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Abstract: The effect of bacteria (Bacillus clausii) addition on the culturability and antioxidant activity
of resveratrol prepared by spray drying was studied in this work. Inulin and lactose were employed
as carrying agents and their performance compared. Resveratrol microencapsulated in inulin showed
the highest antioxidant activity (26%) against free radicals. The co-encapsulated materials (bacteria
and resveratrol) in inulin and lactose showed similar activities (21%, and 23%, respectively) suggesting
that part of resveratrol was absorbed by the bacteria. Particles showed a regular spherical morphology
with smooth surfaces, and size in the micrometer range (2–25 µm). The absence of bacteria in the SEM
micrographs and the culturability activity suggested the preservation of the organisms within the
micro and co-microencapsulated particles. The present work proposes the preparation of a functional
food with probiotic and antioxidant properties.

Keywords: functional food; antioxidant activity; co-microencapsulation; spray drying; bacteria
(Bacillus clausii) culturability

1. Introduction

Resveratrol (3, 4′, 5-trans-trihydroxy-stilbene) is a polyphenolic compound with antioxidant
properties found in grapes, berries, peanuts, and medicinal plants. Red wine and berries juices
are the most important dietary sources of resveratrol (RSV) [1]. The regular consumption of food
products containing RSV may be effective in the prevention and treatment of diverse diseases such as
inflammatory, cancer, aging, obesity, diabetic, cardiovascular, and neuropathies effects [2]. Additionally,
it has shown antibacterial, antiviral, antifungal, and antiparasitic activity [3]. Evidently, all of these
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beneficial effects have triggered the consumption of supplements and food products containing RSV.
On the other hand, the use of microorganisms such as lactic acid bacteria (Lactobacillus spp.) and
bifidobacteria (Bifidobacterium spp.) have shown an outstanding effect as probiotic in food products
and supplements, associated with health benefits in humans by producing nutrients and cofactors,
competing with pathogens for binding sites, and stimulating the immune response [4]. Health benefits
include treating inflammatory bowel disease, irritable bowel syndrome, Helicobacter pylori infections,
and antibiotic-associated diarrhea [5]. Many bioactive and probiotic ingredients are sensitive to the
processing conditions and environmental factors, thus making essential the improvement of stability in
order to create products with long shelf life [6]. Another important factor to consider during the study
of microorganisms as ingredients is the bioactivity because as the microorganisms enter in contact
with the hard environment conditions in the stomach (low pH and high concentration of bile salt in the
intestine), the bioactivity is affected. However, through the microencapsulation of microorganisms,
bioactivity may be preserved while the release in the gastrointestinal tract is controlled [7–9].

Microencapsulation is a technique employed in the conservation of properties of active ingredients
prone to damage under certain processing or environmental conditions. Environmental conditions that
may affect the activity of the ingredient include atmospheric oxygen, pH, humidity, light irradiation,
and exposure to high temperature. The technique involves the use of an encapsulating material
that maintains its microstructural integrity in aggressive environments where the active ingredient
would lose its activity. Nutraceutical and functional ingredients such as antioxidants, vitamins,
minerals, lipids, and probiotics have been microencapsulated by different methodologies [10–13].
Various substances have been used as wall materials or carrying agents for microencapsulation,
including polysaccharides [14], lipids [15], and proteins [16]. Among the polysaccharides, inulin
is widely employed as encapsulating material because it is a non-digestible carbohydrate polymer
consisting of linear chains of fructose and glucose molecules as terminal groups linked by β-(2,1) bonds.
Inulin is considered as a short-chain carbohydrate polymer because the degree of polymerization
ranges between 2 and 60 repetitive units per molecule. This biopolymer is water-soluble, presented in
many vegetables, fruits, and cereals [17–19]. Another carbohydrate widely used as protecting material
is lactose, which consists of a galactose unit and a glucose unit chemically linked by a β-(1,4) glycosidic
bond. Lactose is also water-soluble, and it constitutes 2–8% of the milk; in the solid state, it is presented
as a non-hygroscopic powder with white appearance and a slightly sweet taste [20].

