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Abstract: Quality prediction in the continuous casting process is of great significance to the quality
improvement of casting slabs. Due to the uncertainty and nonlinear relationship between the
quality of continuous casting slabs (CCSs) and various factors, reliable prediction of CCS quality
poses a challenge to the steel industry. However, traditional prediction models based on domain
knowledge and expertise are difficult to adapt to the changes in multiple operating conditions
and raw materials from various enterprises. To meet the challenge, we propose a framework
with a multiscale convolutional and recurrent neural network (MCRNN) for reliable CCS quality
prediction. The proposed framework outperforms conventional time series classification methods
with better feature representation since the input is transformed at different scales and frequencies,
which captures both long-term trends and short-term changes in time series. Moreover, we generate
different category distributions based on the random undersampling (RUS) method to mitigate the
impact of the skewed data distribution due to the natural imbalance of continuous casting data.
The experimental results and comprehensive comparison with the state-of-the-art methods show
the superiority of the proposed MCRNN framework, which has not only satisfactory prediction
performance but also good potential to improve continuous casting process understanding and
CCS quality.

Keywords: quality prediction; continuous casting; multiscale; convolutional neural network; time
series classification; imbalanced data

1. Introduction

At present, the steel industry is facing unprecedented challenges including resource
consumption, serious environmental pollution, substandard process and product stability,
and low productivity [1]. Steelmaking is a typical process industry, with long produc-
tion processes, complicated manufacturing processes, and many process control factors
involved [2]. The changes in product types and raw materials of different companies
will be different, and it is difficult for knowledge-based models to adapt to all changes,
which makes the migration and maintenance of models difficult. Therefore, the deep
integration of information technology and the steel manufacturing industry, as the entry
point for industrial upgrading, is of great significance to the realization of intelligent and
green steel production.

Continuous casting is the most critical part of steelmaking [3]. Stable and high-quality
continuous casting production is the top priority of iron and steel enterprises. Continuous
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casting is the process of solidifying molten metal into semifinished slabs and rolling them
in a finishing mill [4]. As shown in Figure 1, the molten metal is transferred from the
ladle to a tundish and slowly injected into the continuous caster. Then, the crystallizer
in the continuous caster shapes the casting and rapidly solidifies and crystallizes. In this
process, the mold level fluctuation will greatly affect the quality of continuous casting slabs
(CCSs). With the sharp fluctuation of the liquid level in the mold, the content of oxide
inclusions under the slabs will increase significantly [5]. However, mold level fluctuation
is likely to cause slag entrapment of molten steel, which further leads to the deterioration
of slab quality.

Figure 1. A schematic diagram of the continuous casting process.

Major steel producers are leveraging information technology such as the Internet of
Things (IoT) and embracing big data to change the current state of the steel industry [6].
The use of sensor-based data acquisition systems in factories and the explosive growth of
steel data make data modeling and analysis possible [7]. Furthermore, over the last decade,
intelligent technologies, represented by data mining [8] and neural networks [9], have been
developed from the theoretical research into their industrial applications. In the field of
steelmaking, numerous scholars focus on the classification of steel surface defects [10,11].
Although continuous casting is the main process phase affecting the final quality of the steel
products, the continuous casting system has a large number of complex input parameters;
thus it is well adapted for big data analysis. Lei et al. have used machine learning methods
to develop an offline system for continuous casting data collection and data mining [12],
a small amount of research work involves the classification and prediction of continuous
casting slabs quality. Nandkumar et al. [13] predicted and improved the quality of iron
casting with the Six Sigma approach. A two-layer feedforward backpropagation neural
network model was developed to predict the possibility of defects in foundry products [14].
The feedforward backpropagation neural net is out of practice currently, and the vanilla
recurrent neural net performs poorly in engineering. Artur et al. designed a specific
convolutional neural network (CNN) to detect stickers during continuous casting [15].
Although their method can reduce false alarms, when CNN is used alone for detection,
the effect is not respectable. Indeed, we have incorporated two neural net architectures
into our multiscale convolutional and recurrent neural network (MCRNN) to build one
more robust and better network.

