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Abstract: Pump as turbines (PATs) are widely applied for recovering the dissipated energy of
high-pressure fluids in several hydraulic energy resources. When a centrifugal pump operates as
turbine, the large axial vortex occurs usually within the impeller flow passages. In view of the
structure and evolution of the vortex, and its effect on pressure fluctuation and energy conversion
of the machine, a PAT with specific-speed 9.1 was analyzed based on detached eddy simulation
(DES), and the results showed that vortices generated at the impeller inlet region, and the size and
position of detected vortices, were fixed as the impeller rotated. However, the swirling strength
of vortex cores changed periodically with double rotational frequency. The influence of vortices
on pressure fluctuation of PAT was relatively obvious, deteriorating the operating stability of the
machine evidently. In addition, the power loss near impeller inlet region was obviously heavy as the
impact of large axial vortices, which was much more serious in low flow rate conditions. The results
are helpful to realize the flow field of PAT and are instructive for blade optimization design.
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1. Introduction

In recent decades, pump as turbine (PAT) has drawn increasing attention in energy recovery
systems where a high-pressure water source exists. With a pump operating as turbine, the direction
of flow and rotation are opposite. For pump, energy is supplied to the fluid via a rotating shaft, as
shown in Figure 1a, it is a energy absorbing device. For PAT, energy is extracted from the fluid and
output via the rotating shaft, as shown in Figure 1b, it is a energy producing device. Compared
with a conventional hydraulic turbine, PAT is simple, inexpensive, easy to maintain, readily available
worldwide, and has a short capital payback period. It is an attractive solution for micro-hydro power
with capacity below 100 kW [1]. It would be economical to use PAT, recovering the dissipated energy
of high-pressure fluids in several hydraulic energy resources, such as water distribution network
(WDN) [2–5], sea water reverse osmosis (SWRO) [6], chemical processes [7], nature falls [8], etc.

Although there is a wide application of PAT, the selection of a proper pump operating as turbine is
particularly challenging. Many selection techniques have been published so far, while researchers have
tested their models on few pumps and recorded deviations in the order of ±10~20% [9]. PAT may not
have optimum or favorable flow behavior since pumps are usually not designed for turbine operation.
The mismatch between turbine flow parameters and pump geometry may affect the stability of flow
performance [10]. In addition, PATs have poor part-load performances [11,12]. Many researchers
have presented the optimization of the turbine mode performance for overcoming these challenges.
All mentioned issues above require a detailed understanding of the internal flow mechanism of PAT,
which is important and imperative to predict the performances of PAT, as well as improve its efficiency
and operating stability.
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Figure 1. Directions of flow and rotation in pump and pump as turbine (PAT). (a) Pump; (b) PAT.

Computational fluid dynamics (CFDs) were adopted extensively in many earlier research studies
to investigate the flow behavior of PAT. A detailed analysis of the turbulence flow structure of a
pump and its reverse mode were performed by Pascoa et al. [13]. Singh and Nestmann [14] revealed
the wakes and the corresponding losses (flow separation) at the inlet and exit of a PAT impeller.
Yang et al. [15] discussed the velocity distribution and hydraulic losses of PAT with different blade wrap
angles. Ardizzon and Pavesi [11] researched the effect of relative through-flow and eddy vortex on flow
behavior in PAT impellers and established the optimum incidence angle in outward- and inward-flow
impellers. Zhang et al. [16] presented a numerical simulation study that the reverse flow causes a great
deal of vortex in impellers. Stanbli et al. [17] studied the instability of PAT during start-up process using
numerical-based method. Zobeiri et al. [18] investigated the rotor–stator interactions in turbine mode
of a pump and presented the pressure fluctuation in stator flow channels. Singh and Nestmann [9]
analyzed the flow condition in different flow zones of PAT and concluded the hydraulic loss of each
flow zone. Simão et al. [19,20] investigated the hydrodynamic flow behavior of centrifugal PAT to
better understand the energy recovery system behavior and to reach the best efficiency operation
conditions. Additionally, collaborative design of rotor and stator of PAT have been concerned to
improve its efficiency recently [21,22].

The PATs have poor hydraulic performances usually as the pump manufactures do not pay
attention to the performances of a pump in reverse operation. As a consequence, low efficiency and
instability have been found generally due to the poor flow conditions of vortices, secondary flow, and
pressure fluctuation. In this research, the flow behavior of PAT was simulated by the CFD method.
The structure and evolution of the large axial vortex in impeller channels were revealed, and its impact
on pressure fluctuation and power losses was observed. The results can be expected to be a support
for the optimization design of PAT.

