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Abstract: In this study, a rate-based absorption model coupled with an improved thermodynamic
model was developed to characterize the removal of acid components (CO2 and H2S) and organic
sulfur (COS and CH3SH) from natural gas with an aqueous sulfolane–MDEA solution. First, the
accuracy of the thermodynamic model was validated by comparing the calculated partial pressure
of CO2, H2S, and CH3SH with those of the experimental data reported in the literature. Then, the
industrial test data were employed to validate the absorption model and the simulation results
agreed well with the experimental data. The average relative errors of the removal rates of CO2,
COS, and CH3SH are 3.3%, 3.0%, 4.1%, respectively. Based on the validated coupled model, the total
mass transfer coefficient and mass transfer resistance of each solute component at different column
positions were analyzed. The effects of the gas–liquid ratio, overflow weir height, and absorption
pressure on the absorption performance of each component were studied, and the influence of
the acid component concentration in the feed gas on the removal efficiency of methyl mercaptan
(CH3SH) was also discussed. It is found that the improved absorption model can better characterize
the absorption performance and be conducive to the optimal design of the absorber column.

Keywords: absorption model; rate-based; organic sulfur; mass transfer

1. Introduction

With the development of society, natural gas is increasingly used in industry and daily
life due to its economic and environmental advantages [1–3]. Since mined natural gas
contains acid components (CO2 and H2S) and organic sulfur (COS and CH3SH), it needs
further treatment before it can be used [4–7]. Conventional gas processing includes distil-
lation, adsorption, membrane separation, and absorption [8]. Among these purification
techniques, chemical absorption is the most commonly used method for acid-gas removal
in the natural gas industries with its high efficiency and simultaneous strip of multiple
acid gases [9].

In the industry, aqueous amine solutions are often used to remove acid components
from natural gas [10–12]. To overcome the limited capacity of organic sulfur components
with amine solution, a mixed solvent containing sulfone is used because of the high gas
loading for simultaneous absorption of high CO2 and H2S content in raw gas. A common
sulfone–amine solution is composed of N-methyl diethanolamine (MDEA), sulfolane, and
water, which has an advantage in treating natural gas with high organic sulfur content [8,13].
Macgregor and Mather [14] reported the absorption of H2S and CO2 with a mixed solvent
consisting of MDEA (20.9 wt.%) + sulfolane (30.5 wt.%). Jou et al. [15] investigated acid-gas
absorption with MDEA, methanethiol, and ethanethiol at 40 and 70 °C at thiol partial
pressure within 0.1–15.8 kPa. Haghtalab et al. [16] measured the absorption of acid-gas in
different mix solvents at 343 K and a total pressure of 0.1–0.21 kPa and reported variation in
the solubility of CO2 and H2S in different operating conditions and solvent compositions.
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However, although absorption with various mixed solvents has been reported, reliable
thermodynamic modeling of the absorption process remains a big challenge for simulating
and optimization of the acid-gas capture processes [17].

In order to accurately simulate and design the absorption process of the acid compo-
nent and organic sulfur in natural gas using an aqueous sulfolane–MDEA solution, it is
necessary to establish a reliable and robust absorption model, which involves the gas–liquid
equilibrium, chemical reaction equilibrium, material and heat balance, and transfer proper-
ties of each component in the system [18–20]. Afkhamipour and Mofarahi [21] compared
the rate-based and equilibrium-stage models by simulating post-combustion CO2 capture
using a 2-amino-2-methyl-1-propanol (AMP) solution in a packed column. The simulation
results of the absorber show that the rate-based model can better predict temperature and
concentration curves than the equilibrium phase model. Al-Baghli et al. [22] simulated the
process of removing CO2 and H2S by MEA and DEA aqueous solutions using rate-based
gas absorber model and obtained reliable simulation results. Pacheco and Rochelle [23]
developed a framework to perform selective absorption of H2S using MDEA solution from
a gas stream containing CO2. The Maxwell–Stefan and enhancement factor theories are
used in the model. Mandal and Bandyopadhyay [24] conducted theoretical and experi-
mental research on the simultaneous absorption of CO2 and H2S into solutions containing
MDEA and DEA. Moioli et al. [25] used the Eddy diffusivity theory in Aspen Plus and
used an external subroutine to simulate the absorption of CO2 and H2S from gas streams.
In addition, they modified the parameters for vapor–liquid equilibrium (VLE) calculations
and verified the simulation using data in the literature. Yang et al. [26] used an aqueous
sulfone–MDEA solution to remove organic sulfur in natural gas and studied the factors
that affect organic sulfur removal in natural gas purification devices. However, the process
of the simultaneous removal of multiple impurities (i.e., CO2, H2S, COS, and CH3SH) is
usually very complicated, and the influence of acidic gas on the absorption performance of
organic sulfur during the removal process is still unclear.