In this work, based on the process data acquisition system, a real-time prediction
closed-loop control system was constructed to predict and improve the quality of CCS.
In the system, a framework composed of an MCRNN is proposed for real-time quality
prediction of CCS. Various conversions are made at different times and frequencies to
obtain time series data for fluctuations in the level of the original mold. The CNN can apply
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to time series analysis of sensor data well, and it can also be used to analyze signal data
with a fixed-length period. Feature extractors based on the fully convolutional network
(FCN) and long short-term memory (LSTM) are used to capture long-term dependencies
and extract local features of time series, respectively, and we use the advantages of CNN
to automatically learn features [16] in the downsampling transformation representation
and frequency domain, extracting features of different time scales and frequencies and
solving the limitations of many previous features that can only be extracted at a single
time scale [17,18]. As a result, the proposed MCRNN enhances feature representation
and improves the performance of quality prediction compared to traditional time series
classification models. Moreover, the number of normal samples is much larger than the
number of abnormal samples. Average production is 100 slabs, with production of only
5 abnormal slabs. We use the random undersampling (RUS) method to reduce the number
of majority classes to address the class imbalance. We introduced expert knowledge into
the system. When the predictive model detects an abnormal slab, the continuous casting
process adjusts in real-time based on expert knowledge, which improves steelmaking
efficiency and slab quality.

The organizational structure is as follows: In Section 2, we review the work related to
time series classification. In Section 3, we describe our proposed MCRNN and established
system in detail, which is the core section of the paper. In Section 4, we present the detailed
process and experimental results of the method. Finally, in Section 5, we draw the main
conclusions of this work.

2. Related Work

In our real world, time series data are ubiquitous; examples include temperature,
click volume, stock prices, and sensor data. They are sequential data of real value type
with a large amount of data, high data dimensions, and constant updating of data. In the
data-driven era, there is an increasing demand for information extracted from time series,
the main task of which is time series classification (TSC). It is a long-standing problem
involving a wide range of practical applications, such as the classification of financial time
series [19], the judgment of individual agricultural land-cover types [20], and early churn
detection [21].

Traditional time series classification methods are mostly based on distance measure-
ment. Lines and Bagnall [22] proposed nearest neighbor classifiers with elastic distance
measures to improve classification accuracy. In particular, the dynamic time warping
(DTW) distance combined with the nearest neighbor classifier has proved to be a strong
baseline [23]. Nevertheless, the performance could be rarely acceptable when it was applied
to the engineering field with big data. There are other methods of distance measurement
and spatial transformation for time series, such as information entropy [24], weighted dy-
namic time warping (WDTW) [25], and shapelet transformation [26]. Moreover, enhanced
weighted dynamic time warping [27] and distributed fast-shapelet transform [28] were
proposed to improve the performance of times series classification. Based on ensemble
schemes and data conversion, Bagnall et al. not only aggregated different classifiers on
the same transformation but also collected different classifiers in different time series
representations [29]. However, these methods only have linear separability.

In recent years, deep learning has developed rapidly and achieved excellent results
in classification tasks. Convolutional neural networks and recurrent neural networks are
widely used in image recognition [30], video classification [31], machine translation [32],
information extraction [33], and other fields. CNN can use convolutional layers to learn
complex feature representations automatically, with the advantage of absorbing a large
amount of data to learn feature representations. In recent years, many neural networks for
time series classification, such as multilayer perceptron (MLP), fully convolutional network
(FCN), and residual network (ResNet) [34], emerged. Convolutional neural networks
(CNN) have been applied to time series applications, though CNN is mainly for the image
field [35,36]. In the classification of high-dimensional time series, Zheng et al. proposed to
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use a multichannel convolutional neural network for modeling [37]. The echo state network
(ESN) is a time-warping invariant, limited to static patterns rather than temporal patterns,
and was applied to time series classification tasks [38]. Joan et al. studied the use of a time
series encoder and established a hybrid deep CNN with an attention mechanism [39]. For
the quality prediction system, however, these present methods cannot meet the demands
of overall continuous casting slab production pipelines.

