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Abstract: Traditional hazard and operability analysis (HAZOP) is one of the most widely applied
methods for process safety management in process enterprises. Due to its principles based on the
conservative and qualitative judgment, it often leads to too conservative risk identification results for
the fluorine chemical industry usually with high-risk processes to keep the continuity of production.
Most of improved quantitative and semi-quantitative methods are based on the layer of protection
analysis (LOPA) to resolve the over-conservative problem of traditional HAZOP with the database
of LOPA. However, the improved model, taking LOPA as the main line and HAZOP only as the
provider of scenarios and influencing factors, is limited to the fact that LOPA can only analyze
complete and independent protection layers (IPLs). Therefore, in order to realize the quantitative or
semi-quantitative analysis of disaster causes and consequences, a new semi-quantitative HAZOP
method takes HAZOP as the main line to integrate LOPA, F&EI (fire and explosion index) for
quantitatively calculating the reduction factors, probability on failure demand (PFD) of general
protection layers (GPLs) and PFD of IPLs. With the case comparison of fluorine chemical industry, it
is proved that this new method can effectively improve the problem that traditional HAZOP are too
conservative in complex scenarios.

Keywords: process safety management (PSM); HAZOP; fluorine chemical industry; reduction
factor; PFD

1. Introduction

“Danger” is almost taken as an attribute of processes [1], it usually happens as an
“accident” or “incident”, an unplanned and harm event [2]. Additionally, the unplanned
character means that “danger” usually possesses an uncertainty and its real impacts can be
described by the “risk”, the variable expressing the degree of uncertainty of the objective
and the source of “risk” is called the “hazard” [3], an unsafe condition having strong harm
or damage potential. In general, a “hazard” is composed of “hazard cause” and “hazard
consequence”, and the former is any possible cause of a hazard, the latter is a chain of oc-
currences caused by the “hazard” [4]. Therefore, the identification and scenario description
on a “hazard” are beneficial to find out a series of essential events causing the potential
“danger” to turn into a real “incident” or “accident”, it is helpful to integrate a complete
process safety management. Generally, the most common methods include safety checklist
(SCL) [5], preliminary hazard analysis (PHA) [6], fault tree analysis (FTA) [7], failure mode
and effect analysis (FMEA) [8] and hazard and operability analysis (HAZOP) [9]. Even the
ISO 31010 almost gathers all the popular analytical methods and points out their respective
strengths and limitations [10], and in all of those, HAZOP is a qualitative one to focus on
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analyzing the “hazard” and its operability, developed by imperial chemical industries Ltd.
(ICI) inin the 1960’s [11]. Due to its effective identification and assessment on the hazard,
HAZOP is suitable for a large scale analysis and widely applied for hazard identification
and assessment in process industry. After a long period of continuous improvement,
HAZOP’s reliability and effectiveness have been approved by most of the process indus-
try, such as NPPs [12], oil and gas industry [13] and bio-pharmaceutical industry [14].
The research on HAZOP is important on two issues, one is optimizing or automating
the analysis process of HAZOP, for example optimizing the order of analysis nodes [15],
optimizing the analysis on cause/consequence relation in a node [16], and the other is
researching the limitation of conventional HAZOP and its improvement [17]. Typically,
conventional HAZOP is less accurate in processes with complex relationships, and defaults
equal weights to all various risk factors, regardless of their respective different influencing
degrees on consequences and probabilities [18]. Therefore, researchers attempted to offset
the limitation of conventional HAZOP. Sultana et al. [19] sought to use System Theoretical
Process Analysis (STPA) improving HAZOP and found out that HAZOP is more suitable
and possesses the most important advantage on its simplicity and less time requirement for
a system with less software and simple interactions. M. Di Nardo et al. [20,21] tried to use
System Dynamics (SD) quantifying the accident occurrence probability through analysis
of interactions of all possible incidental scenarios with a causal loop diagram (CLD) for
improving the layer of protection analysis (LOPA), and pointed out that the SD modeling
is able to simulate the influences of changes in time and feedback mechanism, but SD
is only very effective in evaluating the interaction effect of properly identified different
incidental scenarios through any other risk analysis technique used. Hence, for more
accurately and efficiently screening those high-risk incidental scenarios, it is necessary for
a useful improvement on the HAZOP to keep its simplicity and less time requirement and
then more accurately to analyze the scenarios, distinguish the respective weight differ-
ences between various risk factors and causes or consequences with regard to a complex
cause/consequence relationship. For this purpose, the majority of researchers combined
HAZOP with semi-quantitative LOPA, where HAZOP was applied to rapidly identify the
deviations and their cause/consequence pairs and then LOPA selected a combination of a
deviation and its consequence as an accident scenario to be analyzed one by one from those
deviations and consequences [22], any potential cause of this deviation as an initiating
event [23]. Finally, existing safeguards and recommendations in HAZOP were used to con-
firm the IPLs [24], LOPA gave PFD of any IPL to be quantitative or semi-quantitative [25]
and the flow chart is shown as Figure 1. With the method in Figure 1, the respective
order of magnitude can be determined about potential risk factors influencing causes or
consequences. It is the effectiveness in which the method was to be performed and to avoid
missing or over-conserving the assessment of high-risk hazards, so the method was widely
being applied in petrochemical plants in China [26]. Essentially, in this method in Figure 1,
LOPA is the main line for a hazard analysis to quantitatively or semi-quantitatively analyze
every IPL and HAZOP is the assistant line and the provider to find scenarios and risk
factors for any complex relationship of any potential process. However, in this method the
attribute of LOPA, only good at analyzing a complete IPL, determines that it is difficult
to effectively assess risk factors of non-IPLs despite severe influence of these factors on
hazards. Therefore, as far as these issues are concerned, a new semi-quantitative method,
with HAZOP as the main line and severity of any kind of identified risk factors quantified,
is deeply researched and discussed for complex relationships about process safety in this
paper.
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Figure 1. Interaction between HAZOP and LOPA in hazard analysis with a complex relationship.