In this study, we developed a rate-based absorption model coupled with an improved
thermodynamic model to characterize the removal of acid components (CO2 and H2S)
and organic sulfur (COS and CH3SH) from natural gas with an aqueous sulfolane–MDEA
solution. An improved thermodynamic model was used considering the influence of acid
component concentration on the removal efficiency of methyl mercaptan (CH3SH). The
mass transfer characteristics at different column positions were analyzed. The influence of
the gas–liquid ratio, overflow weir height, and absorption pressure on the removal rate
of each component and the influence of acid component content on the removal rate of
methyl mercaptan (CH3SH) were studied. Furthermore, with the modified rate-based
absorption model, we successfully simulated the adsorption process for a wide range of
feed gas compositions and operating conditions. This study is expected to further facilitate
optimization of the operating conditions and device structure.

2. Model Theory
2.1. Thermodynamic Framework

The detailed thermodynamic model consists of the gas–liquid equilibrium and chemi-
cal reaction equilibrium of each component in the solvent.

2.1.1. Gas–Liquid Equilibrium

The gas–liquid equilibrium of the acid component (CO2 and H2S) and organic sulfur
(COS and CH3SH) in the aqueous sulfolane–MDEA solution is calculated by Henry’s law:

Pyi ϕi = Hixiγ
∗
i (1)

where P is the system pressure, Pa. Hi is Henry’s law constant of component i in the mixed
solvent of water, sulfolane, and MDEA, Pa. yi is the mole fraction of component i in the
vapor phase, and xi is the equilibrium mole fraction of component i in the liquid phase. ϕi
is the fugacity coefficient of component i in the vapor phase, which is calculated using the
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Peng–Robinson equation of state (EOS) [27]. γ∗i is the unsymmetric activity coefficient of
component i in the mixed solvent solution of water, sulfolane, and MDEA. γ∗i is normalized
to the mixed solvent infinite dilution reference state.

In the mixed solvent, Henry’s law constant can be calculated from those in the pure
solvents, as shown in Equation (2) [28].

ln(
Hi
γ∗i

) = ∑
A

wA· ln(
HiA
γ∞

iA
) (2)

where ωA is the weighting factor, which can be calculated according to the method in the
literature [13]. γ∞

iA is the infinite dilution activity coefficient of component i in pure solvent
A, HiA is Henry’s constant of component i in pure solvent A, and the values of HiA of
solute i (CO2, H2S and CH4) can be obtained directly from the literature [10–13]. Some
HiA values of CH4, CH3SH, and COS regressed according to the experimental data [29–31],
which are summarized in Table 1.

Table 1. Parameters for Henry’s constant.

Solute i Solvent A A B C D Data Source

CH4 sulfolane 26.68 −1538.38 0 0.02 Jou et al. [31]

CH3SH H2O 21.128 −1299.310 0 0 Bedell and Miller [29]

CH3SH sulfolane 12.987 0 0 0 Bedell and Miller [29]

COS H2O 27.402 −2407.192 0 0 Al-Ghawas et al. [32]

COS MDEA 19.323 −603.363 0 0 Al-Ghawas et al. [32]

COS sulfolane 11.004 0.170 0 0.015 Shokouhi et al. [30]

During the absorption process, MDEA reacted with acidic components and the amount
of reaction affected the absorption of organic sulfur in the aqueous sulfolane–MDEA
solution. Thus, the unreacted ratio of MDEA is introduced to modify Henry’s coefficient of
methyl mercaptan (CH3SH) in the aqueous sulfolane–MDEA solution [26]. Equation (3) is
used to quantitatively describe the influence of the acid component content on Henry’s
constant for CH3SH.

HCH3SH =
H′CH3SH

f C (3)

where f is the unreacted ratio of MDEA, which is the ratio between unreacted MDEA
and the total amount of MDEA and MDEAH+ in aqueous solutions. C is the effect factor,
symbolizing the influence of the acid component on Henry’s law constant. H′CH3SH and
HCH3SH are Henry’s constants of CH3SH in the mixed solvent when the influence of acid
component is not taken into account and is taken into consideration, respectively.