2. Theoretical Model of Vortex

For PAT, the slip phenomenon occurs inevitably in flow passages caused by finite blades. Due to
the finite blades with certain thickness of PAT, the fluid in the flow passages is guided weakly, and
subsequently a slip velocity ∆cu is generated, as shown in Figure 2 (where u is the peripheral velocity
of impeller, w is relative velocity, c is absolute velocity, cm and cu are the meridian and peripheral
components of absolute velocity, respectively, ∆cu is slip velocity, β is relative flow angle and βb is the
blade angle, the subscript ∞ represents infinite blades). As a consequence, the large axial vortices
induced reasonably. In part-load operation, this phenomenon is much more serious on account of the
non-optimum incoming flow.
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Figure 2. The model of the large axial vortex in PAT.

In recent decades, various vortex identification methods, including closed or spiral path lines,
minimum local pressure, vorticity magnitude, etc., have been used to interpret vortical structures in
instantaneous flow fields [23]. The vorticity magnitude is widely applied in qualifying the intensity of
vortices, and the swirling strength has been adopted—usually to qualify the vorticity magnitude.

For a random element of vortex flow, the velocity gradient tensor dij can be described as

[
di j

]
= [vrvcrvci]


λr 0 0
0 λcr λci
0 −λci λcr

[vrvcrvci]
−1 (1)

where vr, vcr, and vci represent the axial, radial, and tangential components of the element velocity,
respectively. The velocity gradient tensor dij exists one real eigenvalue λr and two conjugated complex
eigenvalues λcr ± λci. The swirling strength is the imaginary part of the complex eigenvalues of the
velocity gradient tensor, λci; it is positive if and only if the discriminant is positive and its value
represents the strength of swirling motion around local centers. The greater the absolute value of the
swirling strength, the stronger the internal circulation of fluid.

3. Numerical Simulation

3.1. Numerical Method

A modified PAT with specific speed (nQ1/2/H3/4, where n is rotational speed, Q is flow rate, and H
is head) 9.1 was selected for numerical simulation, and the hydraulic parameters were 50 m for head
and 50 m3/h for flow rate with the rotational speed 1500 r/min. The flow zones consisted of volute,
impeller, and draft tube as shown in Figure 3. The main geometrical parameters were shown in Table 1.
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Figure 3. Structure of modified PAT. (a) Structure of selected PAT; (b) modified impeller of PAT.

Table 1. Geometrical parameters of pump as turbine (PAT).

Categories Parameters

Impeller

Inlet diameter D1 (mm) 312
Outlet diameter D2 (mm) 80

Hub diameter dh (mm) 0
Inlet width b1 (mm) 10

Blade inlet angle β1 (◦) 120
Blade number Z 10

Blade outlet angle β1 (◦) 30

Volute
Inlet diameter Ds (mm) 50
Outlet width b0 (mm) 24

Basic circle diameter D0 (mm) 320

Draft tube
Length Ld (mm) 120

Exit diameter Dd (mm) 80

The numerical simulation was performed by means of the Navier–Stokes equation with an
appropriate turbulence model. The Reynolds Averaged Navier-Stokes (RANS) turbulence model
is not appropriate for the unsteady flow prediction, while a fully-resolved Large Eddy Simulation
(LES) is almost unfeasible nowadays [24]. Recently, the Detached Eddy Simulation (DES) showed the
superiority of the prediction of unsteady flow phenomenon in studies by Magnoli and Schilling [25].
DES can be described as a hybrid RANS-LES turbulence modeling approach and can be applied in
a numerical simulation of rotor–stator interaction, inter-blade vortices and vortex rope successfully.
It is acting as a Sub-Grid-Scale (SGS) model of LES in regions where the grid resolution is fine enough
to resolve turbulent structures, while in other regions the model is used as a pure RANS model [26].
It features the advantages of a less refined grid near the wall, as well as the memory requirements of a
computer. DES can be explicitly presented in the Spalart–Allmaras (SA) k–ε model or Shear Stress
Transport (SST) model.

In the present work, the CFX (17.0, ANSYS, Pittsburgh, PA, USA, 2016) was adopted for the
solution of 3D Navier–Stokes equations due to its characteristics of robust and fast convergence [15].
Steady simulations were achieved using the RNG k–ε model and the results were applied as the initial
value of transient analysis, the SA-DES turbulence model was applied for transient simulations.