2. Various Risk Factors in the Complex Cause/Consequence Correlation for a
Process Hazard
2.1. Impacts of Reduction Factors (RFs)

For the practical process safety risk, even in the absence of any protective measures, the
correlation between cause and consequence is not 100% or 1, but a probability. However, the
traditional HAZOP procedure assumes that the weight between cause and consequence is
equal to 1 in order to facilitate the analysis, that is, one cause must induce its corresponding
consequence at all times or under any condition. This relatively conservative evaluation can
improve the analysis efficiency for a simple system, but the design cost of the protection
layer will not obviously be increased by the over-conservative risk. Especially for the
fluorine chemical industry with high risk, this conservation may lead to significantly
large design difficulty and expensive cost of the protective layer and SIS system, and the
excessive protection also can affect the routine production to increase product cost. Hence
the correlation probability between cause and consequence, the reduction factors, have to
be used to quantitatively or semi-quantitatively analyze the magnitude of weight, so as to
accurately identify probability correlating the cause and consequence in HAZOP, complete
the necessary risk correction, and eliminate some over-conservative HAZOP results.

Generally, the reduction factors can be divided into two categories: the enabling
conditions and the contributing conditions. Among them, the enabling conditions, also
called enabling events, are only the necessary conditions or events to guide the occurrence
of potential accidents, but not directly leading to the accidents. The enabling condition
cannot be regarded as a protection layer (PL), but its real impacts can still be weighted by
its occurrence probability, and then correct the initiating event frequency. On the other
side, the contributing conditions are defined as the time proportion of the factory at a
special point or time in the accident chain, generally including the ignition probability of a
combustible substance and the exposure probability of personnel exposed to dangerous
events, and also represented by a probability in the quantitative calculation.



Processes 2021, 9, 1695 4 of 15

2.2. Impacts of Protection Layers (PLs)

The general concept of protection layer is defined as any independent mechanism
for risk reduction by means of control, prevention or mitigation [27–29]. Generally, it is
divided into independent protection layers (IPLs) and general protection layers (GPLs).
Additionally, it is widely considered that the definition of IPLs is more strict than GPLs,
only when the following conditions are met at the same time can it be called the available
IPLs:

(I) the PFD of an IPL is less than or equal to 0.1, that is, its risk reduction ability cannot
be less than one order of magnitude;

(II) independence: the executive ability of an IPL will not be affected by the initiating
event or other failure IPLs;

(III) effectiveness: IPLs can detect and respond to the response conditions in time;
(IV) auditability: IPLs shall have their respective information, documents or test and

maintenance procedures that can be checked.