3. Methodology

Given a series of mold level fluctuations, our goal is to predict the quality of the
continuous casting slab (CCS) in production. The quality of CCS will also change under dif-
ferent production conditions, such as different raw materials and technological parameters.
In addition, it is worth noting that the quality of CCS is normal in most cases, while only a
few are abnormal. Unbalanced time series classification is a challenging task when using
only FCN or LSTM to extract time series on a single scale. We consider that time series
should be represented comprehensively in multiscale and multifrequency dimensions
to improve the classification performance and obtain a robust model. To address these
problems for quality prediction of the CCS, we propose a new MCRNN architecture, where
the input is the time series of mold level fluctuation to be predicted and the output is
its quality label, as shown in Figure 2. The more details of layouts of each network are
tabulated in Table 1. We use the grid search to obtain hyperparameters and iteratively find
the best hyperparameters. This architecture mainly includes three sequential stages: the
input representation stage, the feature learning stage, and the classification stage.
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Figure 2. The proposed multiscale convolutional and recurrent neural network (MCRNN) framework.
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Table 1. Details of the the MCRNN structure.

Layer Type Feature Maps Kernel Size Stride

Convolution 128 8 1
BN + ReLU 128 - -

Convolution 256 5 1
BN + ReLU 256 - -

Convolution 128 3 1
BN + ReLU 128 - -
AvgPooling 128 243 0

Concate 768 - -
Convolution 64 4 1
AvgPooling 64 765 0

Full-connected 2 - -

3.1. Class Imbalance

In the process of quality prediction, the number of abnormal and normal samples is
extremely unbalanced, and the imbalance ratio is about 20:1. Class imbalance can have a
negative impact on classification performance, because the classifier trained on unbalanced
data favor major classes. We utilize the RUS method to achieve a more balanced class
distribution, which improves the classification performance.

The RUS method is a form of data sampling that randomly selects major class in-
stances and removes them from the dataset until the desired class distribution is achieved.
Based on the original unbalanced dataset, RUS is used to generate the training dataset of
three sample ratios, which are 1:1, 1:2, and 1:3. The normal sample ratio is followed by the
abnormal sample ratio. We try to see how different sampling ratios affect the classification
performance of the trained neural network and select the best sampling dataset. How-
ever, the test set is generated from unbalanced raw data without RUS because of realistic
prediction requirements. As shown in Figure 3, in the original dataset of continuous casting
slabs, the number of abnormal continuous casting slabs is far less than the number of
normal continuous casting slabs. The desired class distribution is achieved by randomly
removing the normal CCS and retaining the entire abnormal CCS, which can cause the loss
of majority class information.

Abnormal CCS

Normal CCS

defect

Original Dataset Resampled dataset

Figure 3. The random undersampling process of continuous casting slabs (CCSs).

3.2. MCRNN Architecture
3.2.1. Input Representation

Consideration should be given to using multiscale time series to build an accurate and
reliable time series model. The long-term temporal pattern shows general trend changes,
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and the short-term temporal pattern reflects fine-grained fluctuations. Both patterns
are critical to the performance of TSC. In our research work, we transform the original
input space to obtain representation at different time scales and frequencies inspired by
Cui et al. [40]. The transformation includes two stages: downsampling transformation in
the time domain and smoothing transformation in the frequency domain. In the first stage,
we downsample from the sequence X = [x1, x2, ..., xT ] of mold level fluctuation and the
downsampling rate is r. Then, new time series Xr is generated from the original sequence
by retaining every rth data points.

Xr = {x1+r∗i}, i = 0, 1, ..., bT − 1
r
c (1)

Due to the influence of high-frequency disturbances and random noise, we carry out
the moving average of the time series in the second stage to solve the problem. Given an
original sequence X = [x1, x2, ..., xT ] of mold level fluctuation, a new time series can be
defined as Xw according to different degrees of smoothness.