The electrolyte-nonrandom two-liquid (e-NRTL) model is used to calculate the activity
coefficients [33]. The molecule–molecule, electrolyte–electrolyte, and molecule–electrolyte
binary parameters are mainly obtained from the literature [10,13]. Some binary parameters
that are not mentioned in the literature are defaulted to (8, –4), and the non-randomness
factor is fixed at 0.2 [34].

2.1.2. Aqueous Phase Chemical Equilibrium

In aqueous solutions, the acid components H2S and CO2 react with MDEA, and the
ionic equilibrium reactions are expressed as Equations (4)–(9) [35].

CO2 + 2H2O↔ H3O+ + HCO−3 (4)

H2S + H2O↔ H3O+ + HS− (5)

H2O + MDEAH+ ↔ H3O+ + MDEA (6)
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HS− + H2O↔ S2− + H3O+ (7)

HCO−3 + 2H2O↔ CO2−
3 + H3O+ (8)

2H2O↔ H3O+ + OH− (9)

The liquid phase compositions must satisfy the chemical equilibrium relationships [11]:

Ki =
∏i′ (xi′γi′)

vi′

∏i (xiγi)
vi

(10)

where Kj is the chemical equilibrium constant of reaction j, xi is the mole fraction of reactant
component i in reaction j, xi′ is the mole fraction of product component i′ in reaction j, and
γi and γi′ are the unsymmetric activity coefficients of reactant component i and product
component i′ in the aqueous solution. The unsymmetric activity coefficients are normalized
to the aqueous phase infinite dilution reference state. vi′ and vi′ represent the stoichiometric
coefficients of reactants and products, respectively.

The chemical equilibrium constant Kj of reaction j can be calculated by Equation (11) [11,35].

ln(Kj) = A +
B
T
+ C ln(T) + DT (11)

where the constants A, B, C and D are summarized in Table 2.

Table 2. Parameters for temperature-dependent mole-fraction reaction equilibrium constants.

Reaction A B/T C D/K−1 T Range/K Source

4 819.8 −37655.9 −124.5 0 273–498 In this Work a

5 −553.4 28412.7 77.7 0 273–423 In this Work a

6 −9.4165 −4234.98 0 0 298–333 Austgen et al. [36]

7 −32.0 −3338.0 0 0 287–343 Austgen et al. [36]

8 216.049 −12431.7 −35.4819 0 273–498 Austgen et al. [36]

9 132.899 −13445.9 −22.4773 0 273–498 Austgen et al. [36]
a The equilibrium reaction order of CO2 and H2S are obtained by fitting the experimental data. The reaction
orders of CO2 and HCO3

− are 1.25, the reaction orders of H2S and HS− are 1.35, and the reaction orders of the
remaining reactions are 1.

2.2. Rate-Based Model Assumptions

In order to simulate the absorption process of removing the acid component (H2S and
CO2) and organic sulfur (COS and CH3SH) from natural gas utilizing a tray column, a
mathematical model was established using the two-film theory [37]. The basic assumptions
are as follows:

(1) Consider both physical absorption and chemical absorption, and the reaction only
occurs in the liquid phase.

(2) The absorption column is adiabatic.
(3) The heat transfer resistance of the liquid phase is neglected, and the interface

temperature is equal to the bulk temperature.
(4) Flow is one-dimensional in the axial direction, and the radial temperature and

concentration variation can be neglected.

2.3. Material and Energy Balance

The tray column is composed of many stages, where vapor and liquid streams from
adjacent stages contact each other and exchange mass and energy at their common inter-
face [18,21].

Figure 1. Presents a stage j in the tray column, and i represents the components. The
main mass and energy balance equations are listed below [38].
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Material balance for liquid phase:

FL
j xF

i,j + Lj−1xi,j−1 + NL
i,j + rL

i,j − Ljxi,j = 0 (12)

Material balance for vapor phase:

FV
j yF

i,j + Vj+1yi,j−1 + NV
i,j −Viyi,j = 0 (13)

Energy balance for liquid phase:

FL
j HFL

j + Lj−1HL
j−1 + QL

j + qL
j − Lj HL

j = 0 (14)

Energy balance for vapor phase:

FV
j HFV

j + Vj+1HV
j−1 + QV

j + qV
j −Vj HV

j = 0 (15)

where F is the mole flow rate of feed, kmol s−1. L and V represent the mole flow rates of
liquid and vapor, respectively, kmol s−1. N is the mole transfer rate, kmol s−1. r is the
reaction rate, which can be calculated from the component concentration. xi and yi are the
mole fractions of component i in the liquid and vapor phases, respectively. Q is the heat
input to a stage, J s−1; q is the heat transfer rate, J s−1; HFL and HFV are the enthalpies of
the inflow liquid and inflow vapor, J kmol−1; and the thermodynamic properties including
enthalpy and heat capacity utilized in heat transfer calculations can be obtained directly
from the literature [10–13].

