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Abstract: In this study, we present a new algorithm for finding the optimal friction stir welding
parameters to maximize the tensile strength of a butt joint made of the semisolid material (SSM) ADC
12 aluminum. The welding parameters were rotational speed, welding speed, tool tilt, tool pin profile,
and rotational direction. The method presented is a variable neighborhood strategy adaptive search
(VaNSAS) approach. The process of finding the optimal friction stir welding parameters comprises
five steps: (1) identifying the type and range of friction stir parameters using a literature survey;
(2) performing experiments according to (1); (3) constructing a regression model using the response
surface method optimizer (RSM optimizer); (4) using VaNSAS to find the optimal parameters for the
model obtained from (3); and (5) confirming the results from (4) using the parameter levels obtained
from (4) to perform real experiments. The computational results revealed that the tensile strength
generated from VaNSAS was 3.67% higher than the tensile strength obtained from the RSM optimizer
parameters. The optimal parameters obtained from VaNSAS were a rotation speed of 2200 rpm,
a welding speed of 108.34 mm/min, a tool tilt of 1.23 Deg, a tool pin profile of a hexagon, and a
rotational direction of clockwise.

Keywords: friction stir welding; differential evolution algorithm; D-optimal; SSM-ADC 12

1. Introduction

Aluminum alloys are important for building components in various industries that
require low-weight and high-strength materials, such as the automotive, marine, and
aviation industries. These industries use aluminum alloys and cast aluminum [1] due
to their strength, weldability, machinability, corrosion resistance, and formability [2,3].
Today, cast aluminum is formed using a semisolid state process to reduce the defects of
cast aluminum. The semisolid metal (SSM) aluminum was created for assembled welding.

The fusion welding process, which uses a high temperature for melting and welding,
is difficult with aluminum materials due to problems associated with the thermal expansion
coefficient and the low melting point. The weld seam causes metallurgy-related problems,
defects, and issues with the mechanical properties, including low strength, distortion,
shrinkage, and porosity in weld lines [4–6]. A solid-state welding joint was used to solve
the problems associated with weld joint ability and metallurgy. In particular, the friction
stir welding process produced a low melting point and good material mixing using a
stirred tool [7,8]. Friction stir welding (FSW) does not melt and recast but utilizes plastic
deformation at the welding location from frictional heat between the tool and the material.
This allows for a good weld line structure [9–11].
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A lot of research has been conducted on process parameters and their effects on FSW
aluminum alloys. The process parameters for welding are important for control-ling heat
generation, plastic deformation, material flow, material mixing, metallurgy, strength, and
reducing defects [12–24]. Recent studies on the optimal process parameters for aluminum
welding found that rotation speed, welding speed, shoulder diameter per pin diameter
ratio, tool geometry, and surface shoulder can cause increases or decreases in the strength
and number of weld line defects [25–27]. Several approaches for predicting the optimal
aluminum welding parameters (factorial design [28], Taguchi design [29], the response
surface method, a combined method [30], etc.) are shown in Table 1.

Table 1. Predicted approaches and parameters optimization from literature reviews.

Authors Approaches Materials

Joint Welding Optimized Parameters

Similar Dissimilar Rotation
Speed

Welding
Speed

Tilt
Angle

Tool
Geometry

D/d
Ratio

Axial
Force

Tool
Material

Rotational
Direction

This work
Hybrid method

D-optimal experimental
design and VaNSAS

SSM-ADC 12 4 4 4 4 4 4

Meengam and Sillapasa (2020)
[28] Factorial design SSM-Al 6063 4 4 4 4

Srichok et al., 2020 [30] Combination of RSM and
MDE AA 6061-T6 4 4 4 4 4 4

Hartl et al., 2020 [31] Gaussian Process
Regression EN AW 6082-T6 4 4 4

Prasad and Namala 2018 [32] Taguchi method and
Anova

AA5083 and
AA6061 4 4 4 4

Shanayas and Edwin Raja Dhas
2017 [33] RSM AA 5052-H32 4 4 4 4 4

Kadaganchi et al., 2015 [15] RSM AA2014-T6 4 4 4 4 4
Hartl et al., 2020 [34] ANN AA 6082-T6 4 4 4

Bayazid et al., 2015 [35] Taguchi method AA 6063-7075 4 4 4

Shojaeefard et al., 2014 [36] Combination of FEM and
ANN AA 5083 4 4 4

Teimouri and Baseri 2013 [37] Combination of ABC and
ICA aluminum 4 4 4 4

Roshan et al., 2013 [38] Combination of RSM,
ANFIS and SA AA 7075 4 4 4 4 4

Aydin et al., 2010 [39] Combination of Taguchi
method and GRA AA 1050 4 4 4 4

Tansel et al., 2010 [40] Combination of ANN
and GA AA 1080 4 4 4

Lakshminarayanan and
Balasubramanian 2008 [41] Taguchi method AA RDE-40 4 4 4 4

Yousif et al., 2008 [42] ANN Al alloy 4 4 4

RSM = response surface method, MDE = modified differential evolution, FEM = finite element method, ANN = artificial neural networks,
SA = simulated annealing algorithm, ANFIS = adaptive neuro-fuzzy inference systems, GRA = grey relation analysis, GA = genetic
algorithm, ABC = artificial bee colony algorithm, ICA = imperialistic competitive algorithm.

From a literature review, we found that seven parameters had an influence on the
weld line properties. However, several studies only selected the four parameters that most
affected the metallurgical characteristics and mechanical properties, i.e., rotation speed,
welding speed, tool geometry, and tilt angle [15,43]. The axial force, tool material parameter,
and D/d ratio of a tool have an influence on the initial welding but do not affect the weld
movement. This is because welding starts with high heat and the plastic deformation of
the material. Thereafter, the heat and plastic deformation are controlled by the rotation
speed and welding speed parameter. The weld movement reduces the tool wear and axial
force [44]. Therefore, both the axial force and tool material parameter were neglected in
several previous study (see Table 1). In addition, tool rotational direction parameter was
not considered an important factor with commonsense in FSW. Because this parameter
does not affect to the thermal generation, and material deformation in welding the similar
material. That it was not essential to effect study on weld line property.

However, some research found that the rotational direction parameter has not been
shown to directly affect the weld line properties. Contrarily, it was found that tool rotational
direction has been interaction effect together with welding direction or tool pin shape
especially thread pin that affected to turbulence flow of material, reduced defect, smooth
surface and reduced thinning flash deformation [45–49].

Furthermore, the optimization of welding parameters is an important method for
controlling the welding. The experimental design can differ notably in terms of the number
of experiments and accuracy. Nevertheless, when we compare the experimental design
methods with similar factor numbers, the D-optimal design exhibits the lowest number
of experiments and produces the highest accuracy [50–52]. For this reason, the D-optimal
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design has been used as the experimental design in many studies. Moreover, the optimized
parameter approach was developed for experimental data analyses using a single or
combined approach for optimal response prediction: a combined approach gives more
accurate response predictions than the single approach [38,40].

In addition, several heuristic methods were used for optimization prediction to im-
prove the speed and success of the tour routing, transportation, agriculture, and manufac-
turing processes [53–58]. Several studies used heuristic methods for optimized problem
solving, such as adaptive large neighborhood search (ALNS), genetic algorithm (GA),
differential evolution (DE), particle swarm optimization (PSO), variable neighborhood
strategy adaptive search (VaNSAS), etc. These heuristics are successful in problem solving
and lead to better solutions than conventional methods [15,43,44,50,51]. The VaNSAS algo-
rithm was found to give higher accuracy than other algorithms, with an average solution
accuracy of 99.92% [44,51,52,54]. Assembly line balancing problems in manufacturing
processes and location routing problems in transportation can be solved using the VaNSAS
algorithm to reduce transport time and costs. Therefore, the VaNSAS algorithm is used by
researchers for solution optimization.