Xw = { 1
w

jw

∑
i=(j−1)w+1

xi}, j = 1, 2, ...,
T
w

(2)

where w is the window size.
As shown in Figure 4, a sequence of the mold level fluctuation values in the production

time of one slab transforms in time and frequency dimensions. For different downsampling
rates and degrees of smoothness, we can get multiple time sequences, each of which corre-
sponds to different scale representations of original sequence input. With the multiscale
transformation of input, long-term temporal patterns and short-term temporal patterns
can be employed to build a robust model. At the same time, the new time series based
on the moving average of different windows reduces the noise of the original sequence.
After two stages of transformation, the input is divided into two modules and fed into
the neural network. For r and w, it is related to the sampling size. Sampling size is the
sample points for each slab. We compared the sampling size values when the sampling
rate is 1:2. As shown in Table 2, the model trained well when the sampling size was equal
to 256, so we use 256 in our model.
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Figure 4. Illustration of the input transformations when r = 4 and w = 4.
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Table 2. Comparison of sampling size with sampling ratios = 1:2.

Sampling Size Accuracy

128 0.5176
256 0.6250
512 0.4778

3.2.2. Feature Learning

The feature extractor architecture is composed of the LSTM module and a fully
convolutional module. The goal of this phase is to learn effective time series features
in a parallel manner through multiple pairs of recurrent layers and convolutional layers
in advance.

1. LSTM module: This module contains an LSTM layer, followed by a dropout layer.
We employ an LSTM feature extractor to capture temporal patterns of CCS time
series with multiscale and multifrequency dimensions. Specifically, the mold level
fluctuation input X = [x1, x2, ..., xT ] and the hidden state Ht−1 of the previous time
step given for the time step t. The definition of input gate it, forget gate ft, and output
gate ot is as follows. The input gate controls the extent to which a new value flows
into the cell.

it = σ(XtWxi + Ht−1Whi + bi) (3)

The forget gate decides what information should be dropped.

ft = σ(XtWx f + Ht−1Wh f + b f ) (4)

The output gate determines which parts are useful.

ot = σ(XtWxo + Ht−1Who + bo) (5)

The candidate memory cells C̃t at time step t are calculated as

C̃t = tanh(XtWxc + Ht−1Whc + bc) (6)

The calculation of the current time step memory cell Ct combines the information
of the last time step memory cell and the current time step candidate memory cell,
and controls the flow of information through the forgetting gate and the input gate.

Ct = ft � Ct−1 + it � C̃t (7)

The output gate controls the flow of information from memory cells to the hidden
state Ht, which can be calculated as:

Ht = ot � tanh(Ct) (8)

We feed the raw or transformed mold level fluctuation to LSTM and get output vector
Ov = [H1, H2, ..., HT ] from the last layer of the LSTM. We use output at time step t as
feature OT

v = HT extracted by LSTM. To prevent overfitting, the output of the LSTM
layer is followed by the dropout layer with a dropout rate of 0.8 as shown in Figure 2.
With dropout, final feature vector Fv can denote as:

Fv=r ∗OT
v (9)

ri ∼ Bernoulli(p) (10)

Here, ∗ denotes an element-wise product. For output vector at time step t, r is a
vector of independent Bernoulli random variables, each of which has probability p of
being 1.
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2. Fully convolutional module: The core component of fully convolutional module is a
convolutional block that contains:
• Convolutional layer with a filter size of 128 or 256, the kernel with a size of 8, 5,

3 and stride of 1.
• Batch normalization layer with a momentum of 0.99 and epsilon of 0.001.
• A ReLU activation at the end of the module.
In this module, we utilize convolution kernel w ∈ Rm to slide over the input sequence
and extract local features. The output ci of the i-node in the feature map is defined by

ci = σ(wT ∗ xi:i+m−1 + b) (11)

where xi:i+m−1 represents m-length subsequence from the ith time step to the (i + m− 1)th
time step of input sequence, ∗ denotes the convolution operator, b denotes the bias
term, and σ(.) is a nonlinear activation function.
Accordingly, the convolution kernel is slid from the beginning time step to the end
and we get the feature map of the jth kernel as

cj = [c1, c2, ..., cT−m+1] (12)

