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Abstract: Today, industrial robots are used in dangerous environments in all sectors, including the
sustainable energy sector. Sensors and processors collect and transmit information and data from
users as a result of the application of robot control systems and sensory feedback. This paper proposes
that the estimation of a collaborative robot system’s performance can be achieved by evaluating the
mobility of robots. Scenarios have been determined in which an autonomous system has been used
for intervention in crisis situations due to fire. The experimental model consists of three autonomous
vehicles, two of which are ground vehicles and the other is an aerial vehicle. The conclusion of the
research described in this paper highlights the fact that the integration of robotic systems made up of
autonomous vehicles working in unstructured environments is difficult and at present there is no
unitary analytical model.

Keywords: autonomous robot; mobility; planning; continuous execution; programming;
integrated solution

1. Introduction

The strategic concept of surfing robots has spread throughout the world and has stimulated
government programs in the United States, China, Japan, South Korea, India and many developing
countries, taking into account national specific outlooks [1–4]. The academic community is also
increasingly involved in stimulating studies and research on the implementation of digital technologies
in economic sectors [5–7].

On the other hand, disasters strike anywhere and cause numerous losses to life and property.
The statistics presented in the 2016 World Disaster Report confirm the need to implement strategies
to reduce the loss and impact on people’s daily lives and socio-economic development. Fortunately,
making emergency decisions using robots can be an optimal alternative to respond to or control these
situations in order to protect both life and property. For example, unmanned ground vehicles and
unmanned aerial vehicles can be used where the risk of disaster in response teams is high. Due to its
important role in reducing losses and the impact of emergencies, robot collaboration has become an
active research area in recent years [8].

Moreover, unmanned autonomous systems (UAS) represent one of the research challenges in
the robotics and artificial intelligence domains. Autonomous path planning algorithms can be useful
and effective using artificial intelligence, but challenges are created due to the randomness of the
environment. This paper aims to highlight the results obtained through the collaboration of two types
of autonomous vehicle, namely two unmanned ground vehicles (UGVs) [9] and an unmanned aerial
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vehicle (UAV). The sensor systems of the two types of drone interact and communicate with each other
through Raspberry Pi III controllers.

The concern for the development of these systems was generated by the consequences of the aging
infrastructure of industrial complexes, especially petrochemical plants. This has made the incidence
of fires in these areas more and more frequent. The effects of a fire are devastating, and human
intervention is extremely difficult, what with the lives of emergency personnel being endangered.

Algorithms of displacement and coordination between robots consider the distribution of industrial
installations over very large areas, unstructured work environments, soil and air, random weather
disturbances (temperature, pressure, humidity, and air flow), the constantly changing legislation of
public airspaces, and wireless power supply of UGVs (if the perform recognition tasks).

The performances of UAVs are conditioned by the power supply and embedded payload. There are
three main types of target searching method in these studies, namely, image processing-based target
searching methods, signal-based target searching methods, and probabilistic target searching methods.

So far, the use of UASs has been insufficient to answer varied search and rescue situations.
Emergency interventions have become a daily reality. Algorithms of perception, cognition, decision
making, and communication between robots aim to reduce planning/replanting time [10,11].

To improve the performance of autonomous robots, artificial intelligence has the ability to
introduce automated planning [12,13]. Work environments are unstructured and introduce many
unpredictable events. This aspect makes the planning field independent. Even though the planned
routes are geometrically identical, they differ because their characteristics are different.

The studies performed in [14,15] show that there is a high degree of interest in UAV-UGV systems
that combine various techniques and approaches to execute specific unmanned tasks. For example,
a UAV can autonomously follow an UGV using an image processing algorithm. The aerial images that
are provided can help with trajectory planning in rough environments. In such a way, the operator
should drive the ground vehicle only, while the quadcopter flies over the operation area.

Other authors [16–18] have discussed the results of a recent demonstration of multiple UAVs
and UGVs cooperating in a coordinated reconnaissance, surveillance, and target acquisition (RSTA)
application. The vehicles were autonomously controlled by the onboard digital pheromone, responding
to the needs of the automatic target recognition algorithms.