Several works have reported the microencapsulation of RSV for different purposes. For example,
Sessa et al. [21] studied peanut oil-in-water food grade nanoemulsions of RSV encapsulated by
high-pressure homogenization. Nanoemulsions of RSV with soy lecithin/sugar esters, and Tween
20/glycerol monooleate, were the most physically and chemically stable, these formulations also
exhibited the highest chemical and cellular antioxidant activities, which were comparable to
unencapsulated resveratrol. Koga et al. [22] microencapsulated RSV by spray drying using sodium
caseinate and whey protein concentrate as carrier agents to stabilize trans-resveratrol. They obtained
sodium caseinate microcapsules with high stability to ultraviolet (UVA) light and in vitro digestion.
Peñalva et al. [23] evaluated the capability of casein nanoparticles as oral carriers for RSV. Nanoparticles
prepared by spray-drying process were administered orally to rats, finding that RSV level in plasma
were high and sustained for at least 8 h. The oral bioavailability of RSV when loaded in casein
nanoparticles was 10 times higher than when it was administered in oral solution. Salgado et al. [24]
developed a formulation for a product against the fungus Botrytis cinerea. First, an oil-in-water emulsion
of RSV on b-glucan, lecithin or a mixture of both substances was produced. Afterwards it was dried by
conventional spray drying or by Particle Gas Saturated Solution drying (PGSS). The particles formed
were tested in vitro against B. cinerea. The b-glucan-RSV microcapsules reduced the fungal growth
between 50 and 70%. Trotta et al. [25] prepared inhalable RSV by spray drying for the treatment
of chronic obstructive pulmonary disease (COPD). RSV, with a spherical morphology and particle
diameter less than 5 mm was successfully obtained. The cytotoxicity results of RSV on Calu-3 revealed
that the cells may tolerate a high concentration of resveratrol (up to 160 mM). The expression of
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interleukin-8 (IL-8) from Calu-3 cells induced with tumor necrosis factor alpha (TNF-a), transforming
growth factor beta (TGF-b1), and lipopolysaccharide (LPS) were significantly reduced after treatment
with spray-dried RSV. The antioxidant assay showed spray-dried resveratrol to possess an equivalent
antioxidant property as compared to vitamin C.

Considering the importance of probiotics and bioactive compounds in human health, and in
the food industry, the objective of the present work is to obtain a functional food by spray drying.
The functional food comprises the co-encapsulation of Bacillus clausii and resveratrol employing
protecting agents such as inulin and lactose. These agents were selected based on their functionality,
since besides the encapsulating function they may act as substrates for the metabolism of the probiotic.
This work also contributes to understanding the synergistic effect of probiotics on the conservation
of antioxidants.

2. Materials and Methods

2.1. Materials

Inulin (99.9%), and α-Lactose monohydrate, (99%, αL·H2O) were purchased from Sigma-Aldrich
Chemical Co. (Toluca, Edo de México, México). Bacillus bacteria strain (Bacillus clausii) in Sunuberase
solution was purchased from Sanofi-Aventis de México, S.A. de C.V. (Coyoacán, CDMX, México),
while resveratrol (99%) was acquired from Química Farmacéutica Esteroidal S.A. de C.V., (Tláhuac,
CDMX, México).

2.2. Preparation of Spray-Dried Functional Foods

Spray drying was employed in the preparation of the microencapsulated and co-microencapsulated
powders of Bacillus clausii and resveratrol. Spray drying conditions were similar to those reported by
Saavedra-Leos et al. [26]. Typically, the preparation of feeding solutions consisted of mixing 20 g of the
corresponding carrying agent (inulin or lactose), 10 g of resveratrol, 5 mL of the commercial solution
with bacteria (equivalent to a concentration of 2 × 1012 CFU), and distilled water for obtaining a total
volume of 100 mL of solution. Microencapsulation was carried out in a Mini Spray Dryer B290 (BÜCHI,
Labortechnik AG, Flawil, Switzerland) at the following operation conditions: feed temperature of
40 ◦C, feeding flow of 7 cm3/min, hot airflow of 28 m3/h, aspiration of 70%, and pressure of 1.5 bar.
The inlet and outlet temperatures were set as 210 and 70 ◦C, respectively. The parameters used in this
process have been reported previously [14,27,28]. The obtained powders were weighted and labeled
according to their content, where Bc stands for Bacillus bacteria, RSV for resveratrol, IN for inulin, and
L for lactose. Powders were individually placed in airtight containers, stored in darkness at 4 ◦C.