The optimization of FSW process conditions was a major achievement in the field
of optimal condition prediction [30,36]. Aluminum alloys have most often been used in
research on FSW, with less research considering SSM aluminum materials.

Therefore, this work focuses on finding the optimized process conditions for FSW. The
welding type was butt joint welding for SSM ADC 12 aluminum. The ADC 12 aluminum
material is a new material that was developed for use as part of the marine and automotive
industries. However, the optimal parameters for FSW using the ADC 12 material remain
unknown. Thus, finding the optimized parameters is the first step in the D-optimal design
for experimental generation and parameter optimization with the variable neighborhood
strategy adaptive search (VaNSAS) approach. The process parameters for optimization
conditions were rotation speed, welding speed, tool rotational direction, tool tilt angle,
and tool geometry. The tensile strength of the weld line optimal response prediction
was analyzed using a scanning electron microscope (SEM) in order to discuss the weld
characteristics and defects.

2. Literature Review

Finding the optimal process parameters for friction stir welding is important for
ensuring a high weld line quality. The type of material affects the process parameters and
properties of the weld line. The process conditions of FSW have been found to change
the values of the controlling parameters. Parameter optimization is important for the
strength and quality of weld lines. Recently, Meengam and Sillapasa found that the
parameter optimization based on a local search method and a factorial design method
gave the optimum FSW parameters of the SSM-6063 aluminum material [25]. The three
parameters in their study were the rotation speed, welding speed, and optimal tensile
strength. The geometry tool was a cylindrical pin. The weld line of the optimum welding
condition exhibited a high tensile strength of 123.59 MPa. The structure of the weld line
area was characterized as being coarse grain and the thermal–mechanical effect zone
as equiaxed grain, which decreased in welding strength. The structure exhibited an
intermetallic compounds phase: a defect that leads to reduced effective strength of the
weld line. Moreover, the variation in welding parameters led to changes in the heat input,
i.e., an increase or decrease in the strength, metallurgy, and/or defects in the welding
structure [59].

Shanavas and Dhas [33] presented an RSM method for process parameter optimization
to improve the ultimate tensile strength and elongation. The optimal process conditions
led to the highest tensile strength and fewest defects in a weld line structure. A change
in the welding speed influenced the variable strength and welding structure. Prasad and
Namala [32] used the Taguchi design and ANOVA to obtain the optimal process parameters
of aluminum dissimilar welding. The optimum welding conditions led to good elongation
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and an improved working hardness. In addition, the optimum welding conditions ensured
good mechanical weld line properties. Tehyo et al. [60] studied the welding parameters
for the dissimilar welding of SSM 356 and AA6061-T651. The tensile strength of the weld
line was studied under optimal process welding conditions. The influence of the process
parameters showed heat-generated change, material flow behavior, and material mixing in
the weld line.

In addition, the heuristic method for FSW can be used to achieve satisfactory process
parameter optimization solutions. In 2020, Hartl et al. [31] predicted the ultimate tensile
strength when welding the AW 6082-T6 material. The highest tensile strength prediction
was 255 MPa with optimal welding conditions. The Gaussian process regression algorithm
exhibited a prediction accuracy of 96%. Recently, Hartl et al. [34] used an artificial neural
network (ANN) to predict the optimal welding conditions for AW-6082-T6. It was found
that the ANN algorithm provided an exact solution in 88% of predictions. Yousif et al. [42]
used the ANN algorithm for FSW aluminum prediction of tensile stress, bending stress,
and elongation of the weld line. The rotation speed and transverse speed were the study
parameters. The predicted average error of the ANN algorithm was 0.84% for tensile stress,
7.6% for bending stress, and 13.29% for elongation.

Palani et al. [61] and Suenger et al. [62] used a D-optimal design based on RSM to
determine the optimal tensile strength and hardness in friction stir welding. They found
that the increase in the hardness of the welded seam depended on controlling the welding
temperature. The optimal welding conditions kept the temperature stable and encouraged
a good structure in the weld seam, which led to optimal tensile strength and hardness. The
prediction model had an average accuracy of 97.30%.

The predicted process parameter optimization using the local search method and
heuristic method from the literature review demonstrated an increased predicted errors as
compared to using a single approach. Therefore, a combined approach is recommended for
increased accuracy. Srichok et al. [30] presented the optimization of friction stir welding
AA6061-T6 with the combined RSM and modified differential evolution (MDE) algorithm.
The RSM was used to identify factors that influence tensile strength and the MDE for
optimized factor prediction. The four optimized factors were rotation speed, welding
speed, axial force tool pin geometry, and tool material. The optimal process parameters
gave the highest ultimate tensile strength of 95.10% for the base material due to the
homogeneity and lack of defects. This method provided a prediction accuracy of 98.52%.
Accordingly, Roshan et al. [38] presented a welding method for AA 7075 combining RSM,
ANFIS, and SA for the optimization of the ultimate tensile strength and hardness. The
main process factors were the rotation speed, welding speed, axial force, and tool pin. The
optimum conditions led to the highest ultimate tensile strength, but the structure exhibited
a small defect in the weld line.

In 2014, Shojaeefard et al. [36] optimized the friction stir welding process using the
finite element method (FEM) and ANN approach. The first step used the FEM and the
second step used the ANN algorithm for optimized response prediction. The welding led
to increased heat generation with an increased rotation speed and decreased welding speed.
Moreover, the high welding temperature reduced the tool axial force, which acts to increase
the tool life. The weld line displayed a high efficiency of 91%. Tansel et al. [40] used the
GONNS algorithm, based on the ANN-GA combined approach, for parameter optimization.
The process factors were rotation speed and welding speed. The mechanical properties
analyzed by the GONNS algorithm were tensile strength, elongation, and hardness, and
the GONNS algorithm exhibited an accuracy of 97.4% for mechanical property prediction.

The literature review revealed that the combined method had an efficiency of 96%
for predictions [63]. The single-step method gave a 6–32% difference in range in terms
of tensile strength, but the combined method demonstrated a 1–6%, difference in tensile
strength, which was lower than the single-step method, as shown in Table 2. However, an
accurate prediction depends on the heuristic algorithm specifically. The several approaches
in-volved in one heuristic algorithm can lead to a high prediction accuracy. The VaNSAS
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algorithm method is a heuristic algorithm used to accurately predict a solution. The
problem-solving accuracy of the VaNSAS algorithm has been proven by several re-searchers.
Jirasirilerd et al. [57] and Pitakaso et al. [58,64] used the VaNSAS algorithm for production
and planning problem solving. The operating algorithm used in the VaNSAS process can
be the differential evolution algorithm, the iterated local search, the swap method, the
modified differential evolution algorithm, the large neighborhood search, or the shortest
processing time-swap. The VaNSAS algorithm has a high solution prediction accuracy of
up to 99.99%. Therefore, the VaNSAS algorithm is suitable for optimal parameter prediction
in the FSW process. The most important factors influencing the weld line quality include
rotation speed and welding speed, which affect the heat generation and microstructure.
The tool geometry and tool tilt angle are also important factors for controlling in-process
welding and can increase the effectiveness of the weld line and decrease the number of
defects. These four factors should not be ignored in the FSW process.