Correspondingly, a GPL usually meets the conditions (II), (III) and (IV), but the
condition (I) cannot be met or often change between satisfied and unsatisfied due to
various reasons. However, no matter what kind of a PL, its role is as an independent
influencing factor to effectively weaken the actual risk degree of a hazard.

3. Semi-Quantitative HAZOP Analysis Model Based on Quantitative
Correction Factors

In most complex cause/consequence correlations, the final risk from HAZOP is often
affected by enabling conditions, contributing conditions, GPLs and IPLs. Therefore, the
PFD of IPLs or GPLs, reduction factors can be used to quantitatively identify the final
HAZOP risk at first, and then quantifying the risk magnitude determines the specific
semi-quantitative risk ranking, so as to identify high-risk hazards more accurately and
effectively. The semi-quantitative analysis model is shown in Figure 2.

The semi-quantitative HAZOP model is based on the traditional HAZOP and the
improved HAZOP methods, and introduces the quantitative analysis method of PLs and
reduction factors at the same time:

(I) Node number and node description: the number and brief description of each node
are determined by HAZOP analysts in the preparation stage. If the node is divided
according to the process, it can be described as the name of the process unit. If the
node is divided according to the specific equipment, it can be described as the name
of the specific equipment (including the connected pipeline).

(II) Design intent and drawing number: “design intent” refers to the design description
of the node. According to the different division objectives of the node, the process
design principle, starting and ending points of the node should be made clear in
simplified sentences as far as possible. The design intent can be summarized from
the management documents such as “operation procedures” or “process technical
procedures” of the enterprise; “drawing number” refers to the drawing number of
piping and instrument diagram (P and ID) involved in this node.

(III) Deviation type and detailed deviation: “deviation type” refers to the process or
operation deviation in this node determined by HAZOP analysts in the prepara-
tion stage. In order to avoid incomplete deviation analysis caused by insufficient
capability of HAZOP analysts, the deviation type knowledge database is introduced
to prompt HAZOP analysts to comprehensively check the deviations in each node
during pre-analysis; “detailed deviation” is a detailed description of “deviation type”,
for example, “high flow at pump outlet” is a detailed description of “high flow”.

(IV) Cause: it is a detailed description of the causes of deviation. In the actual analysis
process, there is more than one reason for a deviation. The cause-by-cause (CBC)
recording method is mandatory to be adopted, that is, the one cause corresponding
to one consequence during the recording. At the same time, the initiating causes
database (including the type of any initiating cause and its failure probability) is
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introduced to allow HAZOP analysts to avoid data shortages caused by the lack of
operation experience.

(V) Consequence: it is a detailed description of the consequence caused by combination of
cause with its detailed deviation. According to the different purposes of HAZOP, the
description of consequence is also different. The consequence generally includes safety
consequence, environmental consequence, financial consequence, reputation loss
consequence, etc., for example, if HAZOP takes safety consequence as the major target,
personnel casualty should be described as clearly as possible. In the conventional
analysis, the description of “consequence” is a part of the qualitative hypothetical
accidental scenarios, thus HAZOP analysts often have different opinions on the
qualitative hypothetical consequence. Therefore, an efficient solution is proposed to
rapidly determine the radius of medium leakage with Dow fire and explosion index (F
and EI) evaluation to conduct semi-quantitative analysis on the safety consequences,
environmental consequences and financial consequences.

(VI) Risk type: one or more risk types can be determined, such as safety risk, environ-
mental risk, financial risk, reputation loss risk, according to the different purposes of
HAZOP, so that HAZOP reviewers can comprehensively acquire the real risk clearly.

(VII) Initiating risk, residual risk 1, residual risk 2: “initiating risk” refers to the risk that
the existing safeguards are not considered in HAZOP, that is, the inherent risk of a
design. Additionally, “Residual risk 1” refers to the risk after considering the existing
safeguards, that is, the current existing risk. “Residual risk 2” refers to the risk after
considering the recommendations, that is, the future reduced risk. The relationship
among the three types of risks is shown in Figure 3.