After convolution, batch normalization followed by a ReLU activation function acceler-
ates fast training speed and improves model generalization ability. The fully convolutional
module contains three convolutional blocks which are used as a feature extractor. Then, it
performs a one-dimensional global average pooling operation on the feature map of the
last block to obtain the vector, which reduces feature dimensions while increasing the
receptive field of the kernel. The vector obtained by global average pooling on the final
output channel can be expressed as

Fc = [a1, a2, ..., ak] (13)

aj =
1

T −m + 1 ∑ cj (14)

where k represents the filter size of the last convolutional block. We concatenate the
features extracted by LSTM with a fully convolutional module. As mentioned in the
previous section, the original input is transformed at different time scales and frequencies,
so we use feature extractors on different input expressions and feed the final features into
the next stage as input.

3.2.3. Classification

Finally, the concatenated feature vector obtained in the feature learning stage is directly
fed to the classification module, which is composed of a convolution and global average
pooling layer, a fully connected layer, and a softmax layer. As a result, it outputs conditional
probability for each class. The softmax function rescales the n-dimensional vector of the
FC layer output so that the output value is in the range [0, 1] and the sum is 1, which is
defined by the following:

s(vi) =
evi

∑n
j=1 evj

(15)

The full convolution module and LSTM module process the same time series input in
two different fields of view. The full convolution is a fixed-size perception field to extract
local features of time series. On the contrary, LSTM effectively captures time dependencies.
The method of combining with convolutional and recurrent neural networks is crucial to
enhance the performance of the proposed framework.

3.3. Quality Prediction System Based on MCRNN

Based on a large amount of process information collected by sensors, a quality predic-
tion and control system is established for intelligent decision-making and control. To elab-
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orate on the infrastructure of an established system, the framework of the system based
on MCRNN is described in Figure 5. It mainly consists of three parts: data acquisition,
quality prediction, and dynamic control. Data acquisition module based on various sensor
networks collects massive real-time production data about the continuous casting process,
such as temperature, water volume, and casting speed. The real-time collected process data
will be sent to the quality prediction module and stored as historical data for visualizing
the display and training of the model. Moreover, the quality information of each rolled
slab is collected to label continuous casting data.

LadleContinous Casting 
Process 

Tundish Crystallizer Continuous 
casting slab

Process And Quality  Data
 Acquisition Cooling water EMS Argon

Quality 
Prediction

...

...

Label

Dynamic 
Control
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Figure 5. The framework of quality prediction system based on MCRNN.

With production process parameters and slab labels, a quality prediction model based
on the proposed MCRNN is built. In the real-time production process, the original time
series data are entered into the model and transformed with different time scales and
frequencies. The output of the model is the quality label of CCS. Once the slab in producing
is judged to be abnormal by the prediction model, the knowledge of domain experts will
be employed to dynamically adjust the production process. The dynamic control module
adjusts the process and equipment parameters in time through the programmable logic
controller to avoid affecting the next rolling process and causing waste. Abnormal CCS
produced will be sorted into the cleaning process of the machine to eliminate defects.
The workflow improves efficiency, reduces costs, and enhances yield greatly.

4. Experiments and Results

In this section, we first describe the dataset and the evaluation metrics. Then, the
effects of the RUS method and multiscale transformations are discussed in our studies.
Finally, the proposed MCRNN model compares with different baseline models.

4.1. Dataset

Based on the installed data collector, the mold level fluctuation of the continuous
casting production is recorded every 0.5 s in time series. In this way, we obtain a one-year
continuous casting real-time process (CCRP) dataset which is not labeled. The continuous
casting slab is rolled, and then the label information is generated by the inspection machine.
Therefore, we get slightly delayed slab quality information, called the slab label dataset,
from another system.