Table 2. Effective comparing of tensile strength between single and hybrid method.

Method Materials

Optimal Parameters Tensile Strength
(MPa)

% Difference of
Tensile Strength

Rotation
Speeds (rpm)

Welding
Speed

(mm/mim)

Tilt Angle
(◦ ) Tool Pin Geometry D/d Ratio

Axial
Force
(kN)

Tool Material Weldline Base Material
or Prediction

Single

SSM-6063 [28] 1320 60 3 cylindrical 3.84 - H13 tool steel 120.7 149 18.99

EN AW-6082-T6 [31] 1700 1500 2 conical thread and
three flats - - SK 50 255 332.97 23.41

AA 2099-T83 [59] 800 450 1.5 tapered triangular
and thread - 15 H13 tool steel 390 558 30.1

AA5052-H32 [60] 600 65 1.5 tapered square pin - - H13 tool steel 202.58 216.58 6.47
SSM

356-AA6061-T651 2000 80 3 cylindrical 4 4.4 JIS-SKH 57
tool steel 197.1 290 of

AA6061 32.06 of AA6061

Hybrid

AA6061-T6 [30] 1417 60.21 - Hexagonal-taper - 8.44 SKD11 294.84 310 4.89
AA7075 [38] 1400 105 - Square - 7.5 High cabon 227 241 5.80
AA 1080 [40] 500 6.25 - - - - - 112 115 2.60

Aluminum alloy [38] 509.35 10.10 - Straight cylindrical - 7 high carbonic
steel 110.26 112 1.15

3. Materials and Methods
3.1. Identifying the Number of Parameters of Interest and Their Ranges and Levels

In this study, we surveyed the literature to find the number and level of each parameter
that affects the maximum tensile strength.

In our experiment, we used the information in Tables 1 and 2 to determine the pa-
rameters and their values. The minimum and maximum of the parameters were set as
follows: (1) rotational speed: 1100 to 2200 rpm; (2) welding speed: 80 to 200 mm/min; and
(3) tool tilt angle: 0 to 6 Deg. We used two types of tool pin profile: cylindrical or hexagonal,
and different rotations: clockwise (CW) or counterclockwise (CCW). The combinations of
parameters for the experiment are detailed in Figure 1.
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Figure 1. Parameters used in the experiment.

3.2. Using D-Optimal Experimental Design to Find the Regression Model of the Parameters for
Friction Stir Welding

The experiments were carried out according to a D-optimal experimental design
with five factor parameters, and the levels used in the experiments were continuous and
categorical, as shown in Table 3. In this case, a D-optimal experimental design was used to
select h design points from those set by the embedding algorithm, resulting in 19 minimum
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model points, five points for estimation of the lack-of-fit, and five points for replicates.
Finally, an experimental plan with a total of 29 points was created.

Table 3. Parameters in the experiment.

Continuous Variable

Parameter
Levels

−1 1

Rotation speed (rpm), S 1100 2200
Welding speed (mm/min), F 80 200

Tool tilt angle Deg., T 0 6

Categorical Variables

Parameter Levels

Tool pin profile, P Cylindrical Hexagon
Rotational direction, M Clockwise: CW Counterclockwise: CCW

The upper and lower limits of the parameters in the statistical Design-Expert software
(Stat-Ease, Inc., Minneapolis, MN, USA) were set to −1 and 1.

The intermediate coded values were calculated using Equation (1):

Original = (Scaled [(XMax + Xmin)] + XMax + Xmin)/2 (1)

where Scaled is the required coded value of a variable X; X is any value of the variable
from Xmin to XMax; and Xmin and XMax are the lowest and highest predefined values of the
parameter, respectively. Table 3 provides the details of each coded and uncoded parameter,
which includes the upper and lower bounds of these parameters.

D-optimal software was used to design and create the experimental models and
problem analysis. The quadratic model shown in Equation (2) is expected to be obtained
from the experiment:

y = b0 +
k

∑
i

bixi +
k

∑
i

biix2
i + ∑

i
∑

j
bijxixj + ε (2)

where y is the maximum tensile strength (response), xi is the uncoded levels of the variables,
ε is the fitting error, the coefficient b0 is the constant value or intercept and coefficients,
and bi, bii, and bij represent the linear, quadratic, and interaction terms of the variables,
respectively [65].

3.3. Using Variable Neighborhood Strategy Adaptive Search to Find the Optimal Parameters

The variable neighborhood strategy adaptive search (VaNSAS) approach is a new
metaheuristic for searching for a solution in a large area. Several approaches were gathered
into one method in a black box for searching for the best solution. The structure of the
VaNSAS algorithm is easy to understand. Jirasirilerd et al. [57] used the VaNSAS algorithm
for problem solving, including the five steps.

3.3.1. Generate a Set of Tracks

This step is for the generation of an initial solution. A set of 3 × 1 tracks is randomly
generated. The number of randomly generated tracks is fixed. The random value that is
inserted into the positions of the track is bounded by the upper and lower value of each
parameter. Position 1 of the track represents the rotational speed value, while Positions 2
and 3 represent the welding speed and tool tilt angle, respectively. A track can consist of
five elements. An example of the five-track system is provided in Table 4. Each element
represents a parameter, as shown in Table 4.
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Table 4. The track and the element value.

Track Number 1 2 3 4 5

Element

1 (Rotational speed) 0.36 0.74 0.41 0.63 0.62

2 (Welding speed) 0.71 0.32 0.03 0.80 0.29

3 (Tool tilt angle) 0.20 0.03 0.12 0.19 0.18

The values of the elements shown in Table 4 can be decoded into a solution ac-cording
to the track transforming process (TTP). The TTP can be explained as follows:

The rotation speed, welding speed, and tool tilt angle values are shown in Table 3.
Each element has a value, e.g., the value of Track 1 in Element 1 (rotational speed) is 0.36.
The value of the real rotation speed is 1100 + [(0.36) (2200 − 1100)] = 1496. Other values in
the element are decoded by the mechanism shown above, using Equation (3):

R = L + e(U − L) (3)

where R denotes the real value of the parameter, L denotes the lowest value of the parameter
that is allowed, U is the highest value of the parameter that is allowed, and e is the value in
position. An example of transforming to the real parameter value is shown in Table 5.

Table 5. Track transforming process.

Factor
Track

1 2 3 4 5

1 (Rotational speed) 1496 1914 1551 1793 1782
2 (Welding speed) 165.2 118.4 83.6 176 114.8
3 (Tool tilt angle) 1.2 0.18 0.72 1.14 1.08

The values shown in Table 5 for each track are used for the calculations from Equation (3).

3.3.2. Perform Track Touring Process in a Specified Black Box

All tracks select a black box to improve the quality of the current solution. The black
boxes that are used in this section are as follows: (1) the differential evolution algorithm;
(2) the swap method; and (3) the insertion method. We used roulette wheel selection to
select the track and probability to select the black box, which is controlled by Equation (4):

Pbt =
FNbt−1 + (1− F)Abt−1 + KIbt−1

∑n
bt=1 Wbt

(4)

where Pbt is the probability of the selection of a black box in iteration t; Nbt−1 is the number
of tracks that have selected a black box in the previous iteration; Abt−1 is the average
objective value of all the tracks that selected a black box in the previous iteration; and Ibt−1
is a reward value, increased by 1 if a black box finds the best solution in the last iteration,
but set to 0 if this is not the case. Additionally, Wbt is the weight of the black box, F is the
scaling factor (F = 0.5), and K is the parameter factor (K = 0.3).