Figure 2. Semi-quantitative HAZOP model based on quantitative correction factors.
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Figure 3. Relationship between initiating risk, residual risk 1 and residual risk 2 in the new semi-
quantitative HAZOP model.

(VIII)The existing safeguards/recommendations: the “types” of existing safeguards/recom
mendations in Figure 3 include IPLs, GPLs and reduction factors (enabling conditions
and contributing conditions). The “description” of existing safeguards/recommendations
is used to record the detailed description of the “type”. For example, “LIC liquid
level control loop (DCS)” is the detailed “description” of “basic process control system
(BPCS)”, a sort of IPLs.

4. Quantitative Model for Correction Factors
4.1. Enabling Condition Reduction Factor

The enabling condition cannot be regarded as a PL, nor a failure event or human error.
It is only a necessary condition leading to the occurrence of unexpected scenarios, and its
impact on risk can be described by a probability. Generally, the enabling condition can be
taken as a correction of the frequency of the initiating events, often related to time, season
and production mode.

In general, time-dependent enabling conditions refer to the fact that an accident or
an initiating event will only occur in a specific period of time, that is, the initiating event
will only lead to the occurrence of an accident in that specific period of time. The reduction
probability of such enabling conditions is shown in Equation (1).

f c
i (t) =

J
∑

j=1
t(j)
ec−i

aN · top
(1)

where fic(t) is the reduction factor caused by the time-dependent enabling conditions, 1/a;
t(j)

ec-i is the duration of the j-th occurrence of the i-th enabling condition, h; J is the total
occurrence of the i-th enabling condition; top is total operation time per statistical process
unit, h; a is the year spans when collecting all statistical data, year; N is the amount of
similar process units when collecting all statistical data.

The enabling conditions related to the production mode refer to the fact that an
accident or an initiating event is not periodic, but only occurs in a specific operation mode,
such as unplanned start-up and shutdown, production equipment switching, etc. Generally,
it is certain that this operation mode does not occur per year in similar process units, but
the statistical frequency of the operation mode is extremely high and each duration is quite
short. Therefore, the statistical frequency of this operation mode is obviously higher than
its proportion of the operation time. Thus, the statistical frequency is more suitable for the
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calculation of the reduction probability of such enabling conditions, shown in Equation (2);
on the contrary, its probability is calculated according to Equation (1).

f c
i (m) = min

{ ni
aN

, 1
}

(2)

where fic(m) is the reduction factor caused by the enabling conditions related to the produc-
tion mode, 1/a; ni is the occurrence times of the i-th enabling condition.

Through the above assumptions, it can be eliminated that an enabling condition is
both time-dependent and relating to production mode. At the same time, for a scenario,
any triggered enabling condition is enough to lead to the occurrence of undesirable conse-
quences, so it is the more rational selection than only the one with the largest probability
among all enabling conditions that needs to be considered.

In addition, it is widely approved that the reduction degree of an enabling condition
to the risk will not be stronger than that of an IPL [30], that is, the minimum probability of
any enabling condition is in the range of [0.001, 0.1], and if the peak risk of casualties is
abnormally high to exceed the peak risk standard (generally considered to be more than
one death) in the scenario induced by an enabling condition, then the minimum probability
of the enabling condition is 0.1, otherwise, the median probability, 0.01, is selected in the
range of [0.001, 0.1]. Therefore, the reduction factor of a certain scene or initiating event
can be obtained from Equations (3) and (4).

f c
i =

{
max

[
f c
i (t), f c

i (m), 0.1
]

LoLi > 1
max

[
f c
i (t), f c

i (m), 0.01
]

LoLi ≤ 1
(3)

f c
ec = max[ f c

i ] i = 1, 2, . . . , M (4)

where fic is the reduction factor of the i-th enabling condition, 1/a; LoLi is the death toll
caused by the i-th enabling condition; fec

c is the enabling condition reduction factor of an
initiating event, 1/a; M is the total of enabling conditions for an initiating event to cause an
accident.

4.2. Contributing Condition Reduction Factors

Contributing conditions is time dependent, reflecting the time proportion of a spe-
cial point or time in an accident chain, generally including the ignition probability of
combustible substances and the personnel exposure probability to dangerous events.

