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Abstract: The exploration and rational design of easily separable and highly efficient sorbents
with satisfactory capability of extracting radioactive uranium (U)-containing compound(s) are of
paramount significance. In this study, a novel magnetic hydroxyapatite (HAP) composite (HAP@
CoFe2O4), which was coupled with cobalt ferrite (CoFe2O4), was rationally designed for uranium(VI)
removal through a facile hydrothermal process. The U(VI) ions were rapidly removed using HAP@
CoFe2O4 within a short time (i.e., 10 min), and a maximum U(VI) removal efficiency of 93.7%
was achieved. The maximum adsorption capacity (Qmax) of the HAP@CoFe2O4 was 338 mg/g,
which demonstrated the potential of as-prepared HAP@CoFe2O4 in the purification of U(VI) ions
from nuclear effluents. Autunite [Ca(UO2)2(PO4)2(H2O)6] was the main crystalline phase to retain
uranium, wherein U(VI) was effectively extracted and immobilized in terms of a relatively stable
mineral. Furthermore, the reacted HAP@CoFe2O4 can be magnetically recycled. The results of
this study reveal that the suggested process using HAP@CoFe2O4 is a promising approach for the
removal and immobilization of U(VI) released from nuclear effluents.

Keywords: cobalt ferrite; adsorption; hydroxyapatite; mineralization; uranium(VI)

1. Introduction

Uranium (U), a long-persisting and highly hazardous radionuclide, is generally re-
leased from uranium mining, nuclear weapon testing, and nuclear accidents. Uranium
released from untreated wastewater poses serious threats to aquatic life and human
health [1–4]. Because of the high mobility of uranium(VI) ions under oxidizing conditions
and the consequent environmental risks, the retardation and immobilization of UO2

2+,
which is the most stable uranium specie, have attracted considerable attention [5]. Adsorp-
tion is the most facile and promising approach to the treatment of metal ions because of its
low cost, high efficiency, and ease of operation [6–10].

Many cost-effective and ecofriendly adsorbents with components ubiquitous in the en-
vironment have been fabricated to remove U(VI) or other heavy metal ions, including iron
and manganese oxides or hydroxides, organic matter, silicates, phosphate minerals, clay
minerals and their modified forms [11–17]. Hydroxyapatite [Ca10(PO4)6(OH)2, HAP] is a
promising absorbent material because it can effectively immobilize considerable amounts
of U(VI) due to its unique physical, chemical, mechanical, and biological properties [18,19].
Because UO2

2+ exhibits a strong affinity for PO4
3−, and their product uranyl phosphate

generally has low solubility under most conditions, the phosphate group in the HAP
structure dominates the transport and transformation behavior of U(VI) in nature [5,20–22].
Autunite, meta-autunite, torbernite, meta-torbernite, and uranyl selenite are the principal
uranyl minerals, and phosphorus can be used to promote the mineralization and retention
of U(VI) to form stable secondary uranium minerals to mitigate U pollution in the environ-
ment [23]. Numerous studies have been performed on the morphology control, synthesis,
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and adsorption applications of HAP. Zhou et al. [24] reported the synthesis of strontium
(Sr) doped hydroxyapatite (HAP) for the increased Cr(VI) adsorption through a hydrother-
mal method. Ma et al. [25] found that the addition of a certain amount of alendronate
in the synthesis of hydroxyapatite helped to form a loose porous nanospheres with low
crystallinity, showing good adsorption capacity for Pb2+, Cu2+, and Cd2+. Xiong et al. [26]
and Su et al. [27] revealed that HAP with a porous structure can remove U(VI) ions from
an aqueous solution. Although such HAP materials can remove pollutants, a key problem
is the separation of granular absorbents. Therefore, the rational design of a fast, efficient,
and easily separable emergency material is critical for the purification of U(VI)-containing
wastewater from the nuclear industry or in case of accidents.

CoFe2O4, a compound with excellent magnetic and unique properties, has been widely
used in applications, such as permanent magnets, storage devices, magnetic recording,
electronics, and pigments [28–31]. Compared with Fe3O4, CoFe2O4 has more advantages,
such as simpler synthesis, more hydroxyl groups on the surface, and excellent chemical
inertness [32–35]. Many researchers have verified the potential of CoFe2O4 and its magnetic
recovery [36–38]. To effectively recover the adsorbed material and maintain the stability of
the target material, nano CoFe2O4 and HAP can be coupled through a facile hydrothermal
process. The as-synthesized HAP@CoFe2O4 exhibits superior composition uniformity,
narrow particle size distribution, and can be therefore magnetically separated from reaction
systems [39]. To the best of our knowledge, the use of a rationally designed HAP@CoFe2O4
composite as a sorbent to abate and fix U(VI) has been rarely reported.