The one equation SA-DES model can be described as

∂ṽ
∂t

+ u · ∇ṽ =
1
σRe

[∇ · ((v + ṽ)∇ṽ) + cb2

∣∣∣∇ṽ
∣∣∣2] + cb1S̃ṽ−

cw1 fw
Re

(
ṽ

dDES
)

2

(2)
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where ṽ is a destruction term for the eddy viscosity, which is proportional to (ṽ/d)2, where d is the
distance to the closest wall, Re is Reynolds number. The second and last terms on the right side
of the equation are the product term and destruction term, respectively. When balanced with the
production term, the eddy viscosity is adjusted to scale with the local deformation rate S and d:
ṽ ∝ Sd2. In the Smagorinsky model, the sub-grid-scale (SGS) eddy viscosity scales with S and the grid
spacing ∆:µSGS ∝ S∆2. Thus, the SA model turns into the SGS model when d is replaced by a length
proportional to ∆.

If we replace d in the SA destruction term with d̃, described as

d̃ = min(d, CDES∆) (3)

then the model is an SA turbulence model when d� ∆, while an SGS model when d� ∆.
Since the SA-DES model does not require any wall functions, the mesh that is close to the wall

surface must be designed to accurately predict the hydrodynamic force; hence, the high-aspect-ratio
cells near the wall have been generated [27]. The mesh of the fluid domain was generated using
ICEM-CFD (17.0, ANSYS, Pittsburgh, PA, USA, 2016) as its advantage of a well-adapted and efficient
hexahedral grid was applied for meshing, as shown in Figure 4. The length of the inlet and outlet pipes
was extended to eliminate the influence of back flow. The grid convergence and grid independence
tests were performed, and the results showed that the head–flow rate curve became stable as the
elements of mesh over 3,612,548, as shown in Figure 5. Therefore, the final element numbers of the
volute, impeller, and draft tube were 865,260, 3,007,154, and 243,200, respectively.
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The boundary condition of the inlet was the total pressure with an initial value of 0.5 MPa, and the
outlet was the flow rate with an initial value of 50 m3/h for design condition; the rotational speed of the
impeller was fixed with 1500 r/min. The fluid was the normal water with a temperature of 20 ◦C, all the
wall surfaces were adiabatic, and the roughness was set to 50 µm. To obtain reasonable results, the
proper selection of time steps is of great importance. It is suggested that time steps for a runner rotation
of 0.5–5◦ could provide useful information for the flow field under transients [28]. Hence, the time
steps in this study were 3.3 × 10−4 s, corresponding to 3◦ of the impeller rotational angle. The max
coefficient loop of convergence control was 40, and the residual target of the convergence criteria was
10−5. The total time of the duration data was 0.4 s corresponding to 10 rotor revolutions and the last
four revolution data were analyzed.

For revealing the vortex structure and pressure fluctuation in PAT flow channels, 17 monitoring
points were set in the middle plane of PAT, as shown in Figure 6. Point 1 was set in the gap between
volute and impeller, point 2 and 3 next to the inlet and outlet of impeller, respectively, point 4 was in
center of impeller outlet, points 5, 7, 9 were on the suction profile of the short blade, while 6, 8, 10 were
on the pressure side, points 11, 13, 15 were on the suction profile of the long blade, while 12, 14, 16
were on the pressure profile, point 17 was set in the flow channel.
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3.2. Verification of Numerical Method

In this section, the numerical method was validated by the experimental results. A test rig was
established for the hydraulic performance experiment of PAT. The test rig was composed by water
supply, PAT, and energy dissipation sections as shown in Figure 7. A feed pump was installed to
provide the head and flow rate for PAT. A magnetic power brake was equipped to balance the output
power, and a loop control system was used to adjust the torque of output shaft. A flow meter was
equipped at the inlet pipe of PAT for measuring the flow rate, and two pressure transducers were
installed at the PAT inlet and outlet for measuring pressure. For measuring the torque and rotational
speed of PAT, a torque meter was set at shaft. The head, flow rate, power and efficiency of PAT could
be obtained after all parameters were measured.
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Figure 7. Experimental equipment of PAT. (a) Schematic diagram of experiment; (b) test rig.