2.3. Culturability of Bacillus clausii in the Microencapsulated Functional Food

The number of available bacteria cells was evaluated in the microencapsulated samples by means
of the plate extension technique, with Trypticase-Soy Agar (TSA) (Beckton Dickinson, Germany),
which has been previously used in the growth of B. clausii [29], using serial dilutions of the encapsulated
samples from 1 × 10−1 to 1 × 10−7. Growing conditions were aerobic, with an incubation period of
48 h at 37 ◦C in a Novatech incubator (Jalisco, Mexico). Bacillus bacteria strain (Bacillus clausii) in
Sunuberase solution was used as a control. For the determination of the number of colony-forming
unit per gram (CFU/g), the concentrations exhibiting between 300 and 30 CFU (1 × 10−4 and 1 × 10−5)
were selected. Equation (1) was employed for the quantification of the culturability. All experiments
were conducted in triplicate, and the reported values represent the average of the calculated values.

CFU
g

=

[
N◦ plate colonies ∗ dilution factor

mL sample seeded

]
(1)
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2.4. Radical Scavenging Activity of the Functional Food

The antioxidant capacity of resveratrol was determined according to the methodology
reported by Hao et al. [30]. The microencapsulated powder was mixed in a solution containing
2,2-diphenyl-1-picrilhydrazyl (DPPH*) as free-radical. Typically, 1.7 mL of DPPH* ethanol solution
(0.1 mmol/L) was added to 1.7 mL of microencapsulated sample diluted in ethanol. Initial powder
concentrations solutions tested were 2.5, 5, and 15 µg/mL. The mixed solution (3.4 mL) was poured
into a 10 mm thick quartz cell. The antioxidant capacity was evaluated as the decrease in the initial
concentration of DPPH* scavenged by resveratrol after 30 min of preparation. The variation in the
absorbance intensity of DPPH* was measured at a wavelength of 537 nm in a UV-Vis spectrophotometer
Evolution 220 (Mettler Toledo, Powai Mumbai, India). The scavenging activity (%DPPH*) was
calculated according to Equation (2):

Scavenging activity
(
%DPPH*

)
=

A0 −A30

A0
× 100 (2)

where A0 is the initial absorbance of DPPH*, and A30 is the absorbance of the DPPH* after 30 min of
adding the microencapsulated antioxidant.

2.5. Scanning Electron Microscopy (SEM) of the Microencapsulated Powders

A scanning electron microscope SU3500 (Hitachi, Japan) operated at 15 kV in low vacuum
conditions of 60 Pa, and with a backscattered detector (BSE), was employed to observe the morphology
of the particles. Each sample was dispersed on double-side carbon film and observed without any
further treatment.

2.6. Statistical Analysis

All experiments were performed in triplicate, reporting mean values and standard deviations.
One-way analysis of variance (ANOVA) was performed to establish a significance level of 0.05, and
the Tukey’s honestly significant difference (HSD) post hoc test was used to determine the difference
between means. The statistical analyses were conducted using the IBM SPSS statistics version 21.0
software (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion

3.1. Culturability of Spray Dried Functional Foods

Spray drying is widely employed as a technique for the encapsulation of active ingredients and
drying heat-sensitive compounds, in both, pharmaceutical and industrial contexts [31–34]. Although,
it is typically considered as a dehydration process, has also been employed as an encapsulation
technique. The drying efficiency is an important factor to consider, since the higher the powder
recovery, the better the drying efficiency [35]. In this case, a similar amount of powder was recovered
in the cyclone for all microencapsulated and co-microencapsulated samples, which was about 8 g
per run. The initial amount of dry matter was 30 g (20 g of carrier agent and 10 g of resveratrol),
thus the calculated average yield was 26%. The mass losses may be attributed to effect of the different
parameters of spray drying such as inlet temperature and air flow, as well as to the low Tg of carrying
agents [36,37].