2.4. Mass Transfer and Enhancement Factor

The mass transfer flux between the gas phase and the liquid phase is shown in
Equation (16) [39].

Ni = KG,i(Pi − P∗i )ap Ac (16)

where KG,i is the overall mass transfer coefficient for component i; ap is the effective mass
transfer area per unit area of the tray, m2m−2; Ac is the cross-sectional area of the column,
m2; Pi is the partial pressure of component i in the gas bulk; and P∗i is the partial pressure of
component i in equilibrium with the liquid phase. The partial pressure of each component
can be calculated by the established thermodynamic model.

Using the two-film model, the overall mass transfer coefficients incorporating gas and
liquid transfer resistance for component i is expressed as Equation (17).

1
KG,i

=
1

kG,i
+

Hi
kL,iEi

(17)
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Where Hi is Henry’s law constant of component i; KG,i is the overall mass transfer of
component i in gas phase; and kG,i and kL,i are the mass transfer coefficient of component
i without reaction in the gas phase and the liquid phase, which are calculated according
to the method used by Simon et al. [18] and Saimpert et al. [40]. The density, viscosity,
and surface tension required for the calculation can be obtained directly from the Aspen
database. Ei is the enhancement factor of component i due to chemical reactions, which
is the ratio of the mass transfer enhanced by a reaction over the mass transfer without
the reaction [21]. The calculation of the enhancement factor in this work uses the formula
developed by Danckwerts [41].

For large values of enhancement factor for infinite fast reaction (E∞) and Hatta num-
bers lower than 2, the enhancement factor is calculated using a simplified Equation (18) [42].

Ei =
Ha

tanh(Ha)
(18)

For infinite fast reaction (E∞) values lower than 100 and Hatta numbers larger than 2,
the enhancement factor is calculated using a simplified Equation (19) [1].

Ei = (
E∞ − 1
Ha3/2 +

1

E3/2
∞

)
−2/3

(19)

where the Hatta number and enhancement factor for the infinite fast reaction are expressed
as Equations (20) and (21) [42].

Ha =

√
k2t,i·Di,L·CBulk

MDEA

kL,i
(20)

E∞ = 1 +
DMDEA,L

Di,L
×

CBulk
MDEA
CIn

i
(21)

where Di,L refers to the diffusivity of absorption component i in an aqueous sulfolane-
MDEA solution, DMDEAL is the diffusivity of the MDEA in the liquid phase. CIn

i is the
concentration of absorption component i at the gas-liquid interface, and CBulk

MDEA represents
the concentration of MDEA in the bulk liquid. Pacheco and Rochelle [23] and Al-Ghawas
et al. [32] measured the rate constants of reaction between CO2 and MDEA and between
COS and MDEA in the mixed solvent, respectively, as shown in Equations (22) and (23).

k2t,CO2 = 2.576× 109 exp(−6024/T) (22)

k2t.COS = 4198.74 exp(−4575.80/T) (23)

For CO2 and COS, the enhancement factor is needed for the mass transfer rate calcula-
tions, which are calculated using Equation (18). As the reaction between H2S and MDEA is
very fast, the enhancement factor can be calculated using the infinite fast reaction rate, as
shown in Equation (19). In contrast, the absorption of CH3SH is mainly a physical effect,
so there is also no need to consider the influence of chemical reactions.

2.5. Computational Implementation

The model calculation was performed by writing Fortran programs. The solution of
the absorption model adopts the stepwise calculation method, and the steps are as follows:

(1) The concentration of the absorbed components in the gas and liquid feed, and the
gas-liquid ratio are known. By assuming the total removal rate of each component, the
concentration of each absorbed component in the liquid at the last plate can be calculated.

(2) Since the concentration of gas feed and liquid discharge of the last plate is known,
the concentration of liquid feed and gas discharge of this plate, that is, the concentration of
gas feed and liquid discharge of the upper plate can be calculated.
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(3) It is calculated upward until the gas discharge concentration of the top plate is
obtained, then the removal rate of the whole column of each component can be calculated.