There are three black boxes used in this article: (1) the differential evolution algo-rithm;
(2) the swap method; and (3) the insertion method, which are explained in Section 3.3.3.

3.3.3. Black Box Operation

The black box operation step identifies a solution out of the three selected approaches
in each black box. These are as follows:

Simplify Differential Evolution Algorithm (SDE)
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The SDE is a global algorithm composed of five steps: (1) generating an initial solution;
(2) performing a mutation process; (3) performing a recombination process; (4) performing
a selection process; and (5) repeating Steps (2) to (4) until the termination condition is met.
Details of the algorithm are as follows:

Step 1: Initial population.
Randomly select two tracks from the track that do not select SDE as the black box.
Step 2: Perform a mutation process by applying Equation (5) as the mutation formula:

DE/rand/1 : Vi,G+1 = Xr1,G + F(Xr2,G − Xr3,G) (5)

where Xi,G is the target vector; Vi,G+1 is the mutant vector; and Xr1G, Xr2G, andXr3G are
the vectors that we randomly selected from the target vector. F is a scaling factor that is a
self-adaptive parameter ranging from 0 to 2. In our experiment, F was initially set to 0.8
and randomly changed to reduce or increase by 0.05 in each individual vector. The value
of F of the best vector in the current iteration was set to the current F value, which was
used as the base F value to be adapted by the vectors in the next iteration.

Step 3: Perform the recombination process.
In this step, the mutant vector is transformed to a trial vector using Equation (6),

where is the trial vector, randi,j is a random number, and CR is set to 0.6.

Ui,G =

{
Vi,j,G if randi,j ≤ CR
Xi,j,G if randi,j > CR

(6)

Step 4: Perform the selection process.
This step is used to find the next-generation target vector. The new target vector can

be obtained by using Equation (7):

Xi,G+1 =

{
Ui,G, if f (Ui,G+1) ≤ f (Xi,G)

Xi,G , otherwise
. (7)

Step 5: Repeat Steps (1) to (4) until the termination condition is met.
In this step, we use the number of iterations as the termination condition and the

maximum number of iterations is set to 100.

K-Exchange Method (KEM)

The swap method is a simple heuristic normally used to improve the solution quality.
It is composed of six steps: (1) randomly generating the K value, which is an integer and
can be 1 or 2; (2) randomly selecting a track (not the current track) that selects KEM as the
black box; (3) randomly selecting k points to swap for values in the elements; (4) swapping
the values in the positions of the elements; (5) if the objective function is better than the
current solution, update the value of the element, and (6) repeating Steps (1) to (5) until
the termination condition is met (the number of iterations is set to 100). An example of the
K-exchange method is shown in Appendix A.

The current solution that selects KEM as the black box is Track Number 1 and a track
that does not select KEM as the black box is randomly chosen; we chose Track Number 2.
K is randomly selected to be 2, and the two randomly selected positions are Positions 3
and 1. The result of the swap is shown in Appendix A. If the new Track Number 1 is better
than the old one, the new track will be used as the current solution for the next iterations.

K-Transition Method (KTM)

KTM is a simple heuristic composed of six steps: (1) randomly pick a value of K
that lies between 1 and 2 (2) randomly select a track (not the current track) that selects
the K-Swap method, (3) randomly select k points to transit the value of the element,
(4) randomly generate a new value for the position; (5) if the objective function is better
than the current solution, update the value of the element, and (6) repeat Steps (1) to (5)
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until the termination condition is met (the number of iterations is set to 100). An example
of the K-transition method is shown in Appendix B.

The current solution that selects KTM as the black box is Track Number 1. Random
numbers are used for the transit values. The value of K is set to 2 and Positions 2 and 3 are
selected to be transited. The new track for Track 1 is shown in Appendix B.

The next step of VaNSAS is to update the track, as is explained in the following section.

3.3.4. Update the Track

The value in position of the track will be updated using Equation (8):

Zijt+1 = Zijt + α
(

Zpb
ijt − Zijt

)
+ (1− α)

(
Zgb

ijt − Zijt

)
+ β

(
Z2jt − Z3jt

)
, (8)

where Zijt+1 denotes the value of track i, element j, and iteration t + 1, respectively. Addi-
tionally, α and β are random numbers with a value of 0 to 1, Zijt is track i, element j is the
last iteration of the black box, Z2jt is the first randomly selected track, Z3jt is the second

randomly selected track, Zpb
ijt is the personal best track, and Zgb

ijt is the global best solution.

3.3.5. Repeat the Steps

Repeat the steps in Sections 3.3.2–3.3.4 until the termination condition is met. The
stopping criterion here is the maximum number of iterations, which is set to 1000 (resulting
from the preliminary test).

The pseudocode of VaNSAS used in this paper is shown in Appendix C.

3.4. The Methods Compared

In this section, two well-known metaheuristics are compared with the proposed
meth-od. These are: (1) the differential evolution algorithm (DE) and (2) the genetic
algo-rithm (GA).

3.4.1. Differential Evolution Algorithm (DE)

We modified the DE proposed by Srichok et al. [30]. It is composed of four general
steps: (1) generating an initial solution; (2) performing a mutation process; (3) performing
a recombination process; and (4) performing a selection process. The DE used in our
experiment is shown in Appendix D.

3.4.2. Genetic Algorithm (GA)

A genetic algorithm (GA) is a nature-inspired metaheuristic composed of four steps:
(1) generating an initial solution; (2) performing a mutation procedure; (3) performing
a crossover procedure; and (4) performing a selection procedure. We modified the GA
proposed by Metchell and Melanie [66] to use in our problem. The pseudo code of GA
used in our research is shown in Appendix E.

4. Experimental Framework and Results

The computational results are divided into three parts: the result from the D-optimal
experimental design, the result for the proposed problem using VaNSAS, and the result of
the real experiment using the parameter levels determined in the second part to confirm
the reliability of the theoretical levels of the parameters.

4.1. Optimization Process by D-Optimal Experimental Design

We designed the experiment using the Design-Expert software. Five controlled param-
eters were set: rotational speed (S), welding speed (F), tool tilt angle (T), tool pin profile,
and type. We used different rotations. Details of the specimens are listed in Table 6.
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Table 6. Details of the tested specimens.

Material Size (mm) Thickness (mm) Ultimate Tensile Strength (MPa)

(SSM)ADC 12 75 × 150 6 208.53

The D-optimal experimental design produced 29 experiments, as shown in Table 7;
thus, 29 specimens were prepared, as shown in Figure 2.

Table 7. Actual design of experiments.