This study aims to (I) synthesize easily separable and highly efficient HAP@CoFe2O4
through a facile hydrothermal method, (II) investigate the interaction between HAP@CoFe2O4
and U(VI) ions, (III) determine the mechanisms toward U(VI) removal using magnetic
HAP@CoFe2O4 and (IV) develop a preliminary process for the U(VI) removal. The U(VI)
adsorption behavior by HAP@CoFe2O4 was discussed in detail based on the outcomes
from equilibrium and kinetics analysis. The findings of this study provide a promising and
economic material for the treatment of uranium-contaminated sites.

2. Materials and Methods
2.1. Materials

Citric acid (C6H8O7, 99%) was obtained from Tianjin Fuchen Chemical Reagent Fac-
tory (Tianjin, China). Salts of calcium (II) (Ca(NO3)2, 99%), iron (III) (FeCl3·6H2O, 99%),
and cobalt (II) (CoCl2·6H2O, 98%) were purchased from Tianjin Fuchen Chemical Reagent
Factory (Tianjin, China) and Shanghai Aladdin Biochemical Technology Co., Ltd. (Shang-
hai, China). Both diammonium hydrogen phosphate ((NH4)2HPO4) and aqua ammonia
(NH3·H2O, 25–28%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shang-
hai, China). Ethylene glycol ((CH2OH)2, ≥99.5%) were purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd. A stock solution containing 1 g/L of uranium was
prepared by dissolving UO2(NO3)2·6H2O in ultrapure water.

2.2. Synthesis and Characterizations of HAP@CoFe2O4

Nanosized HAP that was used as a precursor was prepared using a chemical precipi-
tation method described in our previous study [40]. The HAP@CoFe2O4 composite was
hydrothermally fabricated (Text S1 in Supplementary Materials). The initial mole ratio
of HAP/CoFe2O4 is 0.5/1. First, 30 mL of ethylene glycol and 20 mL of ultrapure water
were added to the beaker, and subsequently, 0.5 mmol of HAP precursors were added
to the beaker and sonicated for 15 min to ensure uniform dispersion. Then, 2 mmol of
ferric chloride and 1 mmol of cobalt chloride were added to the beaker and stirred until
they were dissolved. Aqua ammonia was titrated to increase the pH of the solution to 10.0
with magnetic stirring at room temperature for 1 h. The mixed solution was transferred
into a 100 mL Teflon-lined, stainless-steel autoclave and stored at 180 ◦C for 24 h to facili-
tate reactions in an oven. Then, the autoclave was cooled to room temperature naturally,
and the precipitates were obtained. The precipitates were centrifuged and washed with
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alcohol and ultrapure water 3–4 times, and finally, the obtained solid was placed in a
constant-temperature oven and dried at 60 ◦C for 4 h.

The prepared adsorbent samples’ phases and crystal structures were determined
through an X-ray diffraction (XRD) instrument with Cu Kα radiation (λ = 1.5418 Å) op-
erated at a 2000 W power and 10◦/min scanning rate in the 2θ range from 10◦ to 90◦.
Additionally, the specific surface area, magnetic properties, and functional groups of the
as-prepared samples were analyzed using the Brunauer–Emmett–Teller specific surface
analyzer (ASAP 2020, Micromeritics, Norcross, GA, USA), magnetometer (VSM, Dexing,
Model: 250), and Bruker Tensor 27 FT-IR spectrometer (Bruker Tensor27, Germany), respec-
tively. The surface morphology and elemental compositions of the HAP@CoFe2O4 samples
were characterized by a transmission electron microscope (JEOLJSM-2100F, Japan) and
X-ray photoelectron spectroscopy (Thermo Fisher Scientific ESCALAB250Xi spectrometer,
Waltham, MA, USA). The point of zero charge (pzc) of the HAP@CoFe2O4 was measured by
a Zeta potentiometer (NanoBrook Zeta PALS Potential Analyzer, Brookhaven Instruments,
Holtsville, NY, USA).