Figure 1 shows the effect of inulin and lactose on the culturability in the microencapsulation
of B. clausii cells in samples BcIN and BcL, respectively; the number of viable cells is expressed in
Colony-Forming Units per gram (CFU/g). The results indicated that after the spray drying process
all samples showed a significant decrease in the culturability compared to the control 10.28 ± 0.03
Log10 CFU/g (p < 0.05). There were not significant statistical differences between samples of B. clausii
microencapsulated in inulin (BcIN = 8.68 ± 0.01 Log10 CFU/g) and lactose (BcL = 8.66 ± 0.07
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Log10 CFU/g) (p > 0.05). This suggested that both wall materials exerted a similar thermo-protective
effect on B. clausii cells during the spray drying process. This could be attributed to the ability of
hydroxyl groups, presented in lactose and inulin, to form hydrogen bonding interactions with the
membrane proteins of B. clausii, that during the dehydration process, prevented the denaturation
of proteins and retained the native integrity [38]. Furthermore, B. clausii, in its sporulated form,
has greater resistance to high temperatures [39]. There are several studies of encapsulation of probiotic
agents by spray drying, employing different matrices for protecting the microorganisms from thermal
degradation. For example, Araujo-Uribe et al. [40] found greater viability in Bacillus polymuxa spores
in comparison with Lactobacillus delbruekii when subjected to spray drying encapsulation, using 35% of
maltodextrin as carrier agent, and an aspiration percentage of 60%. Utami et al. [41], demonstrated that
the use of maltodextrin improved the viability of Bacillus NP5 when subjected to spray drying at inlet
and outlet temperatures of 120 and 70 ◦C, respectively.
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Figure 1. Culturability of B. clausii (control) spray-dried in inulin and lactose matrices without
resveratrol (BcIN and BcL) and with resveratrol (BcINRSV, and BcLRSV), a and b are the parameters of
the Tukey’s honestly significant difference (HSD) test.

Romano et al. [42] evaluated the effect of crystalline and amorphous inulin as protective matrices of
Lactobacillus plantarum CIDCA 83114, during the spray drying process at inlet and outlet temperatures
of 160 and 65 ◦C, respectively. They found that crystalline inulin showed greater stability at high values
of water activity (aw) and as the storage temperature approached the Tg. Raddatz et al. [43] evaluated
the encapsulation efficiency of lactobacillus acidophilus in emulsions made of pectin and prebiotics such
as inulin, Hi-Maize starch, and rice bran. They reported a plasticizing effect of inulin that favors the
development of stable networks with pectin, preserving the encapsulation of the microorganism after
90 days.

Yoha et al. [7] found that Lactobacillus plantarum microencapsulated with fructooligosaccharides
(FOS) by spray drying, improved the encapsulation efficiency and preserved 96% of viability.
Maleki et al. [44] established that in a system with 57.2% of whey protein, 25% crystalline nanocellulose,
and inulin concentration of 17.78%, the encapsulation efficiency and viability of Lactobacillus rhamnosus
increased. This was attributed to the conservation of the osmotic pressure in the intracellular
environment of bacteria, and to the interaction of proteins with polysaccharides. Similar results have
been reported by other authors, that have evaluated the effect of carrying agents such as starch, cellulose,
pectin, carrageenan, inulin, and lactose on the viability of probiotics such as Bifidobacterium infantis
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and Lactobacillus acidophilus [45–48]. Some investigations have used lactose, to encapsulate functional
ingredients and probiotic microorganisms. Li et al. [49] found that lactose with whey protein in a ratio
of 4:1 showed the highest encapsulation efficiency of ethyl butyrate. Similar results were reported by
other authors, however, the use of lactose as carrying agent implies some limitations because there is a
significant group of the population showing intolerance to this polysaccharide [50–52]. Tantratian and
Pradeamchai [38] evaluated five carbohydrates used as protective matrices for Lactobacillus plantarum
FT 35, during the encapsulation process by spray drying. These authors reported that wall materials
with Tg higher than 100 ◦C provided a greater number of viable cells. Lactose with Tg of 119.3 ◦C,
presented greater protection than glucose and sucrose, while no significant statistically differences
were found for cells encapsulated in maltodextrin and soluble starch matrices. Additionally to
the characteristic of protective agent during drying, lactose showed the ability of stabilize the cell
membrane proteins of the probiotic agent.

