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Abstract: In systems biology, biological phenomena are often modeled by Ordinary Differential
Equations (ODEs) and distributed in the de facto standard file format SBML. The primary analyses
performed with such models are dynamic simulation, steady-state analysis, and parameter estimation.
These methodologies are mathematically formalized, and libraries for such analyses have been
published. Several tools exist to create, simulate, or visualize models encoded in SBML. However,
setting up and establishing analysis environments is a crucial hurdle for non-modelers. Therefore,
easy access to perform fundamental analyses of ODE models is a significant challenge. We developed
SBMLWebApp, a web-based service to execute SBML-based simulation, steady-state analysis, and
parameter estimation directly in the browser without the need for any setup or prior knowledge
to address this issue. SBMLWebApp visualizes the result and numerical table of each analysis and
provides a download of the results. SBMLWebApp allows users to select and analyze SBML models
directly from the BioModels Database. Taken together, SBMLWebApp provides barrier-free access
to an SBML analysis environment for simulation, steady-state analysis, and parameter estimation
for SBML models. SBMLWebApp is implemented in Java™ based on an Apache Tomcat® web
server using COPASI, the Systems Biology Simulation Core Library (SBSCL), and LibSBMLSim as
simulation engines. SBMLWebApp is licensed under MIT with source code freely available. At the
end of this article, the Data Availability Statement gives the internet links to the two websites to find
the source code and run the program online.

Keywords: SBML; kinetic models; time-course simulation; steady-state simulation; parameter esti-
mation; model calibration; software; web application

1. Introduction

An enormous intrinsic complexity characterizes biological systems from their smallest
independently functioning unit, the individual cell, to entire organ systems and beyond.
This complexity can be attributed to emergent characteristics of the individual components
of biological systems and their interactions [1]. Consequently, any attempt to fully grasp
the functions and simultaneously operating processes within a living organism nowadays
heavily relies on computational tools and simulation. Building computer models in biology
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has already demonstrated its potential in many application areas, such as the contextual-
ization and visualization of high-throughput data, e.g., [2], guiding metabolic engineering
in biotechnology, e.g., [3], the directed search for potential antiviral targets, e.g., [4,5], or to
mathematically describe measures to effectively control the spread of infections, e.g., [6].
Since computational modeling of biological systems remains a challenging task, several
different approaches exist to derive model representations with varying simplifying as-
sumptions, each of which tackles the underlying complexities in many ways. Examples of
popular modeling strategies include:

1. agent-based models, e.g., [7] which prove fruitful for non-linear interactions among
entities of a biological system [8].

2. qualitative models, e.g., [9,10], which offer a flexible framework to delineate the main
properties of complex biological regulatory networks [11].

3. statistical models, e.g., [12] and modeling approaches that are based on machine
learning, e.g., [13], both of which provide probabilities of observed events.

4. constraint-based models, e.g., [14] that predict metabolic and adjoint cellular functions
based on the distribution of metabolic fluxes.

5. stochastic kinetic models [15], which take random fluctuations of the amounts of
individual molecules into account.

6. deterministic kinetic models, e.g., [16], which will be explained in detail below.
7. multi-paradigm models that try to bridge two or more of these approaches, e.g., [17].

The present study focuses on kinetic models. Kinetic models allow capturing the
complex relationships of biological systems, e.g., between enzyme expression, metabolite
levels, reaction fluxes, and regulatory processes [18]. Kinetic models are of particular
interest when exploring dynamic effects [19]. The mathematical description of kinetic
models can be formalized using a system of coupled nonlinear Ordinary Differential
Equations (ODEs) [20], which defines the state variables of the model and their possible
evolution. These ODEs quantitatively describe the dynamics of kinetic systems and facili-
tate predicting the response of the model state to various perturbations, i.e., different inputs,
altered kinetic parameters, or changing initial conditions [21]. The theory of creating kinetic
models is generally established, and simplifying assumptions for the choice of particular
equations have been proposed [22]. Their predictive power has turned kinetic models into
a valuable resource for understanding biological systems. This, in turn, helped to excel
advances in, e.g., biotechnological fields such as improving microbial strain design [23].

Kinetic modeling typically comprises the following three primary kinds of analyses:

1. time-course simulation.
2. steady-state analysis.
3. parameter estimation.