Run Rotation
Speed

Welding
Speed

Tool Tilt
Angle(Deg)

Tool Pin
Profile

Rotational
Direction

Tensile
Strength (MPa)

1 2062.92 142.75 3.41 Hexagon ccw 96.28
2 1110.00 80.00 6.00 Hexagon ccw 140.38
3 2023.17 168.30 4.03 Cylindrical ccw 99.03
4 1803.75 200.00 6.00 Cylindrical cw 91.02
5 1110.00 80.00 0.00 Cylindrical ccw 43.65
6 2220.00 80.00 6.00 Cylindrical cw 151.23
7 1110.00 80.00 6.00 Hexagon ccw 134.11
8 1371.09 151.66 2.51 Cylindrical ccw 53.49
9 1110.00 200.00 6.00 Hexagon cw 137.95

10 1654.93 148.96 3.67 Hexagon cw 166.65
11 2216.02 95.19 1.34 Cylindrical ccw 44.85
12 1110.00 200.00 6.00 Hexagon cw 131.38
13 1484.65 96.41 2.72 Hexagon cw 159.49
14 2220.00 80.00 6.00 Cylindrical cw 153.76
15 1705.76 134.87 2.91 Hexagon cw 150.98
16 1715.48 141.78 3.18 Hexagon ccw 126.76
17 1827.64 128.46 1.71 Cylindrical cw 171.87
18 1110.00 80.00 0.00 Cylindrical ccw 40.52
19 1395.44 112.16 3.28 Hexagon cw 143.6
20 1307.14 164.53 2.04 Cylindrical cw 155.18
21 1338.46 200.00 1.61 Cylindrical ccw 49.51
22 1896.10 168.39 3.46 Hexagon cw 162.96
23 1688.31 152.64 4.57 Hexagon ccw 111.02
24 1893.30 167.26 1.61 Cylindrical cw 130.02
25 1445.26 142.86 3.42 Cylindrical ccw 51.59
26 1863.64 147.26 3.56 Hexagon ccw 101.48
27 1391.97 143.76 4.03 Cylindrical cw 121.32
28 1717.21 140.79 1.22 Cylindrical cw 168.45
29 2062.92 142.75 3.41 Hexagon ccw 97.46
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Figure 2. An example of the prepared specimens.

After the welding process was finished, the tensile strength was measured using
a tensile test machine (model NRI-TS501-300, Narin Instruments Co., Ltd., Bangmueng
Mueng, Samutprakarn, Thailand; Figure 3). The welded specimens were tested until
broken; then, the tensile strength was recorded, as shown in Table 7.
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Figure 3. The tensile test machine.

Table 7 provides the experimental results; the maximum tensile strength of the
workpiece was obtained from Experiment Number 17, which used a rotational speed
of 1827.64 rpm, a welding speed of 128.46 mm/min, a tool tilt angle of 1.71 Deg, a cylin-
drical pin profile, and clockwise rotation. This welding parameter produces the highest
tensile strength of 171.87 MPa.

On the basis of the experimental results in Table 7, the D-optimal experimental design
software was used to produce a regression equation to show the relationship between the
variable values, and four models were formulated, which are defined in Table 8. It was
found that the model forms were accepted as mathematical models because the p-values of
both equations were less than 0.05. The mathematical model had a coefficient of decision
making (R2) from the influence of variables equal to 95.26% and the revised coefficient
(adjusted R2) was greater than 86.73%, which confirms that the regression model obtained
the right format.

Table 8. The ANOVA results for tensile strength response using the Design-Expert software.

Source of
Variation

Sum of
Squares DF Mean

Squares F-Value p-Value

Model 48,619.12 18 2701.06 11.17 0.0002
Linear 13,684.2 5 2736.83 11.31 0.001
Square 174.9 3 58.31 0.24 0.866

Interaction 8516.4 10 851.64 3.52 0.030
Residual Error 2418.8 10 241.88

Lack-of-Fit 2368.79 5 473.76 47.34 0.0003
Pure Error 50.0 5 10.01

Total 51,037.9 28

R-sq = 95.26% R-sq(adj) = 86.73%

Four models were formulated from the data using Design-Expert software:

CW_ Cylindrical = 318 + 0.081 S− 2.46 F− 9.6T − 0.000055 S ∗ S + 0.0065 F ∗ F + 1.56 t ∗ t
+0.000464 S ∗ F + 0.0060 S ∗ T − 0.162 F ∗ T

(9)

CCW_ Cylindrical = 78 + 0.130 S− 2.43 F + 18.9 T − 0.000055 S ∗ S + 0.0065 F ∗ F + 1.56 T ∗ T
+0.000464 S ∗ F + 0.0060 S ∗ T − 0.162 F ∗ T

(10)
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CW_ Hexagon = 306 + 0.030 S− 1.33 F− 22.7 T − 0.000055 S ∗ S + 0.0065 F ∗ F + 1.56 T ∗ T
+0.000464 S ∗ F + 0.0060 S ∗ T − 0.162 F ∗ T

(11)

CCW_ Hexagon = 82 + 0.079 S− 1.30 F + 5.8 T − 0.000055 S ∗ S + 0.0065 F ∗ F + 1.56 T ∗ T
+0.000464 S ∗ F + 0.0060 S ∗ T − 0.162 F ∗ T

(12)

where S, F, and T represent the rotational speed, welding speed, and tool tilt angle, respec-
tively. The D-optimal experimental design software was used to determine the optimal
solution using the regression model in Equations (9)–(12), 200.13 MPa. The parameters
generating this solution were as follows: a rotational speed of 1374.07 rpm, a welding speed
of 167.68 mm/min, a tool tilt angle of 0.10 Deg, a cylindrical pin profile, and clockwise
rotation, as shown in Figure 4.
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4.2. Results Using Variable Neighborhood Strategy Adaptive Search (VaNSAS)

The proposed VaNSAS was coded in PyCharm (JetBrains Americas, Inc., Marlton, NJ,
USA) using a PC with an Intel Core i7 3.70 GHz CPU and 8 GB DDR4 RAM. The objective
function of the model was given by the D-optimal experimental design
(Equations (9) to (12)) and used in VaNSAS to find the optimal solution of the problem
subject to Equations (13) to (15). The parameters value ranges that can be applied using
the D-optimal experimental design software are shown in Table 3. The maximum tensile
strength range was not limited because it was the response from the input parameters that
we aimed to determine.

1100 rpm ≤ S ≤ 2200 rpm (13)

80 mm/min ≤ F ≤ 200 mm/min (14)

0 degrees ≤ T ≤ 6 degrees (15)

In this study, VaNSAS is self-adaptive, as explained in Section 3.3. In our experiment,
the maximum number of iterations was set to 1000.

VaNSAS was applied to increase the effectiveness of finding the optimal value param-
eters. Each method was executed 30 times and the best tensile strength was determined as
shown in Table 9.

Table 9 lists the results of solutions using DE, GA, and VaNSAS to find the most
suitable parameters for friction stir welding. The maximum tensile strength of 207.79 MPa
was obtained using VaNSAS. The computational times of DE, GA, and VaNSAS were
10.58, 10.95 and 10.23 min respectively. With the results from the statistical test, we used
ANOVA to check if the computational time of each heuristic was different. We found that
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the p-value was 0.618. This demonstrates that the computational times for each heuristic
did not significantly differ. Therefore, VaNSAS recorded the same computational time as
the other methods, but it provided a better solution.

Table 9. The computational results of the maximum tensile strength of each heuristic.

Type of Rotational
Direction/Tool Pin Profile

Output Values of Each Heuristic Tensile Strength

DE GA VaNSAS

Tensile
(MPa)

Com
(s)

Tensile
(MPa) Com (min) Tensile

(MPa) Com (min)

CW_Cylindrical 205.99 10.8 205.98 11.2 206.0 11.2
CW_Hexagon 206.97 10.2 205.90 10.4 207.79 10.4

CCW_Cylindrical 204.53 11.8 202.16 9.8 206.53 9.6
CCW_Hexagon 204.99 9.5 204.94 12.4 205.97 9.9

Remark: Com is computational time of a heuristic.

The parameter/type values that generated the maximum tensile strength values are
shown in Table 10.