The selected PAT was tested and the hydraulic performance curves by experimental and numerical
methods were illustrated in Figure 8. It can be found that the numerical head is in good coincidence
with the experimental results. In consequence, it is reasonable to believe that the employed numerical
method is accurate, and it can be applied in performance predictions of PAT.
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4. Results and Discussion

4.1. Vortex Information in Flow Channels

For PAT, large axial vortices were derived in impeller flow channels even at the best efficiency
point (BEP), as shown in Figure 9. It can be seen that the streamline was disordered near the suction
surfaces of the impeller inlet where the large axial vortices were induced. It can be clearly observed
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that the vortices were more legible on short blade surfaces. Furthermore, the size and position of
detected vortices were invariant with rotor rotating, and apparently, these were stable.
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Figure 9. Streamline and swirling strength contour of impeller.

The swirling strength contour of detected vortices during one rotating cycle was displayed in
Figure 9. It can be seen that although the vortex size and position were stable, the swirling strength
changed with rotation of the impeller. In the first half of the rotating cycle, the swirling strength was
minimum (0~50 s−1) at 0.122011 s, intensified to maximum (450~500 s−1) at 0.133891 s, and weakened
to minimum (0~50 s−1) again at 0.142141 s. The revolution of the vortex swirling strength in the second
half of the cycle was the same as the first half. The vortices information was extremely similar at
0.122011 s and 0.142141 s, 0.127951 s and 0.148081 s, as well as 0.133891 s and 0.154021 s. It can be
found that the time steps of each working point are 0.2 s approximately for the three groups (group a,
b, and c, as shown in Figure 9), that is half the time of per rotating cycle (0.4 s) for PAT. In other words,
the swirling strength of the vortex develops periodically with two times the rotating frequency.

4.2. Pressure Fluctuation of Vortex

The pressure fluctuation could be produced due to the vortices with twofold rotating frequency.
In order to reveal the pressure fluctuation characteristics of PAT, transient numerical simulation
was performed, and results of the 17 monitoring points are given in Figure 10. Where the vertical
coordinates Cp is pressure coefficient, it can be described as

Cp =
pi − p

0.5ρu2
1

(4)

where pi denotes the transient pressure of monitoring point (Pa), p is the average pressure (Pa), ρ is the
density of fluid (kg/m3), and u1 is the peripheral velocity of impeller inlet (m/s).
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Figure 10. Pressure fluctuation coefficient with time. (a) Points 1, 2, 3; (b)Points 5, 7, 9; (c)Points 4, 6, 8;
(d)Points 11, 13, 15; (e)Points 12, 14, 16; (f)Points 4, 17.

The pressure of point 1 fluctuated 10 times in a rotating cycle visibly, which was caused by the
blade–volute interaction; as the point was set in the gap between the rotor and volute, it was not
related to the axial vortex obviously. Point 4 could not be related to the axial vortex as well because
it was set in the draft tube that was far away from the vortex regions. The pressure fluctuation at
other points showed that the leading periodical impulse was related to the rotor–stator interaction.
However, it was no reason to neglect the correlation between the subordinate periodical impulse and
axial vortex.

Figure 11 showed the pressure fluctuation images with frequency range, which was received by
fast Fourier transform (FFT) from Figure 9. For easily understanding, the horizontal axis was the ratio
of frequency (f/fn), where fn denoted the rotating frequency of the rotor.

It can be seen that the leading pressure fluctuation of the monitoring points occurred at 1 f/fn, 5
f/fn, 10 f/fn, and 20 f/fn. Obviously, this related to the rotor–stator interaction. Pressure fluctuation at 1
f/fn caused by the rotor–tongue interaction, at 5 f/fn, 10 f/fn, 20 f/fn caused by blade–tongue interaction
(the impeller equipped with 5 long blades and 5 short blades). Therefore, the main factor of pressure
fluctuation was the rotor–stator interaction.

However, the subordinate pressure fluctuation at 2 f/fn was found in points 2, 5, 6, 11, 12, and 17.
It was obvious, especially in points 5 and 11 as marked with dashed circle in Figure 10, as mentioned
earlier, that the large axial vortices were derived in these regions usually. Consequently, it was
reasonable to declare that the subordinate pressure fluctuation was related to axial vortices in impeller
channels, which deteriorated the operating stability of the machine evidently.
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4.3. Power Losses Caused by Vortex

The large axial vortices provide subordinate contribution to the pressure fluctuation of PAT. More
importantly, this might cause entropy generation in the flow field, and therefore, the power loss
produced inevitably. In this section, the power losses caused by axial vortices were analyzed.