The objective behind the time-course simulation is to mathematically describe the
evolution of the investigated ODE system from given initial conditions. Thereby, the
dynamics of the biological system can be investigated, e.g., the model’s behavior in response
to varying inputs or other perturbations. Biological systems often reach a steady state after
a long enough time, i.e., a state in which the metabolic concentrations remain constant.
For some systems, multiple steady states may exist, and transitions between them may
take place. Steady-state analysis numerically calculates possible steady states and evaluates
likely transitions into a particular system’s state under the given conditions. Parameter
estimation is a method to determine plausible values of the model’s parameters based on
experimental data, e.g., reaction rate constants. For this reason, this procedure is sometimes
called model calibration because data from laboratory experiments are compared to the
output of model simulations aiming to fit the model to the data. Consequently, parameter
estimation is often a prerequisite step for subsequent analyses, and it uses repeated time-
course simulations. In other words, parameter estimation uses an optimization method
whose objective is to identify the most plausible parameter values that calibrate a model
towards the experimentally observed behavior of the corresponding biological system [24].
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SBML is the de facto standard file format for computational models of biological sys-
tems [25,26]. For the analysis of kinetic models in SBML, several tools are available, e.g.,
the COmplex PAthway SImulator (COPASI) [27], the Systems Biology Toolbox for Mat-
lab™ [28], libRoadRunner [29], or SBMLsimulator [30]. Many of these tools may cause
difficulties to inexperienced users during installation or use of their algorithms and con-
ventions. Some tools focus on a limited set of highly specialized functions, while others
overwhelm their users with a large variety of features. Often, the users are indirectly
assumed to understand the internal structures of systems biology model formats. In addi-
tion, many scientific software tools require a profound computational background or even
coding skills to interact with the software. Installing these applications may not always be
allowable if it requires administrator rights which are not always granted to every user
in a research environment. These points might represent a considerable challenge for
novice modelers or collaborators with an experimental background. A practical solution to
these problems is to provide user-friendly and barrier-free access to a web application that
can execute all the above mentioned analyses without requiring coding skills or admin
setup rights.

A few freely available web applications for working with models in SBML format
exist. APMonitor [31] supports simulation and parameter estimation but does not support
steady-state analysis. One of the available standalone tools for simulation and parameter
estimation is SBMLsimulator [30], which can be used via command-line or its Java™-based
Graphical User Interface (GUI), but does not run online. Cycsim [32] supports visualization
and time-course simulation of metabolic networks but not parameter estimation. The
Systems Biology Workbench (SBW) [33] supports time course simulation and steady-state
analysis but not parameter estimation. JWS Online [34] supports time course simulation
and steady-state analysis but does not support parameter estimation. The tool suite
RunBioSimulations [35] offers time course simulation and steady-state analysis but lacks
support for parameter estimation. Additionally, RunBioSimulations offers many third-
party analysis tools with many options and is hence most suitable for experienced users.

This article presents the user-friendly web application SBMLWebApp which allows the
integrated analysis of kinetic models using time-course simulation, steady-state analysis,
and parameter estimation. To the authors’ best knowledge, currently, no other web appli-
cation exists besides the SBMLWebApp, with which novice users can effortlessly conduct
all three analysis steps described above within a single framework. The SBMLWebApp,
therefore, drastically expedites a profound and detailed analysis of kinetic models since all
three steps are deeply intertwined, and the knowledge gained from a previous analysis
step is often essential for following analyses. For example, time-course simulations with
varying inputs are often executed after an initial system steady-state has been reached,
i.e., first, a steady-state analysis is performed following by time-course simulations with
varying inputs. For example, parameters determined via its parameter estimation features
are subsequently used in time course and steady-state simulations to analyze the system’s
behavior.