Table 10. Output values of VaNSAS with respect to input process parameters.

Condition Unit Result

Optimal parameter

Rotational speed Rpm 2200
Welding speed mm/min 108.34

Tool tilt Deg 1.23
Pin profile Hexagon

Rotational direction CW
Maximum tensile strength MPa 207.79

4.3. Verifying the Results by Testing Optimal Parameters with Actual Specimens

After we obtained the appropriate parameters from VaNSAS, as shown in Table 10, we
performed a test and compared the results of confirmed experiments with the calculated
VaNSAS results in order to check if the parameter values generated by VaNSAS could form
a welded material with the maximum tensile strength. Twelve replications were conducted
and the average maximum tensile strength was recorded, as shown in Table 11.

%di f f =
tensile strength Exp − tensile strength VaNSAS

tensile strengthExp × 100% (16)

where tensile strength Exp is the maximum tensile strength generated by the real experi-
ment and tensile strengthVaNSAS is the maximum tensile strength generated by VaNSAS.
The average maximum tensile strength obtained from the confirmed experiment was
206.85 ± 0.886 MPa, which is close to the calculated VaNSAS result of 207.79 MPa. The
tensile strength comparison of both the confirmed experiment and the VaNSAS predic-
tion, using Equation (16), exhibited a percentage difference of 0.45%. The tensile strength
comparison between the confirmed experiment and the base material specimen revealed a
percentage difference of 0.80%, as shown in Table 12. Moreover, the comparisons of tensile
strength of each approach and the base material specimen are shown in Table 13. The
VaNSAS prediction had the lowest percentage difference of tensile strength, i.e., 0.35%, and
the accuracy was 99.65%, as compared with the base material specimen.
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Table 11. Comparison of the experimental and the VaNSAS results.

Variable Parameter Unit Result

Tensile Strength (Mpa)

% DifferenceConfirmed
Experiment VaNSAS

Rotational speed rpm 2200

206.85 ± 0.886 207.79 1.93
Welding speed mm/min 108.34

Tool tilt Deg 1.23
Pin profile Hexagon

Rotational direction Clockwise

Table 12. Different percentage comparison of tensile strength.

Method Tensile Strength (MPa) % Diff

Base material specimen 208.53 -
Initial experiment 171.87 17.58

D-Optimal prediction 200.13 4.02
VaNSAS prediction 207.79 0.35

Confirmed experiment 206.85 0.80

Table 13. Different percentage comparison of method.

Method % Tensile Strength Difference of Method

Initial experiment vs. D-Optimal 14.12
Initial experiment vs. VaNSAS 17.28

Initial experiment vs. confirmed experiment 16.91
VaNSAS 3.68

D-Optimal vs. confirmed experiment 3.24
VaNSAS vs. confirmed experiment 0.45

4.4. The Reliability and Effectiveness Testing of the Proposed Methods

In this step, we assessed the reliability and effectiveness of the proposed method, as
suggest in [67–70].

We used 12 test examples collected from the literature [15,28,33,71–79]. We identified
the optimal parameters using the proposed methods and compared these with the results
obtained using the D-optimal/RSM approaches on the aforementioned literature. The
results are shown in Tables 14 and 15. Table 14 is the computational result of the proposed
method test with the standard test examples from the literature, while Table 15 is the
statistical test (p-value) using Wilcoxon sign rank test.

We can conclude that VaNSAS outperformed the other methods. It significantly im-
proved the solution quality by 0.33 to 2.61%, as compared to the other methods. As regards
the time it took for each method to find the best solution (maximum tensile strength), we
can see that VaNSAS was able to identify a 100% improved solution as compared with the
other methods. Therefore, we can conclude that the VaNSAS significantly improved the
solution quality as compared with the other methods.
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Table 14. Result of the reliability test.

Instances Authors
Ultimate Tensile Strength/Tensile Strength (MPa)

D-Optimal/RSM GA DE VaNSAS

1 Meengam and Sillapasa [28] 120.7 123.55 124.82 125.11
2 Jenarthanan et al. [71] 105.47 106 107.63 108.02
3 Tanmoy Medhi et al. [72] 129.73 132.22 134.25 135.06
4 Shanavas and Edwin raja dhas [33] 202.58 204 206.86 206.54
5 Ramanjaneyulu et al. [15] 445 448.51 452.22 454.12
6 Farzad et al. [73] 535.5 536.24 538.62 540.08
7 Masoud Ahmadnia et al. [74] 187.35 210.53 211.24 212.54
8 Ravi Sankar and Umamaheswarrao [75] 184 186.35 187.39 189.32
9 Hridya Nand Singh et al. [76] 236 238.45 239.62 240.06

10 Amit Goyal and Ramesh Kumar Garg [77] 253.4 255.43 258.91 260.20
11 JANNET et al. [78] 288 288.54 290.78 290.98
12 Kavitha et al. [79] 211.48 211.95 212.97 213.08

Table 15. Statistical test using Wilcoxon sign rank test (p-value).

GA DE VaNSAS

D-optimal 0.002 0.002 0.002
GA 0.002 0.002
DE 0.005

4.5. Microstructure Analysis

The experimental welding condition exhibited different weld line microstructures
and tensile properties in the FSW of SSM ADC 12 aluminum. The differences in structure
and tensile properties were analyzed by microstructure photography from confirmed ex-
periments and the highest tensile strength value is given in Table 10. Figure 5 shows the
microstructure characteristics in BM, TMAZ-AS, TMAZ-RS, and SZ from the experimental
welding test with the VaNSAS optimal conditions, i.e., rotation speed: 2200 rpm, welding
speed: 108.34 mm/min, tilt angle: 1.23 Deg, a hexagonal pin tool, and a clockwise direc-
tion. We found that SZ had no defects and was soundly welded. In the BM, β-Al5FeSi
compounds demonstrated shape transformations, from platelike flakes to small flakes, as
shown in Figure 5a,c. In TMAZ-AS, the β-Al5FeSi compounds were found to be arranged
according to the direction of rotation and the edge of the pin tool due to the friction force;
this caused the β-Al5FeSi compounds to fracture, leading to them being dragged in the
direction of rotation as shown in Figure 5b. Similarly, in TMAZ-RS, we found that the
β-Al5FeSi compounds transformed from platelike shapes into rod shapes, with smaller
particle sizes, as shown in Figure 5d. The small intermetallic phase of β-Al5FeSi and the
dispersion in the weld line structure led to an in-creased tensile strength. As a result of
the precipitation of the intermetallic phase, β-Al5FeSi is a strengthening mechanism that
protects the slip plane from the tensile force. Therefore, the optimal welding weld line
condition gives the highest tensile strength according to Meengam and Sillapasa [25].

The optimized welding conditions for the D-optimal prediction were a rotational
speed of 1374.07 rpm, a welding speed of 167.68 mm/min, a tool tilt angle of 0.10 Deg, a
cylindrical pin profile, and a clockwise rotation. The microstructure characteristics resulting
from these welding conditions were as follows: microvoids, zigzag line defects, and kissing
bond defects in SZ and TMAZ, as shown in Figure 6. As a result, the tool geometry
lacked an angular shape, which caused turbulence and negatively affected the material and
mixing in weld joint, according report of Elangovan and Bal-asubramanian [19]. Therefore,
the tensile resistance of the weld joint exhibited a lower performance than the weld joint
resulting from the optimal welding parameters as predicted by VaNSAS.