2.3. U(VI) Removal Experiments

A series of batch sorption experiments were performed to investigate the U(VI) re-
moval performance of HAP@CoFe2O4. The solution volume was 50 mL. The influence of
pH was investigated in the range of 2.0–6.0. The dosage of the sorbent varied from 0.1 to
0.3 g/L. A dosage of 0.2 g/L of HAP@CoFe2O4 exhibited excellent U(VI) removal ability
and was thus selected as the optimal dosage for the experiments, while the initial U(VI)
concentration and contact time varied. The residual U in the solution after filtration was
determined using a uranium microanalyzer. The amount of U(VI) ions adsorbed by the
adsorbent at time t was estimated using Equation (1):

Qt =
(C0 − Ct)V

m
(1)

In Equation (1), Qt, C0, Ct, V, and m denote the adsorption capacity of HAP@CoFe2O4
for U(VI) at time t, initial U(VI) concentration (mg/L), U(VI) concentration measured at
time t, volume of the reaction system, and the adsorbent’s mass, respectively.

3. Results and Discussion
3.1. Characterization

The X-ray diffraction (XRD) patterns of the HAP@CoFe2O4 are illustrated in Figure 1a.
The diffraction characteristic peaks of the HAP@CoFe2O4 located at 25.338◦, 31.740◦,
and 49.463◦ corresponded to the (201), (211), and (213) planes, respectively, of typical
hydroxyapatite (PDF no. 09-0432). The characteristic peaks of the HAP@CoFe2O4 were
located at 29.946◦, 35.270◦, 42.862◦, 56.672◦, and 65.422◦, which corresponded to the planes
of (220), (311), (400), (511), and (531) of CoFe2O4 (PDF no. 22-1086), respectively. The
average microcrystalline size of the CoFe2O4 calculated by Scherer equation (Equation S1)
is 10.60 nm. The HAP@CoFe2O4 almost preserved the crystal structure of the HAP during
the preparation process. The XRD results indicated that a hybrid material composed of
HAP and CoFe2O4 was obtained.

Figure 1b indicated that the HAP@CoFe2O4 exhibited a specific surface area of
12.161 m2/g, which suggested that the as-obtained HAP@CoFe2O4 could be beneficial
for interface reactions because of the sufficient active sites. The N2 adsorption-desorption
isotherm of HAP@CoFe2O4 was a type IV curve and belonged to the H3 type hysteresis
loop, which indicated that HAP@CoFe2O4 is a flat slit structure. The average pore size
of the product calculated according to the Barrett–Joyner–Halenda (BJH) method was
15.292 nm.

A broad peak near 3448.3 cm−1, which can be attributed to the stretching vibration
of the –OH groups, was observed in the Fourier-transform infrared (FT-IR) spectra of the
HAP@CoFe2O4 (Figure 1c). This spectrum, which exhibited bands at 2360.99 cm−1 and
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between 1476.14 and 1383.85 cm−1 could be explained by the adhesion of CO2 from the
atmosphere during the synthesis of the HAP in highly alkaline conditions [41–43]. The
peak at 1638.06 cm−1 was related to the –COO group, possibly because of the citric acid
added during synthesis. The peaks at approximately 572.89 and 602.94 cm−1 represented
asymmetric bending vibration, and the peak at 1044.82 cm−1 represented symmetric
stretching vibration; these were attributed to the tetrahedron PO4

3− groups of HAP. For
FT-IR, Co/Fe–O bonds are typical in the 580–598 banding [44–46]. In this case, the peak of
the Co/Fe–O bond may have overlapped with the typical vibration of the PO4

3− group
of HAP. The charge on the surface of the material affects its adsorption performance. As
displayed in Figure 1d, the pHpzc of the HAP@CoFe2O4 was approximately 2.8, even in
the solution with 15 ppm U(VI).
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Figure 1. XRD patterns (a) of HAP, CoFe2O4 as well as HAP@CoFe2O4, (b) the nitrogen adsorption-
desorption isotherm (calculated from the Brunauer–Emmett–Teller [BET method] and pore size
distribution (calculated from the BJH method), (c) Fourier transform infrared [FT-IR] spectrum, (d)
zeta-potential and (e) transmission electron microscopy (TEM) image, and (f) the hysteresis loop of
HAP@CoFe2O4 (inset of Figure 1f displays the separation of HAP@CoFe2O4 with and without an
additional magnet).