The slab label dataset contains abnormal reasons to be used as anomaly labels. We can-
not obtain the quality information of CCS in the production process immediately, and can
only get feedback results after hot rolling. The only connection to the CCRP dataset and the
slab label dataset is the time of continuous casting. We map the anomaly labels in the slab



Processes 2021, 9, 33 10 of 16

label dataset to the CCRP dataset through casting time. Each slab corresponds to a large
amount of real-time information during the continuous casting period. With the help of
the start and end times in the slab label dataset, we match quality labels to the time series
data during this period.

After marking the CCRP dataset with the slab label dataset, we obtained 9628 time
series of slabs with the label. Among them, 9073 time-series were labeled as normal
samples, and 555 time series were labeled as abnormal samples. In all experiments, we
used a leave-one-out approach to train and test the classifier, divided the sample into two,
70% of the samples for training and 30% of the samples for testing, and used k-fold cross-
validation to ensure the robustness of the model; cross-validation was repeated 5 times.
However, normal and abnormal samples were extremely unbalanced. We utilized the RUS
method described in Section 3.3 on the training set to ensure sample balance.

4.2. Evaluation Metrics

The confusion matrix is used to evaluate the quality of the algorithm in the classifi-
cation task. In particular, we focus on three important metrics, the average accuracy of
the classifier, the recall value for each class, and F1 score. Our goal is to find a balance
between false negatives and false positives, and find as many abnormal slabs as possible
for good judgment. Specifically, if our model does not detect a CCS with abnormal quality,
the abnormal slab will move on to the next process, and the final result is that the produced
steel plate cannot be sold. If a CCS of normal quality is predicted to be abnormal by the
model, it will undergo further processing attempts to change the quality status, which will
increase costs. The most important point is that the cost of sending defective products to
customers can be much higher than that of inspecting the products. Therefore, we want to
maximize recall rates of exception class and sacrifice as few normal samples as possible.

Recall =
TP

TP + FN
(16)

Precision =
TP

TP + FP
(17)

F1 = ∑
i

2× wi
Precisioni × Recalli
Precisioni + Recalli

(18)

where i refers to class index and wi =
ni
N represents the proportion of samples of class

i, with ni being the number of samples of the ith class and N being the total number
of samples.

4.3. Effect of Random Undersampling

The training errors of different sampling rates (1:1, 1:2, 1:3) shows in the form of loss
curves in Figure 6. When the sampling rate is 1:2, the curve drops more smoothly, so the
sampling effect is better.

Tables 3–5 show the results of k-fold cross-validation of the proposed MCRNN method
at different sampling rates, k = 5. The result of the proposed MCRNN method at different
sampling ratios is shown in Table 6. From the results, we can see the effect of sampling on
the predictive performance of the model, and our model has a certain degree of robustness.
Without sampling, recall for abnormal class and normal class is 0 and 1, respectively.
Obviously, the trained models predicted all the slabs as normal to acquire the highest
accuracy, without any ability to detect abnormal slabs. As the proportion of abnormal
samples in the training sample increases, the recall of abnormal class increases. The SMOTE
sampling algorithm has a certain effect on solving the problem of imbalanced data [41].
We also compared the SMOTE sampling algorithm with RUS in Table 6, and it was obvious
that the RUS algorithm we proposed has a better effect on our data set. However, when the
sampling ratio is 1:1, although more than 50% of abnormal slabs can be identified, a large
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number of normal slabs are misjudged at the same time. It is reflected in the low F1 score
and accuracy.

(a) sampling ratios = 1:1 (b) sampling ratios = 1:2

(c) sampling ratios = 1:3

Figure 6. The MCRNN training loss curve with different sampling ratios.

Table 3. Results for sampling ratios = 1:1 with k = 5.

Accuracy F1 Recall-Abnormal Recall-Normal

1 0.3978 0.5164 0.6165 0.6071
2 0.4147 0.5338 0.5987 0.6122
3 0.4549 0.5724 0.5553 0.5714
4 0.4551 0.5747 0.5525 0.5663
5 0.4531 0.5737 0.4531 0.5306

Table 4. Results for sampling ratios = 1:2 with k = 5.