Flow distortion have been detected in the impeller that was caused by axial vortices, where a
wake region has been found near the impeller inlet, it was significant especially for 0.6 Qd and 1.0
Qd (Qd is design flow rate), as shown in Figure 12. As a consequence, a low-pressure zone appeared
near the impeller inlet, and the relative velocity no longer distributed alongside the blade surfaces.
In order to reveal the effect of axial vortices on performance characteristics of PAT, six monitoring
cylindrical surfaces in the impeller were created as shown in Figure 13. Figure 14 was the distribution
of the average relative velocity (radial component) in the impeller, and Figure 15 was the average
pressure at each cylindrical surface. It can be seen that the average relative velocity (radial component)
and pressure curves decreased gradually along the flow direction in the impeller channels for 1.6 Qd;
however, a local decline of the curves appeared at surface 1 and 2 for 0.6 Qd and 1.0 Qd. As shown in
Figure 12, the streamline of 1.6 Qd was uniform, and very tiny axial vortices were detected in the flow
channels. However, large axial vortices can be found near the impeller inlet at 0.6 Qd and 1.0 Qd; this
was much more serious for low flow rates. It can be seen from Figure 12 that the region from surface 1
to surface 3 was worse affected by axial vortices for the low flow rates that reasonably responded to
the local decline of the average relative velocity and pressure.
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As the axial vortices were generated, power losses were raised inevitably. To study the power
losses caused by vortices, the flow domain in the impeller was divided into six zones (Figure 16), and
power losses of each zone were calculated.
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Figure 16. Zones of the impeller.

For any zone i, when the boundary condition with a pressure inlet and flow rate outlet are given,
while rotating speed is fixed, the theoretical power (fluid power) and actual power (shaft power of
PAT) can be obtained by numerical simulation. The theoretical power can be described as

p′
(i,i+1) = ρgQH(i,i+1) (5)

where ρ is the fluid density, g is the gravitational acceleration, H(i„i+1) is the fluid head of zone i, and Q
is the flow rate. The shaft power of PAT is

p(i,i+1) = M(i,i+1) ·ω (6)

where M(i,i+1) is the torque of zone i, while ω is the angular speed of the impeller. Then, the relative
power losses of zone i are

f(i,i+1) = 1−
p(i,i+1)

p′
(i,i+1)

(7)

As the numerical simulation did not consider the leakage and frictional losses of PAT, Equation (7)
can be considered as relative power losses of zone i.

Figure 17 presented the power losses of each zone for 0.6 Qd, 1.0 Qd, 1.6 Qd, respectively. It can be
seen that the power losses of zone 1 and 2 (the inlet region of the impeller) were higher distinctly than
zone 3 and 4. As mentioned earlier, the large axial vortices occurred in this region usually, and caused
the reduction in energy conversion of PAT. What calls for special attention was that the power losses of
zone 5 and 6 were higher than zone 3 and 4 as well, which was related to the vortices in the draft tube
to a great extent, and it deserved further research in the future.

It can be concluded also that the power losses were heaved significantly in low flow rates, which
was related to the large axial vortices. As mentioned above, large axial vortices can be found near
impeller inlets usually and are much more serious for low flow rates. Thus, it was believed that power
losses would be induced by the large axial vortices within flow passages, and it should be considered
in the design and optimization process, especially in low flow rates.
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5. Conclusions

In this study, the flow behavior of a centrifugal PAT with specific speed 9.1 was researched by a
verified CFD method. The large axial vortices were derived in impeller flow channels due to the slip
and poor match between flow and blades. The size and position of the vortices were stable apparently.
However, the swirling strength developed periodically with 2fn (fn is the rotating frequency of PAT).

The pressure fluctuation can be found in PAT. The leading pressure fluctuation was caused by
the rotor–stator interaction, while the subordinate fluctuation was related to axial vortices in impeller
channels, which deteriorated the operating stability of the machine evidently.

The power losses were induced by the large axial vortices in the impeller flow channels, and this
phenomenon was much more serious in the low flow rate operation. This should be considered in the
design and optimization process, especially in low flow rates.

Nevertheless, the feature of large axial vortices within PAT impeller channels deserved further
research in detail based on more PATs. The influence of the rotation, geometry of the blades, entropy
variation of the large axial vortex and efficiency of the PAT should be discussed deeply, especially in
the pump–turbine transition processes.
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