Because the morphology including size and shape of nanomaterials considerably
affected the physical and chemical properties of the product, the morphology of the
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HAP@CoFe2O4 was investigated through transmission electron microscopy (TEM). As
presented in Figure 1e, HAP@CoFe2O4 morphology showed a typical bundle-like structure
with numerous CoFe2O4 nanoparticles. CoFe2O4 was evenly dispersed and tightly adhered
to the surface of the HAP. The results from hysteresis loop analysis showed that the
as-prepared HAP@CoFe2O4 possessed excellent magnetic properties, suggesting that
HAP@CoFe2O4 could be easily separated using an extra magnet within a short time after
the reaction (Figure 1f). Compared with other separation technology (e.g., filtering and
centrifugal separation) applying an external magnetic field and using magnetic material(s)
allows the adsorbent to be more quickly recovered from the reaction system and thus
saving time and cost. These results revealed that the HAP@CoFe2O4 composites were
successfully synthesized and can be applied in the treatment process of eliminating U(VI)
from the aqueous solution.

3.2. U(VI) Removal by Magnetic HAP@CoFe2O4

Dosage experiments were conducted for confirming the optimal dosage of adsorbents.
As shown in Figure 2a, with an increase in the dosage, the adsorption sites increased in the
solution, which were more conducive to the binding of UO2

2+, leading to the improvement
of removal efficiency. The HAP@CoFe2O4 maintained the high efficiency adsorption of
U(VI). The HAP considerably dominated the adsorption process, whereas the adsorption
contribution of the CoFe2O4 to U(VI) was insignificant.
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adsorbent dosage = 0.1–0.3 g/L, T = 298 K); (b) Removal rate of U(VI) by magnetic HAP@CoFe2O4

under various pH (Reaction conditions: initial U(VI) concentration = approximately 15 mg/L,
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Because pH is a critical factor affecting the interaction between HAP@CoFe2O4 parti-
cles and U(VI), experiments were performed to investigate the effect of the solution pH on
U(VI) adsorption by changing the pH value (2.0–6.0) of the solution (Figure 2b). When the
pH value was less than 3.0, U(VI) was mainly present in the form of uranyl ions (UO2

2+)
in the solution [47]. Moreover, HAP@CoFe2O4 is not stable under the conditions with a
pH below 3.0 because the HAP might dissolve. A higher pH reduced protonation in the
solution, and the U(VI) changed. At a low pH, the high H+ concentration of the solution
competed intensely with the UO2

2+, which limited the UO2
2+ adsorption by the HAP@

CoFe2O4. At pH = 3.0, the adsorption capacity considerably increased and reached the
maximum. As the pH increased, the adsorption of U(VI) by HAP@CoFe2O4 weakened
marginally. When the pH was 3.0 or higher, the charge of as-fabricated HAP@CoFe2O4
composite decreased and became negative [19]. Meanwhile, under high pH conditions, the
UO2

2+ began to hydrolyze and form new species, such as (UO2)2(OH)2
2+, (UO2)3(OH)5+,

(UO2)4(OH)7+, UO2(OH)+, and (UO2)3(OH)7−. The affinity of these species is generally
lower than that of the UO2

2+ [48]. Therefore, the HAP@CoFe2O4 composite does not easily
absorb these species. Nevertheless, the HAP@CoFe2O4 particles still maintained high
adsorption of U(VI), which indicated that the composite material could efficiently adsorb
U(VI) in a wide pH range, making it capable of removing uranium from contaminated
wastewater under various conditions.

The reaction system comprising 0.2 g/L of sorbent and approximately 15 mg/L U(VI)
exhibited the highest removal efficiency (Figure 2c). Figure 2d indicated that the adsorption
efficiency of the HAP@CoFe2O4 was as high as 93% in 10 min. Initially, sufficient active
surface sites were present, which resulted in a high adsorption efficiency and intensive
interaction between the HAP@CoFe2O4 and U(VI). On prolonging the contact time, U(VI)
ions occupied most of the active sites of the HAP@CoFe2O4, and the adsorption reached
equilibrium at 30 min. Even when the time was increased, stable adsorption efficiency
was maintained.

3.3. Adsorption Isotherms and Kinetics

To investigate the adsorption behavior, Langmuir (Equation (S2)) and Freundlich
(Equation (S3)) isotherm models were used to simulate the adsorption process of the
HAP@CoFe2O4 for U(VI). The correlation coefficients (R2) of the HAP@CoFe2O4 were
0.9390 and 0.8663 for the Langmuir and Freundlich isotherm models, respectively (Figure 3a
and Table 1). This result indicated that the adsorption process of U(VI) onto HAP@CoFe2O4
could be better interpreted using the Langmuir isotherm model than the Freundlich
isotherm. On the basis of the Langmuir isotherm model, the Qmax of the HAP@CoFe2O4 for
U(VI) was 338 mg/g, which was almost consistent with the experimental results. The two
lower correlation coefficients may be due to the combined effects of physical adsorption
and surface precipitation. In the process of the HAP@CoFe2O4 absorbing uranium, the
dominant adsorption mechanism is related to the initial uranium concentration. Surface
adsorption may contribute considerably to the total uranium adsorption at low uranium
concentrations [49].