Processes 2021, 9, 1805 16 of 24

Processes 2021, 9, x FOR PEER REVIEW 16 of 25 
 

 

We can conclude that VaNSAS outperformed the other methods. It significantly im-
proved the solution quality by 0.33 to 2.61%, as compared to the other methods. As re-
gards the time it took for each method to find the best solution (maximum tensile 
strength), we can see that VaNSAS was able to identify a 100% improved solution as com-
pared with the other methods. Therefore, we can conclude that the VaNSAS significantly 
improved the solution quality as compared with the other methods.  

4.5. Microstructure Analysis  
The experimental welding condition exhibited different weld line microstructures 

and tensile properties in the FSW of SSM ADC 12 aluminum. The differences in structure 
and tensile properties were analyzed by microstructure photography from confirmed ex-
periments and the highest tensile strength value is given in Table 10. Figure 5 shows the 
microstructure characteristics in BM, TMAZ-AS, TMAZ-RS, and SZ from the experi-
mental welding test with the VaNSAS optimal conditions, i.e., rotation speed: 2200 rpm, 
welding speed: 108.34 mm/min, tilt angle: 1.23 Deg, a hexagonal pin tool, and a clockwise 
direction. We found that SZ had no defects and was soundly welded. In the BM, β-Al5FeSi 
compounds demonstrated shape transformations, from platelike flakes to small flakes, as 
shown in Figure 5a,c. In TMAZ-AS, the β-Al5FeSi compounds were found to be arranged 
according to the direction of rotation and the edge of the pin tool due to the friction force; 
this caused the β-Al5FeSi compounds to fracture, leading to them being dragged in the 
direction of rotation as shown in Figure 5b. Similarly, in TMAZ-RS, we found that the β-
Al5FeSi compounds transformed from platelike shapes into rod shapes, with smaller par-
ticle sizes, as shown in Figure 5d. The small intermetallic phase of β-Al5FeSi and the dis-
persion in the weld line structure led to an in-creased tensile strength. As a result of the 
precipitation of the intermetallic phase, β-Al5FeSi is a strengthening mechanism that pro-
tects the slip plane from the tensile force. Therefore, the optimal welding weld line condi-
tion gives the highest tensile strength according to Meengam and Sillapasa [25]. 

The optimized welding conditions for the D-optimal prediction were a rotational 
speed of 1374.07 rpm, a welding speed of 167.68 mm/min, a tool tilt angle of 0.10 Deg, a 
cylindrical pin profile, and a clockwise rotation. The microstructure characteristics result-
ing from these welding conditions were as follows: microvoids, zigzag line defects, and 
kissing bond defects in SZ and TMAZ, as shown in Figure 6. As a result, the tool geometry 
lacked an angular shape, which caused turbulence and negatively affected the material 
and mixing in weld joint, according report of Elangovan and Bal-asubramanian [19]. 
Therefore, the tensile resistance of the weld joint exhibited a lower performance than the 
weld joint resulting from the optimal welding parameters as predicted by VaNSAS. 

 
Figure 5. Characteristics of microstructure (rotation speed: 2200 rpm, welding speed: 108.34 mm/min,
tilt angle: 1.23 Deg, hexagonal pin tool, and clockwise direction) in: (a) BM, (b) TMAZ-AS, (c) SZ,
and (d) TMAZ-RS.

Processes 2021, 9, x FOR PEER REVIEW 17 of 25 
 

 

Figure 5. Characteristics of microstructure (rotation speed: 2200 rpm, welding speed: 
108.34 mm/min, tilt angle: 1.23 Deg, hexagonal pin tool, and clockwise direction) in: (a) 
BM, (b) TMAZ-AS, (c) SZ, and (d) TMAZ-RS. 

 
Figure 6. Characteristics of microstructure (rotational speed of 1374.07 rpm, welding 
speed of 167.68 mm/min, tool tilt angle of 0.10 Deg, cylindrical pin profile, and clockwise 
rotation) in: (a) BM, (b) TMAZ-AS, (c) SZ, and (d) TMAZ-RS. 

However, the unoptimized factors for FSW in the initial experiment using the SSM 
ADC 12 aluminum alloy resulted in poor mechanical properties, because a rotation speed 
of 1827.64 rpm, a welding speed of 128.46 mm/min, a tilt angle of 1.71 Deg, a cylindrical 
tool, and a clockwise direction caused defects. The formation of a large void (defect) in SZ 
is shown in Figure 7c. This was due to insufficient material flow from the RS side to the 
AS side, which connects to TMAZ-AS, resulting in a very low tensile strength (see Figure 
7b). It is worth noting that β-Al5FeSi compounds in TMAZ-RS have a larger particle size 
because of the lower heat input, which contributes to complete precipitation, as shown in 
Figure 7d. BM found that the characteristics of β-Al5FeSi compounds were similar to those 
in previous experiments, as shown in Figure 7a. 

Figure 6. Characteristics of microstructure (rotational speed of 1374.07 rpm, welding speed of
167.68 mm/min, tool tilt angle of 0.10 Deg, cylindrical pin profile, and clockwise rotation) in: (a) BM,
(b) TMAZ-AS, (c) SZ, and (d) TMAZ-RS.

However, the unoptimized factors for FSW in the initial experiment using the SSM
ADC 12 aluminum alloy resulted in poor mechanical properties, because a rotation speed
of 1827.64 rpm, a welding speed of 128.46 mm/min, a tilt angle of 1.71 Deg, a cylindrical
tool, and a clockwise direction caused defects. The formation of a large void (defect) in
SZ is shown in Figure 7c. This was due to insufficient material flow from the RS side to
the AS side, which connects to TMAZ-AS, resulting in a very low tensile strength (see
Figure 7b). It is worth noting that β-Al5FeSi compounds in TMAZ-RS have a larger particle
size because of the lower heat input, which contributes to complete precipitation, as shown
in Figure 7d. BM found that the characteristics of β-Al5FeSi compounds were similar to
those in previous experiments, as shown in Figure 7a.
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Figure 8 shows the distribution of β-Al5FeSi compounds in the specimens resulting
from a rotation speed of 2200 rpm, a welding speed of 108.34 mm/min, a tilt angle of
1.23 Deg, a hexagonal pin tool, and a clockwise direction, evaluated using SEM at 12,000×.
The β-Al5FeSi compounds, whose shapes and particle sizes were assessed, were newly
crystallized and distributed by phase due to friction force or thermal stress. The β-Al5FeSi
compounds in SZ, which formed from the β-phase in the β′-phase formation of β′-Mg2Si
and possibly Cu2Mg8Si6Al5 compounds, are shown in Figure 8c–e. TMAZ-RS and TMAZ-
RS found that an β′-Mg2Si compound was cracked in the intergranular area because the
SSM ADC 12 aluminum alloy contained silicon (Si) and iron (Fe), causing brittle properties,
as shown in Figure 8a,b. Although friction force or thermal stress affect the occurrence of
cracks, the analysis showed that the area at the bottom of the joint (the end of tool pin area)
generated heat during FSW, but this resulted in no cracks, as shown in Figure 8e,f. Cracks
in the intergranular area led to tearing when subjected to static force, as dynamic force
could not be applied to adjust the tensile properties. The size of β′-Mg2Si compounds is
around 3–10 µm in SZ and around 10–17 µm in TMAZ-RS and TMAZ-RS. The difference
in the size of β′-Mg2Si compounds was caused by different experimental factors.