On top of that, a strategy has been proposed to coordinate groups of UGVs with one or more
UAVs. UAVs can be utilized in one of two ways. In the first approach, the UAV guides a swarm
of UGVs, controlling their overall formation. In the second approach, the UGVs guide the UAVs,
controlling their formation [19].

This paper presents the results of efforts to build a collaborative robot system capable of executing
complex disaster response and recovery tasks. The novelty of this research lies in the fact that it has
achieved the control, communication, and computation of UAVs and UGVs, and further integrates
these heterogeneous systems into a real platform. The aim of this study is to explore high-level task
scheduling and mission planning algorithms that enable various types of robot to cooperate together,
utilizing each other’s strengths to yield a symbiotic robotic system. Therefore, in this study, through
simulations, it is demonstrated that methods utilizing autonomous vehicles searching are comparatively
excellent and that the proposed algorithm has better performance compared to other scenarios.

This paper is structured as follows. In Section 2, we will describe the specific UGVs and UAVs.
Next, we will present the overall control scheme, which consists of the task planning component,
the ground control station (GCS) central controller, and the individual controllers. As the operator only
has the role of being an observer (only intervening to make corrections), the evaluation of the fulfilment
of the missions represents one of the challenges. The system of robots has the role of identifying and
extinguishing fires and it consists of two ground and one aerial autonomous vehicle. Investigation
equipment (3D perception, cooperative awareness, mapping, deliberation, and navigation) as well as
behavioral control will work on complex scenarios originally generated online and then by introducing
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random obstacles. The research work that combines other collaboration tasks and approaches is
discussed in Section 4. Finally, this paper is concluded in Section 5.

2. Methods

Existing studies [8–11] have neglected the fact that for decision-making interventions, the decision
maker has to treat them differently by using measures based on concrete information that can be made
available by mobile robots.

The realization of a collaborative robot family involves developing a complex and integrated
model based on the following:

• Modularity through integration, coordination, evaluation, and optimization of heterogeneous
subsystems (hardware, mobile platforms, actuators/grippers/tools, sustainable energy systems),
real-time test/evaluation models, and algorithms for subsystems;

• Cooperative navigation based on the evaluation and optimization of robot movements from the
three work environments;

• Coordination and synchronization of end-effector movement while performing system tests (as
a whole), streamlining work and navigation paths via the structural integration of components,
effectors, and analytical models;

• Engaging robotized subsystems (terrestrial/air/underwater robots) in a collaborative/collective/

cooperative way, intuitively and safely in the sense of adaptability to identify the obstacles and
orientation uncertainties introduced by the initial algorithms;

• Assimilation of instructions and the updating of working states by performing data interpretation
from sensors and comparing the sensor data with the data stored in the assigned software libraries;

• Intuitive plug-and-play systems that consider the fact that the subsystems that form the assembly
are heterogeneous;

• Open-source software.

2.1. UGV, the Terrestrial Component of an UAS

Programming the paths is done by introducing an algorithm with both an ideal and a real path
that will consider the permanently measured values [9]. In the unstructured (terrestrial) environment,
the analytical approach is based on Bekker equations [20], according to the Coulomb–Mohr soil failure
criteria. It is aimed at determining the following:

• The soil friction coefficient, µterrain, based on the tractive force F, the weight of the vehicle Ga,
the ground pressure pav, the constant specific value of the soil K, the soil shear coefficient δ, and
the length of the contact spot La:

µterrain =
F

Ga
=

(
c

paν
+ tanφ

)
+

[
1−

(
1− e−

σ·La
K

)]
(1)

• Unitary shear stress τ, where s is the slip coefficient

τ = τmax·
(
1− e−

s
K
)
= (c + p· tanφ)·

(
1− e−

s
K
)

(2)

There are methods to determine friction coefficients and unitary shear stresses that have been
developed by other authors [4,21].