Accuracy F1 Recall-Abnormal Recall-Normal

1 0.6247 0.7206 0.3588 0.3827
2 0.6227 0.7190 0.3651 0.4439
3 0.6058 0.7062 0.3797 0.3929
4 0.6393 0.7315 0.3404 0.3418
5 0.6325 0.7264 0.3512 0.3929

Through the sampling of training samples, the prediction ability of the model for
abnormal slab can be improved, but the best proportion is one that is not completely
balanced. When the sampling ratio is 1:2 or 1:3, the trained model has a certain ability to
detect abnormal slabs without misjudging a large number of normal slabs. In the actual
quality prediction of CCS, we adopt the sampling strategy with a sampling ratio of 1:2
because sending defective slabs to customers based on prediction can be more expensive
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than misjudgment, and we want to detect as many abnormal slabs as possible to avoid
inferior products.

Table 5. Results for sampling ratios = 1:3 with k = 5.

Accuracy F1 Recall-Abnormal Recall-Normal

1 0.7142 0.7843 0.2590 0.3214
2 0.7292 0.7940 0.2406 0.2857
3 0.6875 0.7659 0.2876 0.3214
4 0.6940 0.7705 0.2816 0.3367
5 0.7181 0.7871 0.2563 0.3418

Table 6. Results for different sampling ratios.

Sampling Ratio Accuracy F1 Recall-Abnormal Recall-Normal

1:1 0.4351 0.5542 0.5552 0.5776
1:2 0.6250 0.7207 0.3590 0.3908
1:3 0.7086 0.7804 0.2650 0.3214

SMOTE 0.4566 0.5274 0.4942 0.5272
No sampling 0.9445 0.9277 0 1

4.4. Effect of Multiscale Transformations

In order to validate the effectiveness of multiscale input transformations, we per-
formed experiments with transformed and untransformed inputs. The results are shown in
Figure 7. We can see that the F1 score with input transformations is higher than that without
input transformations when the sampling ratio is 1:2 and 1:3. When the sampling ratio is
1:1, the F1 score of the two scenarios are almost identical. However, input transformations
have a positive effect on the recall for abnormal class. It can be concluded from the right
part of the figure that more abnormal slabs can be detected with input transformations.
In most cases, performing input transformations will help greatly improve classification
performance. The effectiveness of the multiscale transformations is demonstrated in the
recall rate of the abnormal class and F1 score.

(a) F1 score (b) Recall for abnormal class

Figure 7. Effects of multiscale transformation on classification performance.
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4.5. Comparison

We conducted experiments on our dataset using two baseline methods from the publi-
cation of Wang et al. [34] for comparison to our developed approach: fully convolutional
network (FCN) and residual network (ResNet), which have been proved to be useful as
standard benchmarks for end-to-end time series classification networks. The FCN basic
block is a convolutional layer, followed by a batch of normalization layer and a ReLU
activation layer, and the final output comes from the softmax layer. The convolution
operation is completed by three 1-D kernels of size 8, 5, 3. The final network is constructed
by stacking three convolution blocks. The filter size of each convolution block is 128, 256,
128. ResNet uses the convolution block in FCN to construct each residual block, and finally
stacks three residual blocks, followed by a global average pooling layer and a softmax
layer. The number of filters for each residual block is 64, 128, 128. Furthermore, long short-
term memory (LSTM) is used to compare with our proposed method, which has been
proved to apply to periodic time series data. We have optimized the parameters of all
networks participating in the comparison experiment to achieve the best results in this
problem domain.

Table 4 shows the recall rate for the abnormal class of the proposed model and the
other methods of baselines. Table 5 compares the F1 score of our proposed model with
other models. The results illustrate that our proposed model achieves the highest recall
for abnormal class at different sampling ratios. According to Tables 7 and 8, the proposed
model achieves the highest recall for abnormal class while maintaining a high F1 score.
When the sampling ratio is 1:2, the proposed model obtains the recall for an abnormal class
of 0.3590 and the F1 of 0.7207. It is best for our task. We hope that the model can detect
more abnormal slabs and minimize misjudgment, which is a cost consideration.