Table 1. Freundlich and Langmuir isotherm constants for the U(VI) adsorption onto the as-fabricated
HAP@CoFe2O4 composite.

Materials
Langmuir Isotherm Freundlich Isotherm

qm(mg/g) KL(L/mg) R2 KF(L/mg) 1/n R2

HAP@CoFe2O4 338 0.91 0.9981 145.64 0.20 0.8465

The fitting constants for pseudo-first-order (Equation (S4)) and pseudo-second-order
(Equation (S5)) kinetic models are displayed in Figure 3b and Table 2. The pseudo-second-
order kinetic model exhibited greater R2 (0.9922) than that of the pseudo-first-order kinetic
model (0.9790), which indicated that the kinetic process of the HAP@CoFe2O4 for U(VI)
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was well described by the pseudo-second-order kinetic model. Furthermore, the adsorp-
tion capacity (67.61 mg/g) calculated using the pseudo-second-order kinetic model was
consistent with the experimental result (68.85 mg/g), which indicated that the adsorption
process of U(VI) by the HAP@CoFe2O4 was controlled by chemical adsorption.

Table 2. Kinetic parameters for the adsorption of U(VI) onto HAP@CoFe2O4.

Kinetics Model Parameter Values

Pseudo-first-order
k1 (L mg−1) 1.539

R2 0.9790
qe 65.83

Pseudo-second-order
k2 (L mg−1) 0.44

R2 0.9922
qe 67.61
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3.4. U(VI) Removal Mechanisms

XRD, FT-IR, and XPS were performed to understand the adsorption mechanism of
U(VI) by the HAP@CoFe2O4 composite. The XRD patterns (Figure 4a) revealed that a
uranium-containing compound was formed. After adsorption, numerous diffraction peaks
were observed at 2θ = 10.523◦, 18.009◦, 20.903◦, 24.738◦, 25.576◦, 27.724◦, 35.880◦, 40.972◦,
and 44.581◦, which corresponded to the crystal planes of (001), (110), (111), (102), (200),
(201), (212), (310), and (302) of the meta-autunite 9A [(Ca(UO2)2(PO4)2(H2O)6, PDF no.
72-2117]. These results were in good agreement with the standard pattern of autunite,
which could be explained by the dissolution of the HAP and then precipitation of the
autunite on the surface of the HAP [50]. The presence of autunite indicated a successful
fixation of uranium on the adsorbent. The XRD pattern also illustrated the presence of
CoFe2O4 in the adsorbed material, which proved that the adsorbent was still magnetic
after the reaction.

FT-IR analysis (Figure 4b) revealed that both the adsorbents before and after the
reaction exhibited a distinct single and wide peak at approximately 3445 cm−1, which
was attributed to the –OH groups. This result indicated that the existence of –OH groups
in the HAP@CoFe2O4 is a typical feature of HAP [51]. The peak at 1616 cm−1 is char-
acteristic of –COO, which could be attributed to the absorption of CO2 in air during
the test [40,41]. The peaks at 1044.82 and 602.94 cm−1, (before adsorption) and 1007.83
and 600.90 cm−1 (after adsorption) were attributable to the PO4

3− group in the adsor-
bent [40,52], and the position and intensity of the characteristic peaks in the adsorbent
changed considerably before and after the reaction. The results revealed that the PO4

3−

in the HAP@CoFe2O4 is involved in the reaction. After the adsorption reaction, a new
peak appeared at 546.327 cm−1, which corresponded to Co/Fe–O bonding [53,54]. A new
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absorption peak of the HAP@CoFe2O4 after the reaction appeared at 911 cm−1, which was
characteristic of UO2

2+, providing strong evidence of uranium loading. The essence of
removing U(VI) by using the HAP@CoFe2O4 is the chemical reaction between UO2

2+ and
the HAP. The UO2

2+ was adsorbed and eventually incorporated into the Ca2+–PO4
3−–OH

according to Equation (2):