As one of universally accepted contributing condition reduction factors, the ignition
probability refers to the probability that the combustible is ignited by ignition sources
after leakage, generally divided into immediate ignition and delayed ignition. In terms of
ignition form, immediate ignition often leads to jet fire, fireball or explosion, while delayed
ignition leads to vapor cloud explosion (VCE), flash fire, pool fire, etc., [31].

Although many factors need to be considered in quantifying ignition probability,
research on its algorithms are adequate, mainly including calculation models and statistical
methods. Through comparative study [32], it is found that the model is mainly applicable
to the situation with the same assumptions and lack of statistical data, while the statistical
method is more universal and accurate due to mainly being based on industrial statistical
data. Additionally, the ignition probability is generally divided into four types: immediate
ignition probability of flammable liquid leakage, immediate ignition probability of gas
leakage, delayed ignition probability of gas leakage, and vapor cloud explosion probability
of gas leakage. There are many studies and databases on these ignition probabilities, even
the calculation methods are given for some extreme cases, such as for liquid leakage under
the high temperature, high pressure or caused by collision, the probability of immediate
ignition can be taken as 1; similarly, the probability of immediate ignition can be taken as 1
for gas leakage caused by over temperature, over pressure and over energy; whether it is
liquid or gas, when it has diffused to hundreds of meters, the ignition probability is at least
0.9 [33–40].
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The personnel exposure probability refers to the time proportion of personnel exposed
in the affected area when the leakage accident occurs. These personnel usually include
routine or temporary operating personnel, start-up and shutdown operators, maintenance
and repairing personnel and other short-term exposure personnel. If the accidental affected
area is large enough, the personnel near the unit should also be considered. It should be
noted that the exposure probability of personnel must be independent of the accident, that
is, the personnel brought by the accident emergency are not considered. If the alarm and
its response personnel are involved in the accident scenario, some operators have to go to
the affected area for inspection, and the exposure probability of these personnel should be
equal to 1. Similarly, when the initiating event is the operation error of the field operators, it
is certain that these personnel appear in the affected area of the accident, then the exposure
probability of these personnel is also 1. The exposure probabilities of various personnel are
shown in Equations (5) and (6).

feps−rc =
k

∑
i=1

t(i)rc
24

(5)

feps−m =

n
∑

i=1

t(i)m
ci

a
(6)

where feps−rc is the personnel exposure probability of routine operating personnel in the
accidental affected area; k is the total affected process units in the accident affected area;
t(i)

rc is the daily exposure time of routine operating personnel of the i-th process unit in the
accidental affected area, h; feps−m is the exposure probability of maintenance personnel in
the accidental affected area; n is the average of total maintenance process units per year in
an assessment cycle in the accidental affected area; t(i)

m is the annual average maintenance
time of the i-th maintenance process unit in an assessment cycle in the accidental affected
area, day; ci is the annual average running time of the i-th maintenance process unit in an
assessment cycle in the accidental affected area, day, and for a fluorine chemical process,
equal to 360.

Noteworthy is that if “restriction of personnel access to the i-th process unit area”
is taken as a safeguard or recommendation, the exposure probability of personnel in the
process unit is equal to 0, so as to evaluate the risk reduction of this protective measure.

From the above algorithms of the various personnel exposure probabilities, it is
necessary to first determine the affected area of the accident, such as the area of toxic
gas diffusion, the injured area of fire and explosion, etc. If the quantitative evaluation
method, such as QRA, is adopted, the affected area can be more accurate, but it will
extremely influence the availability and efficiency of HAZOP. Therefore, a semi-quantitative
method is adopted for rapidly effective estimates [41], and the estimate method is shown
in Equations (7)–(11).

F3 = min[F1 × F2, 8] (7)

F & EI = F3 ×MF (8)

F & EI′ = C× F & EI (9)

C = C1 × C2 × C3 (10)

R = 0.256 FE & I′ (11)

where F3 is risk the process unit hazard factor (PUHF), its range is from 1 to 8; F1 is the
general process factor (GPF); F2 is the special process factor (SPF); MF is the material
factor; F & EI is the fire and explosion index, mainly used to evaluate the injured degree
of exposure personnel; F & EI′ is the corrected F & EI after loss control credit factors,
mainly used to determine the radius of exposure; C is the loss control credit factors; C1 is
the process control credit factors; C2 is the material isolation credit factors; C3 is the fire
protection credit factors; R is the radius of exposure, m.
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Dow provided the detailed methods for the factors in Equations (7)–(11); moreover,
they underlined that when FE&I ≥ 128, the hazard degree is “heavy“ and exceeds the
acceptable level. The “heavy” level usually means the life loss is inevitable in HAZOP,
so it is the assumption in this paper that 100% of personnel are dead within the radius of
exposure R, and then the death toll under the i-th scenario, LoLi, can be calculated in the
accidental affected area.