Table 7. Recall-Abnormal comparison between the proposed model and the other baseline methods.

Methods Sampling Ratio
1:1 1:2 1:3

FCN 0.5303 0.3485 0.2576
ResNet 0.5455 0.3536 0.2272
LSTM 0.5303 0.0606 0.0151

MCRNN 0.5552 0.3590 0.2650

Table 8. F1 score comparison between the proposed model and the other baseline methods.

Methods Sampling Ratio
1:1 1:2 1:3

FCN 0.5249 0.6778 0.8155
ResNet 0.5137 0.6751 0.8246
LSTM 0.6244 0.8962 0.9445

MCRNN 0.5542 0.7207 0.7804

By comparison of the three methods, LSTM is bad in comparison to ResNet and FCN
for Recall-Abnormal and MCRNN is not superior to ResNet and FCN in the F1 score. How-
ever, the MCRNN is superior to LSTM in the Recall-Abnormal score, though the MCRNN
shows inferior slightly to LSTM in the F1 score. Considering the engineering scenario of
steel production prediction, the Recall-Abnormal is more important than the F1 score to
prevent low-level steel slabs from escaping check. FCN and ResNet, though slightly inferior
to our model, also achieved good classification performance. However, LSTM performs
unsatisfactorily in most cases except for the 1:1 sampling ratio. LSTM can easily deal with
periodic time series data, but there are still some challenges with cluttered sensor data.
Compared with FCN and ResNet, the MCRNN extracts features at different time scales and
frequencies. Inputs of different transformations capture long-term trends and short-term



Processes 2021, 9, 33 14 of 16

changes, which is essential for classification. It can explain that the traditional methods
simply perform a large number of convolutions over the same time scale.

5. Conclusions

We proposed a novel MCRNN architecture for the quality prediction of CCS. The ma-
jor contributions of the new architecture are the transformations of time series input and
feature extraction with LSTM and FCN. The proposed architecture can automatically ex-
tract the long-term trend and short-term change of time series, which greatly enhances
feature learning ability and abnormal slab detecting performance. Extensive experimental
results show that traditional methods are more incapable when dealing with messy and
unbalanced data, and multiscale convolution and recurrent neural networks outperform
other state-of-the-art baseline methods in quality prediction. Accordingly, a real-time qual-
ity prediction system based on MCRNN architecture has also been developed. The mold
level fluctuation collected by the data module in the system is fed into the trained model.
The continuous casting process will be adjusted in real-time based on expert knowledge
if there is a high probability of prediction that it is an abnormal slab. The system greatly
enhances steelmaking efficiency, improves slab quality, and reduces costs. Due to class
imbalance caused by a few abnormal slabs, we use a random sampling method to generate
training sets with three different sampling ratios to help mitigate class imbalance. Experi-
mental results demonstrated that the proposed method can detect more abnormal slabs
and reduce the misjudgment of normal slabs when the sampling ratio is 1:2.

For future research, although the established quality system has achieved certain
results, it is still insufficient in several aspects such as interpretability of prediction and
root cause analysis, the sampling method of dealing with the problem of unbalanced data
is still worthy of our continued study. In recent years, the interpretability of deep learning
is an important research field. In the future, we will utilize the interpretable method and
root cause analysis to find out the cause of the abnormal slab, which will further improve
the performance of intelligent steelmaking.
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CCS Continuous Casting Slabs
MCRNN Multiscale Convolutional and Recurrent Neural Network
RUS Random Undersampling
IoT Internet of Things
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
TSC Time Series Classification
DTW Dynamic Time Warping
WDTW Weighted Dynamic Time Warping
FCN Fully Convolutional Network
MLP Multilayer Perceptron
ESNs Echo State Networks
CCRP Continuous Casting Real-time Process
ResNet Residual Network
SMOTE Synthetic Minority Oversampling Technique
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