The complexity of the phenomena occurring at the terrain–vehicle interface has enabled the
development of empirical methods for the evaluation of vehicle mobility. For example, the NATO
Reference Mobility Model (NRMM) software can determine the performance of a terrestrial robot on
the move on any type of land in a global sense [9]. Through this performance measurement method,



Processes 2020, 8, 494 4 of 11

a very good prediction of the maximum permissible speed of terrestrial robots can be made for any
specified geographic region in any environmental condition (humid season, precipitation, snow).

Each analytical model separately studies the different characteristics of the UGV propulsion
performance. The point of view of achieving a balance between the capabilities of the mobile robot to
orient, plan, and estimate the positions of the obstacles and the factors limiting the progressive field
ability [22–24] takes into account the fact that both the speeds in rectilinear or turn motion and driving
autonomy are influenced by the unstructured character of the terrain, which could be sand, grass,
concrete, etc. Their conclusion is that an approach that makes corrections on coefficients (following
real-time measurements) is much closer to reality. Thus, a predictive control model (PCM) can generate
better planning for the paths to be followed.

The sensor system of the firefighting robot FFR-1-UTM (Firefighting Robot 1 from Titu Maiorescu
University) consists of temperature, ultrasonic, proximity, infra-red distance measurement, triaxial
accelerometer, GPS, gyroscope, air quality measurement, alcohol gas, liquefied petroleum gas (LPG),
CO, CO2, CH4, hydrogen gas (H2), and weather station sensors (Figure 1).
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Figure 1. Sensor systems of FFR-1 UTM (Firefighting Robot 1 from Titu Maiorescu University).

The predictions regarding mobility over large areas require a stochastic approach, as the terrain
profile, terrain and robot interaction, sensors [25,26], altitude, remote sensing, physical properties of
the terrain, slope of the land, internal friction coefficients for soft soils, and friction angles for hard soils
introduce several variables that generate uncertainties that can be seen during analysis with either
analytical or numerical models [27].

The integration environment is represented by an integration tool for open architecture modeling
processes here. This AI model makes and implements decisions and collaborates and distributes
standard algorithms and simulation codes with non-preferential interfaces, GIS tools, and Python,
with the objectives of the research task group (RTG) and NATO’s research and technology organization
(RTO) [26].

Planning deals with finding a sequence of actions to reach a target, starting from an initial state.
Planning is a tree structure that uses searches in the state space by creating additional successors and
may even go over the intermediate states [28,29].

The determination of the runway requires, first and foremost, solving the uncertainties. For this,
we use the Kriging estimation method, based on geostatistical information [29–32].

The Bekker–Wong model, a model of uncertainty calculation, uses the statistical data obtained
by measuring the soil density rated cone index (RCI) [9]. This method is preferred because it allows
the determination of the actual runway profile for all four wheels (each wheel crosses a structurally
modified terrain profile following the passing of the front wheels) [33,34].
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Programming collaborative terrestrial robots has an exploratory behavior [35,36]. To avoid local
minima, it supposes multiple approaches, including geographic information systems (GISs), soil
geometry, the kinematics and dynamics of the robot, power management, the global system for mobile
communications (GSM), and electro-magnetic protection.

2.2. UAVs, the Aerial Component of an UAS

The use of UAVs for the development of collaborative robot systems has become a necessity due
to the complexity and diversification of fire hazards.

Terrestrial robots need to be guided to intervene autonomously in spaces about which they do not
have sufficient information. This can be effectively accomplished by combining their own information
with that of UAVs. Also, the implementation of autonomous/semi-autonomous dual systems allows
specialized intervention team operators to take control of UASs.

For flight planning and control, the UAV’s on-board controller uses board sensors to estimate
the position and orientation, along with setting payload parameters. For the experimental model
HEXA-01-UTM (Hexacopter Robot 01 from Titu Maiorescu University), shown in Figure 2, the open
source Arduino IDE (integrated development environment) and Raspbian software were implemented.
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Figure 2. Unmanned aerial vehicle (UAV) model HEXA-01-UTM (Hexacopter Robot 01 from Titu
Maiorescu University).