Moreover, generally, the probability of personnel exposure is only used to calculate
the severity of accidental consequence (as shown in Figure 1). Therefore, the severity
considering the probability of personnel exposure can be calculated by Equation (12).

Severity = feps−rc · PSrc + feps−m · PSm + α · PSal + β · PSoe (12)

where Severity is the severity of accidental consequence; PSrc is the total routine operating
personnel within the radius of exposure R; PSm is the total maintenance personnel within
the radius of exposure R; α is the alarm response coefficient, when the alarm response is in
an analyzed accident scenario, α is equal to 1, otherwise it is 0; PSal is the total response
personnel to the alarm in an analyzed accident scenario; β is the operation error coefficient
of field operator, when the initiating event of accident scenario is the operation error of
field operators, β is equal to 1, otherwise it is 0; PSoe—the total field operating personnel in
an accident scenario with operation error of field operator as the initiating event.

4.3. Failure Probability of Protection Layers (PLs)

The PLs are divided into IPLS and GPLs, and both of them have protection ability, but
their protection effectiveness, PFD, are different. Therefore, the occurrence probability of
consequence of an initiating event can be calculated by Equation (13).

f s
i = f I

i ×
J

∏
j=1

PFDIP
ij ×

L

∏
l=1

PFDGP
il (13)

where fis is the frequency of the consequence s of initiating event i, 1/a; fiI is frequency of
initial event i, 1/a; PFDIP

ij is the failure probability of the j-th IPL preventing the occurrence

of consequence s in the initiating event i; J is the total IPLs in initiating event i; PFDGP
il is

the failure probability of the l-th GPL preventing the occurrence of consequence s in the
initiating event i; L is the total GPLs in initiating event i.

Many references [27–29] can directly provide the values of PFDIP
ij with high reliability

due to theses from the industrial statistical data, while the PFDGP
il needs some calculation.

In general, a GPL is usually composed of multiple links, and if any of the links fail, the
GPL will fail, so the protection ability of GPLS is relatively fragile. It is generally believed
that the PL involving manual operation as a necessary link has relatively low reliability. It
is necessary to calculate its failure frequency as GPLs in detail. The failure frequency of
GPLs is shown in Equation (14).

PFDGP
il =

V

∑
v=1

PFDGP(v)

il (14)

where PFDGP(v)

il is the failure probability of the v-th link in the l-th GPL in the initiating
event i; V is the total necessary links in the l-th GPL in the initial event i.

When the failure frequency of GPLs is calculated with Equation (14), some statistical
data of IPLs [30] can be found.
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5. Application Cases in Fluorine Chemical Industry
5.1. Process Conditions of a Fluorine Chemical Unit and Its High-Risk Hazard Identification
Results with Traditional HAZOP

A typical process unit of a fluorine chemical plant is mainly used to produce freon,
with an annual output of 260,000 t. The main safety risks are the combustion and explosion
risk of combustible substances such as propylene and the toxic risk of ammonia and
hydrofluoric acid. Therefore, the traditional HAZOP analysis is carried out for the typical
process. The two cases with high risk are shown in Table 1. Additionally, the generic
process flow diagram is shown in Figure 4, the freon is produced as the chemical equation,
Equation (15), in the process flow in Figure 4 [42]. “HV104 valve is closed by mistaking”
only considers the failure probability of valve intrinsic safety design and type selection.
According to the empirical data of fluorine chemical industry, its value is 0.01 (1/a), while
the failure frequency of “LICA312A control loop fault”, a BPCS, is 0.1 (1/a). With the
assumption of traditional HAZOP, the cause must lead to its corresponding consequences,
and according to the risk assessment matrix shown in Figure 5, where the red means the
“Very high” risk, orange means the “High” risk, yellow means the “Very high” risk and
White means the “Low” risk. The risk results of the two cases are, respectively, “High” and
“Very high”.