Providing a directly accessible web application with an intuitive user interface that
combines services for time-course simulation, steady-state analysis, and parameter estima-
tion makes a large portion of typical analyses within systems biology research accessible
to less experienced users. In this way, the SBMLWebApp supports interdisciplinary col-
laboration as it allows experimentalists to effortlessly try out in-silico models from their
dry-lab collaborators, which may help to accelerate the iterative cycles of alternating model
development and wet-lab experimentation towards scientific progress.
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2. Implementation

SBMLWebApp is implemented in Apache Tomcat® (https://tomcat.apache.org,
accessed on 13 October 2021), and all servlets were written in Java™. The app uses the
Bootstrap framework and is deployed on a Java application server using JQuery. SBML-
WebApp uses AJAX software within the communication configuration between frontend
and backend (GWT, http://www.gwtproject.org, accessed on 13 October 2021). The time
course simulation servlet is executed using COPASI [27], Systems Biology Simulation Core
Library (SBSCL) [36,37] with JSBML [38] as its internal data structure, and LibSBMLSim [39]
that is based on libSBML [40]. The steady-state analysis servlet and parameter estimation
servlet use COPASI [27]. The SBMLWebApp is accessible at http://simulate-biology.org.
Our app uses the standard file format for computational models, SBML [25,26], and is
compatible with SBML Level 3 Version 1 core [41].

3. Using the SBMLWebApp

Either a local SBML model or models from the BioModels Database [42] can be selected
on the front page. BioModels is a highly curated database for computational biological
models, currently containing 1017 manually curated SBML models (August 2021).

After selecting the SBML model, the relationships between species and reactions
(stoichiometric network) are visualized (Figure 1) based on cytoscape.js [43].

Figure 1. SBML graph visualization of a simple example model consisting of the species s1 and s2. The graph shows the
relationships between species and reactions in the SBML model. Species with a reactant role have no arrow (s1), whereas
species with a product role have an arrow (s2).

To run a time course simulation with the model, the user can specify the end time,
the number of time points, the absolute tolerance, and the simulation library to use as
a solver backend. After setting these parameters and pressing the execute button, the
simulation result is visualized as a graph (Figure 2), and the numerical results are provided
in a table. Via the window on the right side, the initial amount of each species, the size of
compartments, and values of kinetic parameters in the model can be edited. The respective
simulation is executed on the fly.

https://tomcat.apache.org
http://www.gwtproject.org
http://simulate-biology.org
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Figure 2. Results of time-course simulation analysis. The x-axis shows the time, and the y-axis indicates amounts or
concentrations of species depending on which of either the SBML model defines for the respective species. Each line
in the graph corresponds to the time course of a single species. The check box of “log scale of Y” and “log scale of X”
allows switching between linear and logarithmic axis scales. The initial values of species, compartment sizes, and kinetic
parameters can be changed via the window on the right side. When a value is changed, the simulation is executed on the fly.

To run a steady-state analysis with the model, the available parameters that the user
can specify include the resolution, derivation factor, and iteration limit to search steady
states. After steady-state analysis, a single steady-state point of given initial expression
for each species and the corresponding Jacobian matrix of this point is visualized as a
numerical table (Figure 3).

Figure 3. The result of a steady-state analysis. The result shows the type of species, concentration in the steady-state point,
the rate at this point, and transition time to reach this point from the initial value of each species.

To run a parameter estimation with the model, the algorithm, iteration limit to search
fitted parameters, and fitting tolerance can be set. Available algorithms include the
Levenberg-Marquardt algorithm [44,45], the Nelder Mead-algorithm [46], the particle
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swarm optimization method [47], and the differential evolution method [48]. The two latter
optimization methods had been found to be particularly promising for the task of dynamic
model calibration in systems biology applications [49]. The execution of a parameter
estimation leads to a visualization of the simulation result with calibrated parameters and
experimental results in Figure 4 and fitted parameters as a numerical table. The range of
search parameters can be set in the window on the right side, and an analysis based on it
can be executed after pressing return.

Figure 4. The result of parameter estimation. The x- and y-axis in the graph show time vs. amount or concentration in
the SBML model. Each line shows the simulation result with a fitted parameter of each species. Each plot shows the
experimental value of each species. The check box of “Before Fitting” can visualize the simulation result with the original
parameter value. The range searching proper parameter can be set using the slider on the window’s right side.

All result data can be downloaded via the “Download” tab. The graphs and tables are
downloaded as PNG and CSV file, respectively. In parameter estimation, the model with
calibrated parameters can be downloaded in SBML format.