Additionally, Figure 1 shows the effect of inulin and lactose on the culturability of
co-microencapsulates of B. clausii with resveratrol. There were no significant statistical differences in the
co-microencapsulation of Bc and RSV using both carrier agents: BcINRSV and BcLRSV samples showed
8.52 ± 0.10 and 8.62 ± 0.06 Log10 CFU/g, respectively. However, compared to the microencapsulated
counterparts (BcIN and BcL), there is a decrement in the number of viable cells, which is related to the
inhibitory effect of resveratrol on some microorganisms. Mora-Pale et al. [53] reported the antimicrobial
effect that resveratrol can exert on various bacteria, including Bacillus cereus. Ma et al. [54] mentioned
that resveratrol has an antibacterial effect against pathogens, caused by the ability of inhibiting
the electron transport, observed as the decrease in the proliferation of microorganisms, as well as
inhibiting cell division. The results reported herein indicated that the concentration of B. clausii in the
microencapsulated and co-microencapsulated powders (BcIN, BcL, and BcINRSV, BcLRSV) may be
considered as functional foods because are in the concentration level required to exert a probiotic effect,
(>1 × 106 CFU/g) [55].

3.2. Radical Scavenging Activity

Figure 2 shows the effect of inulin and lactose on the antioxidant activity of microencapsulated
samples of B. clausii and resveratrol. The samples BcIN and BcL presented the lowest antioxidant
activity values compared to the samples containing resveratrol. Pasqualetti et al. [56] reported that
single spray dried inulin showed antioxidant capacity of 0.8 nmolTE/mg. It is worth mentioning that
the antioxidant activity of inulin reported by these authors was determined in samples in contact with
colon cells. Thus, the antioxidant activity of inulin could be attributed to the reactivity of colon cells
with reactive oxygen species (ROS), rather than directly to the polysaccharide. Shang et al. [57] showed
that antioxidant activity of single inulin is minimal, while when administered in vivo, the model
significantly increased. Evidently, the antioxidant activity values reported herein are relatively higher.
Furthermore, antioxidant activity of single lactose has been attributed to the ability of forming Maillard
products with proteins [58]. Lactose as reducing carbohydrate may interact with proteins of the spore
membrane of B. clausii and form a minimum amount of Maillard products during the spray drying
process. These observations agreed with those obtained in this study, where the microencapsulated
BcIN presented higher antioxidant activity than BcL.

The effect of inulin and lactose on the antioxidant activity of resveratrol microencapsulates
(samples INRSV and LRSV, respectively) is also shown in Figure 2. Sample INRSV showed a higher
antioxidant activity than LRSV. This may be attributed to the protecting role of inulin as encapsulating
material of bioactive compounds, as demonstrated by Silva et al. [59]. Ha et al. [60] evaluated the
effect of whey protein and inulin on the physicochemical and prebiotic properties of resveratrol
nano-encapsulates prepared by ionic gelation methods, and found that an increase in the concentration
of inulin from 1 to 3% improved the encapsulation efficiency from 79 to 83%. Although to a lesser
extent, lactose can also stabilize and protect active compounds by encapsulation, conserving some
antioxidant activity [9]. In the microencapsulation processes of resveratrol, inulin was a better wall
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material than lactose, avoiding the interconversion of trans-resveratrol into the inactive counterpart
cis-resveratrol.
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(BcL and BcIN) closed circles; and resveratrol (LRSV and INRSV) open circles.