CH3Cl + 2HF → CHClF2 + 2HCl (15)

Table 1. Cases of high-risk hazard identification results with traditional HAZOP for freon process unit.

Cases Guide Words Causes Consequences Existing Safeguards Risk

1 Pressure is high in
Reactor R101

Manual valve HV104
is closed by mistake

R101 is over-pressured, and
HF acid leakage is toxic to

personnel

1. PRAS107 (DCS loop)
2. Safety valve SV107 High

2
Liquid level is high

in HF acid tank
V312A

DCS loop LICA312A
is faulty, not closing
the control valve in

time

V312A experiences spillover
or over-pressure, and HF

acid leakage is toxic to
personnel

1. PIA312A liquid level
high alarm field operation

of operators
2. Safety valve SV312A

Very high

Figure 4. Freon generic process flow diagram (PFD).



Processes 2021, 9, 1695 11 of 15

Figure 5. Risk assessment matrix on HAZOP.

5.2. Risk Identification Based on the New Semi-Quantitative HAZOP Model

For the impact of the reduction factors of the two cases shown in Table 1, the calculation
parameters are shown in Table 2. In case 1, “HV104 closed or opened” belongs to the routine
operation, and its average operation frequency is 24 times/a. Moreover, the initiating event
“HV104 valve is closed by mistake” only occurs when the valve needs to be operated,
resulting in the consequences in Table 1, so it belongs to non-accidental operation, and can
be regarded as the time enabling condition to be calculated quantitatively by Equation (1).
For the initiating event “LICA312A control loop failure” in case 2, its necessary enabling
condition is “instrument maintenance failure”. Generally, the sudden failure of DCS loop
can be repaired in time. Therefore, “instrument maintenance failure” is an accidental event,
so it can be regarded as the enabling condition related to production mode to be calculated
quantitatively by Equation (2). In addition, case 1 takes the field operation error as the
initiating event, so its α is 1, while the PLs in case 2 contains “personnel alarm response”,
so its β is 1. In addition, the assessment cycle of each unit is 3 years, the total maintenance
time in this cycle is 15 days, and the cumulative participants is 50. Additionally, HF acid is
used as a dangerous process medium, considering the operation parameters and safety
protection measures of this freon unit, the calculation parameters of enabling conditions of
cases 1 and 2 are shown in Table 2. Additionally, considering the data in Table 2, except for
MF, C1, C2, C3 from [41], all of the others came from the authors’ investigation.
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Table 2. The parameters of reduction factors and their values.

Parameters
Values

Case 1 Case 2

t(j)
ec-i 1 0
J 720 0

top 24,000 0
a 3 3
N 10 100
ni 0 1
k 1 1

t(i)
rc 1 1

n 1 1
t(i)

m 5 5
F1 2.55 2.55
F2 4 4
MF 24 [41] 24 [41]
C1 0.572 [41] 0.572 [41]
C2 0.856 [41] 0.856 [41]
C3 0.698 [41] 0.698 [41]

PSrc 2 2
PSm 50 50

α 0 1
PSal 2 2

β 1 0
PSoe 2 2

The calculation results of items about the reduction factor obtained by using the
parameters in Table 2 and Equations (1)–(12) are shown in Table 3.

Table 3. The calculation results of reduction factors.

Items
Results

Case 1 Case 2

fic(t) 0.001 0
fic(m) 0 0.003
LoLi 3 3
fic 0.1 0.1
fec

c 0.1 0.1
feps-rc 0.042 0.042
feps-m 0.014 0.014
F&EI 192 192

F3 8 8
F&EI’ 65.60 65.60

C 0.342 0.342
R 16.79 16.79

Severity 2.768 2.768

In Table 3, the R of the two cases is about 16.79 m, involving only one process unit, so
the k and n in Table 2 are both equal to 1. Meanwhile, the Severity (probability weighted
death toll) in the affected area is equal to 2.768, so LoLi has to be equal to 3.