4. Real-World Example and Applications

In the following section, one working example is provided, which demonstrates
the functionality of the SBMLWebApp. This example is based on the work by Perel-
son et al. [50] and can be found on the BioModels database https://identifiers.org/
biomodels.db/BIOMD0000000874, accessed on 13 October 2021. The SBMLWebApp pro-
vides three different methods for further analyses of kinetic models (time-course simulation,
steady-state analysis, and parameter estimation). First, we have shown that the SBMLWeb-
App can reproduce the results of the simulations performed by Perelson et al. [50] on the
population changes of T cells, latently infected T cells, actively infected T cells, and free
viruses under various conditions (Supplementary Figures S1–S4). We have also shown that
their theoretically derived unstable fixed points, stable fixed points, and unstable fixed
points with oscillations for these populations can be analyzed numerically equivalent by
the SBMLWebApp (Supplementary Figures S5–S7). Furthermore, in the parameter estima-
tion for the time-series change of free virus in 10 HIV-infected patients by Stafford et al. [51],
we showed that the SBMLWebApp could estimate parameters in good agreement with the
measured results (Supplementary Figure S8). Table 1 provides an overview of the model
and compares the outcomes of their analyses based on the model created as part of the
study at hand.

https://identifiers.org/biomodels.db/BIOMD0000000874
https://identifiers.org/biomodels.db/BIOMD0000000874


Processes 2021, 9, 1830 7 of 10

Table 1. Use case for a kinetic model analyzed with the SBMLWebApp (TCS: time-course simulation, SSA: steady-state
analysis, PE: parameter estimation). All measurement results were the median of 10 measurements. The analysis conditions
were the default settings of SBMLWebApp. The results in this table were achieved using a server with 16 CPUs of type
AMD Ryzen 7 2700X Eight-Core Processor, each of which had 1882.649 MHz and a cache size of 512 kB.

Model Authors File Size Run Time TCS Run Time SSA Run Time PE

See supplement Perelson et al. 43.16 kB 623.5 ms 346.7 ms 14,180.7 ms

5. Limitations of the Application

The app is developed using the most recent standards from the systems biology
community, see also [52]. It currently only supports models in the format SBML Level 3
Version 1 [53]. Model calibration was performed using CellDesigner [54,55]. As such, the
SBMLWebApp is bound by the features of CellDesigner. Some features of the SBMLWeb-
App are based on COPASI [27], which belongs to the leading simulation tools in the field of
computational biology. However, this dependency also brings with it the application’s lim-
itation to the features of this third-party software, see also [56]. This is also the reason why
the SBMLWebApp is not able to estimate parameters using log-transformed loss functions.
Kinetic models in biology often grow in size and thus in complexity. It is recommendable
to use small or medium-sized models to allow the best possible functionality of the features
provided by the SBMLWebApp. As such, computation times for individual analysis steps
will differ, depending upon the size of the model. For data security reasons, the application
does not store any user information. As such, any data that is not downloaded after
running the analysis steps will be lost. At the moment, the SBMLWebApp is restricted to a
selection of fundamental analyses in kinetic modeling. Future versions of SBMLWebApp
will also include an easily accessible flux balance analysis tool because of the growing
importance of this method.

6. Conclusions

SBMLWebApp is a user-friendly, web-based and freely available application to exe-
cute time course simulation, steady-state analysis, and parameter estimation for models
in SBML. As open-source software, SBMLWebApp can be used as an example implemen-
tation of such a service and allows contributions and feature requests from the scientific
community. It was developed to provide novice modelers and other non-specialist intuitive
access to the core analyses for kinetic SBML models.

Supplementary Materials: The following materials are available online at https://www.mdpi.com/
article/10.3390/pr9101830/s1. S1–S8: Supplementary Figures, S9: ReproductionSummary.pdf, a collec-
tion of figures demonstrating the reproduction of simulation results, S10: PerelsonModel_Calibrated
ForReproductionOfFigure8.xml, and S11: Perelson2000Model_ForParameterEstimation.xml,
model files based on BIOMD0000000874 (https://identifiers.org/biomodels.db/BIOMD0000000874,
accessed on 13 October 2021).
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The following abbreviations are used in this manuscript:

CSV Comma-Separated Values
COPASI COmplex PAthway SImulator
GUI Graphical User Interface
GWT Google Web Toolkit
ODE Ordinary Differential Equation
PE parameter estimation
PNG Portable Network Graphics
TCS time-course simulation
SBML Systems Biology Markup Language
SBSCL Systems Biology Simulation Core Library
SBW Systems Biology Workbench
SSA steady-state analysis
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