Regarding the antioxidant activity of the co-microencapsulated B.clausii with resveratrol samples
(Figure 3), lactose (BcLRSV) showed a slight higher antioxidant activity compared to inulin
co-microencapsulates (BcINRSV). Clearly, this behavior may be attributed to a synergistic effect
established between the components of the co-microencapsulates [61]. However, B. clausii may act
as a fermenting agent, producing phenolic compounds [29], hydrolyzing proteins and generating
active antioxidant peptides [62]. For example, bacteria of the genus Bacillus may generate antioxidant
compounds such as carotenoids or riboflavin [63]. Therefore, the aforementioned synergism may be
caused by the development of a defense mechanism of the bacteria against external agents such as free
radicals (DPPH*), resveratrol and the carrying agent [64,65].
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Figure 4 compares the scavenging activity at the maximum powder concentration tested in this
study (15 µg/mL). The higher antioxidant activity was observed for sample INRSV. With exception
of BcIn and BcL samples that showed minimal activities, the rest of the samples (LRSV, BcINRSV,
and BcLRSV) presented no significant statistical differences on the scavenging activity. The observed
decrease in the antioxidant activity of BcINRSV co-encapsulates could be attributed to the adsorption
capacity of Bacillus spores, which are reported that retain soluble compounds inside the walls [66,67].
Spirizzi et al. [68] reported a correlation between the antioxidant activity of hydrogels polymers
and the degree of crosslinking. These soluble compounds may modify the polymeric networks of
microencapsulates, keeping resveratrol inside the particle and reducing its availability for interacting
with the surroundings of powder particle.
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of (Bc + RSV) processes on the scavenging activity of spray dried powders at concentration of 15 mg/mL.
a, b, bc, c and d are the parameters of the Tukey’s HSD test.

3.3. Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) is a technique that allows evaluating the microstructural
characteristic and particle morphology of powders. Figure 5 shows the SEM micrographs of
microencapsulated and co-microencapsulated samples. BcIN and BcL microencapsulated samples
formed spherical particles with dimensions in the range of 2–25 µm. In addition to the spherical shape
particles, microencapsulated samples with resveratrol (INRSV and LRSV) developed some rod-like
microstructures with length of 40–60 µm and about 10 µm in diameter. These particles were identified
as microencapsulates rich in resveratrol [60]. The co-microencapsulation of B. clausii and resveratrol
(BcINRSV and BcLRSV), developed some irregular shape microstructures. According to Berta Nogeiro
et al. [33] the relatively high viscosity of chitosan promotes the formation of irregular shape particles
in the microencapsulated. Thus, because inulin fibers increase the viscosity of the feeding solution,
the subsequent spray drying process may be disturbed, promoting the formation of irregular shape
particles. Littringer et al. [69] evaluated the effect of the spray drying outlet temperature of mannitol
systems on the surface morphology of particles. They found rough surfaces at outlet temperature of
67 ◦C and smooth surfaces at temperature of 102 ◦C. Tobin et al. investigated the effect of inulin on
the microstructural properties of whey protein and lactose particles, and reported that samples with
lactose presented brittle spherical structures, and as inulin content increased the presence of brittle
morphologies tend to disappear [70]. In general, all the samples prepared herein showed a smooth
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surface while the recorded outlet temperature was 70 ◦C. Unfortunately, SEM micrographs did not
show clear evidence of the state of B. clausii bacteria inside or outside the micro and co-encapsulates.
However, the culturability results demonstrated the presence of live bacteria encapsulated after the
drying process. This observation indicates that some bacteria are indeed being encapsulated and
preserved within the carrier agent, while other bacteria that remained outside the encapsulating
material was thermally degraded during spray drying, and for this reason were not observed in
micrographs. Nevertheless, additional studies are necessary to demonstrate this argument.
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4. Conclusions

A functional food with antioxidant and probiotic properties was prepared by spray drying.
Inulin and lactose were employed as carrying agents in the micro and co-microencapsulation
of the resveratrol and Bacillus clausii bacteria. Dried powders showed bacterial activity
(culturability) indicating that organisms were successfully encapsulated within the carrying
agents. Resveratrol microencapsulated in inulin showed the highest antioxidant activity, while the
co-microencapsulates containing bacteria and resveratrol showed similar activity. Apparently,
the bacteria absorbed resveratrol reducing its availability in the vicinity of the particle. Particle size
and morphology showed particles with smooth surface in the micrometer size range. The absence
of bacteria in SEM micrographs and the culturability results indicated the preservation of living
organisms inside the carrying agent after the spray drying process. From the two carrying agents
tested, Inulin showed a better performance in the microencapsulation of resveratrol, while for the
co-microencapsulation of resveratrol and B. clausii, both wall materials showed similar results.
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