In addition, it can be seen from Table 1 that case 1 has two IPLs, while case 2 has one
IPL and 1 GPL. According to the empirical data from fluorochemical industry in China, for
the IPLs in cases 1 and 2, the failure probability of DCS system is 0.1, the failure probability
of safety valve (SV) is 0.1, while for the GPL, the failure probability of the alarm system is
0.1, and the failure probability of personnel response ranges from 0.1 to 0.5 [30] because
the reserved time from alarm to tank spillover is 15 min according to the general storage
tank design specification. Therefore, the median value, 0.25, is adopted for the failure
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probability of personnel response. The PFD of IPLs and each link of GPLs is shown in
Tables 4 and 5. With Equation (14), the calculation results of GPL in case 2 are shown in
Table 6. Finally, with the data in Tables 4 and 6, the failure probability of the PLs in case 1
and case 2 is equal to 0.01 and 0.035, respectively, by using Equation (13).

Table 4. PFDs of IPLs and their values.

PFDs of IPLs Values

PFDIP
11 0.1

PFDIP
12 0.1

PFDIP
22 0.1

Table 5. PFDs of necessary links of GPLS and their values.

PFDs of Necessary Links of GPLs Values

PFDGP(1)
21 0.1

PFDGP(2)
21 0.25

Table 6. PFDs of GPLS and their values.

PFDs of GPLs Values

PFDGP
21 0.35

With the semi-quantitative HAZOP analysis model, the risks of hazards are as shown
in Table 7. In consequence respect, the reduction factor of personnel exposure does not
reduce the safety severity level and keeps the S5 level. However, in likelihood respect, the
reduction factor of enabling condition can reduce one likelihood level both in cases 1 and 2,
and then with the existing safeguards the likelihood is reduced from L5 to L2 and residual
risk is also reduced from “High” to “Medium” in case 1, while in case 2 the likelihood is
reduced from L6 to L4 and residual risk is from “Very high” to “High”.

Table 7. Hazard risk identification results based on new semi-quantitative HAZOP model.

Cases
Initiating Risk Reduction

Factors Residual Risk 1 Existing
Safeguards Residual Risk 2

S L r fec
c S L r PFD S L r

1 S5 L5 H 0.1 S5 L4 H 0.01 S5 L2 M
2 S5 L6 VH 0.1 S5 L5 H 0.035 S5 L4 H

6. Conclusions

A new semi-quantitative HAZOP model was presented, different from the past im-
proved model with LOPA as the main analytical line. The new model still regards HA-
ZOP as the main line to keep the efficient analysis of traditional HAZOP at complex
cause/consequence correlations. Moreover, the new one can be applied to the safety
management of the fluorine chemical process to improve the over-conservative hazard
identification from the traditional HAZOP at present. In this model, the quantitative reduc-
tion factors, IPLs and GPLs are introduced into the traditional HAZOP analytical process,
and construct a new semi-quantitative HAZOP model. In addition, the quantitative algo-
rithms of the reduction factor, PFDs of IPLs and GPLs are given, after fully considering the
likely operation, maintenance, emergency scenarios and other influencing factors that may
occur in fluorine chemical industry. Through a case from a typical process unit of fluorine
chemical industry, comparing with the traditional HAZOP, the new model can complete
the quantitative assessment on reduction factors and PLs, based on the semi-quantitative
evaluation on consequence affect areas. It can determine the real process risk rank more
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efficiently and accurately than traditional HAZOP and eliminate the over-conservative
high-risk identification to optimize the process safety management and reduce excessive
protections in fluorine chemical industry.

Although the method proposed in this paper puts forward a more comprehensive
quantitative model for failure likelihood, for consequence analysis, a compromise simpli-
fication has to be adopted to maintain the efficiency of risk screening with the empirical
Dow index. Therefore, some omissions can exist in using this method to identify high-risk
hazards, especially for the hazard scenarios with a more complex correlation or the sce-
narios with domino effects. For those scenarios, it may be the most reasonable method to
apply the full quantitative simulation analysis model for more rigorous analysis for these
few identified high-risk scenarios through the semi-quantitative method proposed in this
paper screening out efficiently high-risk scenarios. Therefore, the next research needs to
focus on effectively avoiding the screening omission or underestimation of such high-risk
scenarios and better combination of more efficient screening analysis and more accurate
simulation analysis methods.
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