Ca2+ + 2PO4
3− + H2O + 2UO2+

2 → Ca(UO2)2(PO4)2(H2O)6 (2)
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The XPS survey spectra (Figure 5a) revealed the peaks of C 1s, O 1s, Ca 2p, P 2p, Fe
2p, and Co 2p, which indicated that the CoFe2O4 was successfully loaded on the HAP. A
new strong double peak for the antisymmetric vibration of [O=UVI=O]2+ appeared in the
XPS spectra of the HAP@CoFe2O4 reacted with U(VI), which was consistent with the EDS
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elemental mapping results (Figure S1), suggesting that uranium was successfully adsorbed
on the surface of the material. The high resolution of the U 4f spectrum (Figure 5b) can
be well fitted at binding energies of 383.3 (U 4f7/2) and 394.0 eV (U 4f5/2), indicating
that the valence of uranium did not change during the adsorption process [55,56]. The
Co spectrum (Figure S2a) revealed two peaks at binding energies 782.58 and 786.84 eV,
which were attributed to Co 2p3/2 and its shake-up satellites, respectively, whereas peaks
at higher binding energies (~797.81 and 804.44 eV) corresponded to Co 2p1/2 and their
shake-up satellites, respectively [57]. The Fe 2p spectrum (Figure S2b) displayed into two
peaks at binding energies of 712.13 and 726.02 eV, which respectively correspond to Fe
2p3/2 and Fe 2p1/2, evidencing the existence of Fe3+ [58–60]. As displayed in Figure 5d,
after reaction with U(VI), the P 2p peaks shifted slightly towards higher binding energy,
which indicated that the presence of phosphorus considerably affected the adsorption
of uranium [19]. The spectra of O 1s (Figure 5c) can be divided into four peaks, namely,
anion oxide (530.64 eV, Fe2O4

2−), phosphate group (531.53 eV, PO4
3−), hydroxyl groups

(532.50 eV, −OH), and adsorbed groups (H2O, 533.57 eV), respectively. The peak area ratio
of –OH varied considerably (from 50.33% to 40.26%) before and after U(VI) adsorption,
which evidenced that the surface hydroxyl groups (–OH) played a key role in the adsorption
of U(VI) through the sharing of electrons to form U–O bonds [61,62].

3.5. Preliminary Evaluation of the U(VI) Removal Process

The suggested schematic of the removal of the U(VI) from wastewater using HAP@CoFe2O4
is presented in Figure 6, 93.7%, where the U(VI) was removed within 10 min. As a magnetic
separable material, the advantage of using HAP@CoFe2O4 is that the adsorption/separation
is a simple and efficient process, U(VI) can be effectively removed from wastewater and the
U(VI) loaded can be easily separated from water using magnetic field, which is beneficial
for the minimization of secondary waste. The process using HAP@CoFe2O4 as an adsorbent
for the removal of U(VI) has economic feasibility. The use of HAP@CoFe2O4 for the U(VI)
removal/separation could result in a significant reduction of costs due to easier separation of
the solid phase and energy savings. HAP@CoFe2O4 can be considered to be an effective and
environmental material for the elimination of U(VI) from mining wastewater.
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4. Conclusions

This study developed a promising and easily separable composite material, HAP@CoFe2O4,
for removing uranium ions from radioactive wastewater. A U(VI) removal efficiency of 93.7%
can be achieved by the HAP@CoFe2O4 in 10 min, and the maximum adsorption capacity was
338 mg/g. Therefore, HAP@CoFe2O4 can be used as an emergency material to treat uranium-
containing radioactive wastewater generated in nuclear accidents. The UO2

2+ were transferred to
the HAP@CoFe2O4 by reacting with dissolved calcium and phosphate, thereby forming a more
stable compound-autunite [Ca(UO2)2(PO4)2(H2O)6]. The adsorption and incorporation are the
main ways for U(VI) removal. Simulation of the interaction process between the HAP@CoFe2O4
and UO2

2+ by using adsorption isotherm models and adsorption kinetic models revealed that the
adsorption process followed the Langmuir isotherm and pseudo-second-order dynamic model,
which indicated that the adsorption of U(VI) by the HAP@CoFe2O4 was mainly controlled by
chemical adsorption. Moreover, the magnetic property of the as-prepared HAP@CoFe2O4 was
measured and found to be used for magnetic separation. Therefore, the developed process
using HAP@CoFe2O4 as an adsorbent is promising to mitigate uranium pollution generated in
a nuclear accident, and a pilot scale test for process optimization is planned in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr9111927/s1, Figure S1: EDS image of U(VI) loaded HAP@CoFe2O4. Figure S2: (a) Co 2p,
and (b) Fe 2p XPS spectra of the HAP@CoFe2O4 composite before and after the removal of U(VI).
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