The two software packages control motor drivers, encoders, the GPS, GSM, payload, radio
transponder, accelerometer, gyroscope, etc. The algorithms for flight planning convert the mission
objectives and act on acceleration, kinematics, and aerodynamics to obtain the command set for the
trajectory using the feedback kinematic state.

The quantification of the UAV mission accomplishment [37] allows the evaluation of robot
performance, either separately or within the UAS of which it belongs. According to AGARD-AR-343
(Advisory Group for Aerospace Research and Development) [38] this can be done via the analysis of
the payload function and the command and control function.

As energy autonomy is essential to deliver missions (2700 mAh with 22.2 V), the HIRRUS V1
payload model implemented on the HEXA-01 UTM chassis was the best solution.

This payload has built-in electro-optical/infrared (EO/IR) cameras, video tracking, a passive
ultra-high frequency radio-frequency identification (UHF-RFID) low-cost transponder (868 or 915 MHz),
a stabilized gimbal, a transmitter for HD cameras, a GoPro camera using coded orthogonal
frequency-division multiplexing (COFDM) for transmission, and a roadrunner on-orbit processing
experiment (ROPE) system for processing and compressing JPEG data and transmitting them in real
time to the GCS.

According to [39], the measured parameters influence flight and, implicitly, the values help to
identify obstacles and the environment.
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The methodology considers autonomy levels (AL) and technology readiness levels (TRL) defined
by the National Institute of Standards and Technology (NIST). The GPS sensors, the accelerometer,
and the gyroscope allow navigation by decomposing the planned route into points. HEXA-01 UTM,
developed as an experimental model, in terms of system integration and operational reliability, reaches
AL 4 and TRL 5.

To determine the UAV precision, both static and dynamic data are analyzed. Combining the two
types of data increases optimization. An analytical model [40] which determines the position of the
UAV, but also those of objects or obstacles, uses the following equations, specific to the accelerometer,
gyroscope, and magnetometer:

sya = Sa·Na·sa + ba + εa (3)

where sya is the sensor-measured acceleration, Sa is a linear scale factor, Na is the non-orthogonal axis,
sa is the corrected real acceleration, ba is the sensor polarity, and εa is the accelerometer noise.

yω = Sω·Nω·Rω·sω + bw + Gω·sa + εω (4)

where yω is the angular speed rate, Sω is a scale factor, Nω is the non-orthogonal axis, Rω is the error
due to the geometric position of the three sensors, sω is the corrected real acceleration, bω is the sensor
error, sa is the real acceleration, Gω is the sensor sensibility to the gravitational acceleration, and εω is
the gyroscope noise.

ym = Dm·sm + ow + εm (5)

where ym is the measured magnetic domain, Dm is the soft-iron distortion [41] that depends on the
orientation of the material towards the sensor and the magnetic field, sm is the real magnetic field, om is
the hard-iron distortion, εω is the magnetometer noise, and Dm and om include manufacturing defects,
scaling factors, non-orthogonal axes, and the relative positions of the three sensors.

3. Results

The payload shown in Figure 3 can retract, i.e., the EO/IR camera can retract. Also, the three
brushless motors help to change the target of the camera according to the mission.
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Atmospheric instabilities and those due to flight adjustment require a system of correction for
image capturing and the attachment of detected obstacles. The existing AI techniques for autonomous
robots, analyzed in [37], require data fusion techniques and data extraction procedures to perform data
interpretation and diagnostics. The payload functional architecture must also deal with internal and
external thermomechanical influences.

