)
21 0.038 2.0109 950 (0,60)
22 0.038 2.0109 950 (0,60)
23 0.052 3.0651 480 (0,120)
24 0.052 3.0651 480 (0,120)

Appendix A.5. Test Instance 5

Pdem = 4700 MW, Hdem = 2500 MW

Table A9. Sets used test instance 5.

Set Description

Uc {27,28,29,30,31,32,33,34,35,36,37,38}
Uh {39,40,41,42,43,44,45,46,47,48}
Up {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26}
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Table A10. Cost functions and operating limits of generating units for test instance 5.

i Apc
i Bpc

i Cpc
i Dpc

i Epc
i Operating Limits (Pmin

i , Pmax
i )

1 0.00028 8.1 550 300 0.035 (0,680)
2 0.00056 8.1 309 200 0.042 (0,360)
3 0.00056 8.1 309 200 0.042 (0,360)
4 0.00324 7.74 240 150 0.063 (60,180)
5 0.00324 7.74 240 150 0.063 (60,180)
6 0.00324 7.74 240 150 0.063 (60,180)
7 0.00324 7.74 240 150 0.063 (60,180)
8 0.00324 7.74 240 150 0.063 (60,180)
9 0.00324 7.74 240 150 0.063 (60,180)
10 0.00284 8.6 126 100 0.084 (40,120)
11 0.00284 8.6 126 100 0.084 (40,120)
12 0.00284 8.6 126 100 0.084 (55,120)
13 0.00284 8.6 126 100 0.084 (55,120)
14 0.00028 8.1 550 300 0.035 (0,680)
15 0.00056 8.1 309 200 0.042 (0,360)
16 0.00056 8.1 309 200 0.042 (0,360)
17 0.00324 7.74 240 150 0.063 (60,180)
18 0.00324 7.74 240 150 0.063 (60,180)
19 0.00324 7.74 240 150 0.063 (60,180)
20 0.00324 7.74 240 150 0.063 (60,180)
21 0.00324 7.74 240 150 0.063 (60,180)
22 0.00324 7.74 240 150 0.063 (60,180)
23 0.00284 8.6 126 100 0.084 (40,120)
24 0.00284 8.6 126 100 0.084 (40,120)
25 0.00284 8.6 126 100 0.084 (55,120)
26 0.00284 8.6 126 100 0.084 (55,120)

Acc
i Bcc

i Ccc
i Dcc

i Ecc
i Fcc

i Feasible Region Vertices Coordinates (Pc, Hc)

27 0.0345 14.5 2650 0.030 4.200 0.031 (98.8,0),(81,104.8),(215,180),(24,0)
28 0.0435 36.0 1250 0.027 0.600 0.011 (44,0),(44,15.9),(40,75),(110.2,135.6),(125.8,32.4),(125.8,0)
29 0.0345 14.5 2650 0.030 4.200 0.031 (98.8,0),(81,104.8),(215,180),(24,0)
30 0.0435 36.0 1250 0.027 0.600 0.011 (44,0),(44,15.9),(40,75),(110.2,135.6),(125.8,32.4),(125.8,0)
31 0.1035 34.5 2650 0.025 2.203 0.051 (20,0),(10,40),(45,55),(60,0)
32 0.072 20 1565 0.02 2.3 0.04 (35,0),(35,20),(90,45),(90,25),(105,0)
33 0.0345 14.5 2650 0.030 4.200 0.031 (98.8,0),(81,104.8),(215,180),(24,0)
34 0.0435 36.0 1250 0.027 0.600 0.011 (44,0),(44,15.9),(40,75),(110.2,135.6),(125.8,32.4),(125.8,0)
35 0.0345 14.5 2650 0.030 4.200 0.031 (98.8,0),(81,104.8),(215,180),(24,0)
36 0.0435 36.0 1250 0.027 0.600 0.011 (44,0),(44,15.9),(40,75),(110.2,135.6),(125.8,32.4),(125.8,0)
37 0.1035 34.5 2650 0.025 2.203 0.051 (20,0),(10,40),(45,55),(60,0)
38 0.072 20 1565 0.02 2.3 0.04 (35,0),(35,20),(90,45),(90,25),(105,0)

Ahc
i Bhc

i Chc
i Operating Limits (Hmin

i ,Hmax
i )

39 0.038 2.0109 950 (0,2695.2)
40 0.038 2.0109 950 (0,60)
41 0.038 2.0109 950 (0,60)
42 0.052 3.0651 480 (0,120)
43 0.052 3.0651 480 (0,120)
44 0.038 2.0109 950 (0,2695.2)
45 0.038 2.0109 950 (0,60)
46 0.038 2.0109 950 (0,60)
47 0.052 3.0651 480 (0,120)
48 0.052 3.0651 480 (0,120)
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