Various experiments did not demonstrate a positive effect on the metallurgical struc-
ture. The conditions were as follows: rotation speed: 1827.64 rpm, welding speed:
128.46 mm/min, tilt angle: 1.71 Deg, a cylindrical tool, and a clockwise direction. We
noted incomplete welds and a microvoid, as shown in Figure 9. It is worth noting that the
areas that received less heat during FSW generated β′-Mg2Si compounds with a needle-
shaped microstructure of around 16–22 µm, as shown in Figure 9a,b,e,f. For SZ under the
shoulder tool (see Figure 9c), we found that β′-Mg2Si compounds exhibited a flakelike
structure and were around 3–11 µm. Similarly, in the middle of the weld, we found that
the size of β′-Mg2Si compounds was around 8–15 µm, as shown in Figure 9d. When we
compared them with the flake-shaped β′-Mg2Si compounds, we noted a higher dynamic
force than that produced by a needle-shaped microstructure. Therefore, the needle-shaped
β′-Mg2Si were small, rounded, and distributed throughout the SZ, contributing to the good
tensile properties.
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5. Conclusions

In this study, we aimed to identify the optimal parameters of FSW for producing the
best tensile strength. The D-optimal approach was used for the experimental design, and
the VaNSAS algorithm method was used for optimal parameter prediction. The heuristic
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operation in the black box of the VaNSAS algorithm included the differential evolution
algorithm, the swap method, and the insertion method for finding a solution. The welding
parameters were rotation speed, welding speed, tool tilt angle, tool pin profile, and tool
rotational direction. The evaluation of ADC 12 aluminum welding from FSW led us to
draw the following conclusions:

Experiments confirmed that the optimal welding conditions with the VaNSAS algo-
rithm are as follows: rotation speed: 2200 rpm, welding speed: 108.34 mm/min, tilt angle:
1.23 Deg, a hexagonal pin tool, and a clockwise direction. These conditions produced a
tensile strength of 206.85 MPa. The structure of the weld line exhibited no defects and the
precipitation of small intermetallic phases, i.e., β-Al5FeSi, β′-Mg2Si, and Cu2Mg8Si6Al5,
with a uniform distribution indicated strength. Therefore, the tensile strength depends on
the heat generation of the welding parameter. The influence of the heat input affects the
success of FSW. Sufficient heat input leads to a complete microstructure without defects
and this is generated by optimal welding conditions. The tensile property of the weld
line gives a high tensile value and vice versa. Insufficient heat input and the appearance
of defects indicate unsuitable welding conditions and reduce the tensile strength of the
weld line.

The D-optimal approach, which was used for the experimental design, and the
VaNSAS algorithm, which was used for optimization, gave a lower prediction of ten-
sile strength by 0.35% as compared with that of the material specimen. The VaNSAS
algorithm was able to identify the best solution for optimal parameter welding. Therefore,
the hybrid method prediction involving VaNSAS provided a precise solution with 99.65%
accuracy. However, the percentage difference in tensile strength when comparing the
VaNSAS algorithm and the confirmed experiments was 0.45%. The VaNSAS algorithm pre-
diction gave the best value for optimal parameter welding. Therefore, the hybrid method
prediction involving VaNSAS indicated a precise solution with 99.20% accuracy.

Future work should be focused on generating optimal parameter welding for multi-
objective responses. Tensile strength hardness, bending strength, and toughness are impor-
tant mechanical properties for the weld line using the FSW process.
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Appendix A

Table A1. Example of KEM.

Track Number Current Track
Track 1

Randomly Selected Track
Track 2

New Track
Track 1

Element

1 (Rotational speed) 0.36 0.74 0.74
2 (Welding speed) 0.71 0.32 0.71
3 (Tool tilt angle) 0.20 0.03 0.03
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Appendix B

Table A2. Example of KTM.

Track Number
Current Track

Track 1
(1)

Random Number
(2)

New Track
Track 1

(3)

Element

1 (Rotational speed) 0.36 0.45 0.36
2 (Welding speed) 0.71 0.89 0.89
3 (Tool tilt angle) 0.20 0.14 0.14

Appendix C. Pseudocode of VaNSAS

Algorithm A1: Variable Neighborhood Strategy Adaptive Search (VaNSAS)

input: Number of Track (NP), Problem Size (D), Mutation Rate (F), Recombination rate (R), Number of
Black box (NBB)
output: Best_Track_Solution
begin

Population = Initialize Track (NP, D)
IBPop = Initialize Information BB(NBB)
encode Population as a track
while the stopping criterion is not met do

for i = 1: NP
Set u [j] = randomnumber)_[j]
//selected black box by RouletteWheelSelection
selected_BB = RouletteWheelSelection(BBPop) using Equation (3)
If(selected_BB = 1) Then
new_u = SDE (u)
Else if(selected_BB = 2)
new_u = K-exchange (u)
Else if(selected_BB = 3)
new_u = K_Transition (u)
IF(CostFunction(new_u) ≤ CostFunction(Vi)) Then
Vi = new_u
//Loop for update heuristics information of Intelligence box
For j = 1: NBB
BBPopi using Equaltion (8)
End For Loop//end update heuristics information
End For Loop

End
Decode WP to get the solution for the problem
Return Best track Solution

end

Appendix D. Pseudocode of DE

Algorithm A2: Differential evolution algorithm (DE)

input: Population size (NP), Problem Size (D), Mutation Rate (F), Recombination rate (R)
output: Best_Vector_Solution
begin

Population = Initialize Population (NP, D)
encode Population to WP
while the stopping criterion is not met do
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for i = 1: NP
Vrand1, Vrand2, Vrand3 = Select_Random_Vector (WP)
For j = 1: D//Loop for the mutation operator

Vy [j] = Vrand1 [j] + F (Vrand2 [j] + Vrand3 [j])
End For Loop//end mutation operator
For j = 1: D//Loop for recombination operation

If (randj [0,1) < R) Then
u [j] = Vi [j]

Else
u [j] = Vy [j]

End For Loop//end recombination operation
IF(CostFunction(u) ≤ CostFunction(Vi)) Then

Vi = u
End For Loop

End
decode WP to get the solution for the problem
Return Best Vector Solution

end

Appendix E. Pseudocode of GA

Algorithm A3: Genetic Algorithm (GA)

input: Population Size (NP), Problem Size (D), Mutation Rate (M), Crossover Rate (CR)
output: Best_Vector_Solution
begin

Population = Initialize Population (NP, D)
encode Population to WP
while the stopping criterion is not met do

parents = WP
for i = 1: NP//Loop for crossover operation

For j = 1: D
If(randj [0,1) < CR ) Then

offspringi [j] = parentsi [j]
offspringi+1 [j] = parentsi+1 [j]

Else
offspringi [j] = parentsi+1 [j]
offspringi+1 [j] = parentsi [j]

End For Loop
End For Loop//end crossover operation
for i = 1: NP//Loop for mutation operation

For j = 1: D
If(randj [0,1) < M ) Then

Mutation(offspringi [j])
End For Loop

End For Loop//end mutation operation
//Add the child population to the parent population
NWP = stack(parents, offspring)
wp_size = length(NWP)//Set number of new population
for i = 1: wp_size//Loop for evaluate operation

cost_ scores i+1= CostFunction(NWPi+1)
End For Loop//end evaluate operation
//selection operation
new_wp = Sorted(new_ population, cost_scores)
WP = NWP [1:NP]
decode WP to get the solution for the problem
Return Best Vector Solutionend

end
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