The retraction subsystem works in a closed loop. Coefficients of differential equations are time
variables, so the analytical and numerical model is extremely complex, because the relationships
between the flux, induced voltage, and currents change continuously when the electrical circuit is
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in relative motion. The movement is highlighted by a simulation of its own vibration modes [42] in
Figure 4.Processes 2020, 8, x FOR PEER REVIEW 7 of 11 
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For fire identification and extinction, the autonomous collaborative robot system will operate
according to the following algorithm:

• The hexacopter rises and takes a tour to detect and locate the fire;
• The mini rover receives the information (wireless) and moves to the coordinates (xi, yi, zi) where

the fire was found;
• The predefined route is a 3D map (Figure 5) of a randomly chosen location;
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• Commence movement to the defined target point, continuously calculating the path and indicating
its position with respect to the reference system defined as an origin;

• Unknown objects are scanned ultrasonically and via the IR camera;
• At the target, the GCS processes data in real time and generates a new map with an optimized route;
• From this moment, FFR-1-UTM moves to the fire that has been identified using its

orthogonal coordinates;
• For feedback, FFR-1-UTM is equipped with a video camera.

The conclusions following the simulations and software testing are as follows: the command
processes are distributed and imply the transformation from three phases into two phases [35,36] and
the conversion from stator values to a rotor reference frame. Similar to three-phase asynchronous
machines, these processes are described as voltage and current equations.
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4. Discussion

In the case of emergencies, the location of access points has become an important research
issue, given the impact of using different measures due to limited resources and their dynamic
evolution [8,43–45].

The collaboration between autonomous mobile robots, conducted at the experimental model level,
ended with the extinguishment of a small fire, shown in Figure 6, (simulation of a fire that has paper
fuel). The UAS presented here is a limiting one, so there remain several issues that will be investigated
further in the future. We will seek to include artificial intelligence techniques in the functional domain
of robots that move in two different unstructured environments.
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This research proposes an important application which proves the fact that mobile robots can
successfully collaborate with efficacy in real-world emergencies. Additionally, by locating the access
point in a timely manner, robots can help alleviate and reduce various losses and damage (e.g., life,
property, and the environment) caused by fires.

Until now, the solutions proposed in this area have been based more on theoretical hypotheses or
computer simulations to demonstrate the effectiveness of a collaborative robot system [44–47]. On top
of that, unmanned ground vehicles (UGVs) can be deployed to accurately locate ground targets and
detect humans, fires, gases, etc., but they have the disadvantage of not being able to move rapidly or
see through such obstacles as buildings or fences [19].

5. Conclusions

In recent years, UAVs have provided additional degrees of freedom for UGVs, enabling them to
negotiate obstacles by simply lifting them across them. Missions including intelligence surveillance
and reconnaissance are some of the most investigated and applied types of UAV-UGV collaboration
system. Researchers can use virtual reality programs to develop and design UAV-UGV collaborative
systems, including multi-robot communication and artificial intelligence systems.

In this study, we intended to evaluate the performance of a collaborative robot system and its
use to identify and extinguish fires. According to the general control scheme, this system was also
equipped with sensors for route planning and obstacle avoidance. This has enabled the location of the
intervention to be identified in an efficient, rapid, and accurate manner. Point setting mechanisms
have been experimentally tested with two UGVs and one UAV. This has made it possible to estimate
the extent of the missions.

Extending these ideas, the equipment used to develop the experimental models allowed the AL 4
and TRL 5 levels to be reached, which created some problems in obtaining minimum data to initiate a
simulation with NRMM I/II.

In our research, the UAV design requires structural changes, where, according to simulations, an
octocopter is more stable and can have a more useful load ratio over the energy reserve, approximately
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20% to be specific. Equipped with a return to base functionality, a parachute, and a flight termination,
an octocopter UAV is extremely safe, especially as it is able to continue flying with up to two engines
out of use (not on the same arm). It can be flown in automatic, GPS, or manual modes, with the pilot
being able to intervene at any time if necessary.

These changes lead us to believe that delays in decision-making will be diminished, such that the
collaborative work of robots will be effective. Most of the solutions in the market consist of a single
robot only; however, our model, being composed of three autonomous vehicles, will help greatly
in saving the precious lives of people and also the lives of the defense personnel and rescue teams
involved in these missions, also saving a lot of time.
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