(4) Compare the removal rate of the whole tower between the hypothesis and the
calculated one. If the error is greater than 0.0001, change the hypothesis and continue the
iterative calculation until the error requirement is met.

3. Modeling Results

As mentioned above, a rate-based absorption model coupled with the thermodynamic
model was developed for the removal of acid components (CO2 and H2S) and organic
sulfur (COS and CH3SH) from natural gas with an aqueous sulfolane–MDEA solution.

In this section, the accuracies of the thermodynamic model and absorption model
are first validated. Then, the effects of the gas–liquid ratio, overflow weir height, and
absorption pressure on the absorption performance of each component are investigated,
and finally, the influence of acid component concentration in the feed gas on the removal
efficiency of methyl mercaptan (CH3SH) is also discussed.

3.1. Thermodynamics Model Validation

An improved thermodynamic model was employed to calculate the solubility and
partial pressure of acid components and organic sulfur in the aqueous sulfone-MDEA
solution. The experimental data of several systems are employed to verify the accuracy of
the thermodynamic model.

Figures 2 and 3 display the experimental and calculated CO2 partial pressure data
for the CO2–H2O–MDEA system and H2S partial pressure data for the H2S–H2O–MDEA
system at different compositions and different temperatures. As shown, the calculated
CO2/H2S partial pressure values are in good agreement with the experimental data re-
ported by the literature [14,43–45], thus validating the proposed thermodynamic model.
From Figure 2, it is found that the CO2 partial pressure is more sensitive to temperature.
With the temperature increasing from 313.15 K to 338.75 K, the CO2 partial pressure experi-
ences a significant increase. However, the MDEA mass fraction seems to have little effect
on the CO2 partial pressure when the temperature is 313.15 K. Figure 3 shows the com-
parison of experimental data and calculated data in terms of H2S partial pressure for the
H2S–H2O–MDEA system. As shown, the proposed thermodynamic model is also effective
and robust. This means that the improved thermodynamic model has good applicability.
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Figure 2. Comparison of experimental data and calculated data of the CO2–H2O–MDEA system
under different conditions. �, measured by Jou et al. [43], T = 313.15 K, MDEA mass fraction = 0.35;
•, measured by Macgregor and Mather [14], T = 313.15 K, MDEA mass fraction = 0.209; N, measured
by Qian et al. [44], T = 310.95 K, MDEA mass fraction = 0.20; H, measured by Qian et al. [44], T =
338.75 K, MDEA mass fraction = 0.20; and �, measured by Sidi-Boumedine et al. [45], T = 313.15 K,
MDEA mass fraction = 0.257. The solid line represents the calculated data in this work.
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When compared with an aqueous amine solution, an aqueous sulfone–amine solution
is more effective, especially for raw gas with high organic sulfur content. A common
sulfone–amine solution is composed of MDEA, sulfolane, and water. Herein, two sys-
tems, namely the CO2–H2O–sulfolane–MDEA system and the H2S–H2O–sulfolane–MDEA
system, are used to validate the thermodynamic model. The comparison results of the
calculated values and experimental data in terms of CO2/H2S partial pressure are given in
Figures 4 and 5. As shown, the calculated results agree well with the experimental data
in terms of CO2/H2S partial pressure. Generally, the addition of sulfolane is beneficial to
enhancing the absorption of acidic gases, and therefore, high acidic gas loading is observed
at low partial pressure. When compared with Figures 4 and 5, it can be found that H2S has
a higher solubility than CO2 in the H2O–sulfolane–MDEA solution.
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this work.
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fraction = 0.305, sulfolane mass fraction = 0.209; •, measured by Jou et al. [43], T = 373.15 K, MDEA
mass fraction = 0.305, sulfolane mass fraction = 0.209. The solid line represents the calculated data in
this work.

In order to further verify the reliability of the thermodynamic model, some CO2 and
H2S partial pressure data calculated in this paper are compared with the values calculated
with reaction parameters proposed by Austgen et al. [36]. The average relative deviations
of the partial pressure data of CO2 and H2S calculated in this paper are 10.7% and 24.4%,
respectively, while the average relative deviations of the partial pressure data calculated
with reaction parameters proposed by Austgen et al. [36] are 38.1% and 36.8%, respectively.
The calculated results using the improved thermodynamic model are not only in good
agreement with the experimental data but also better than the calculated values of the
existing models in the literature (see Figures 6 and 7). This is because we refitted the
exponents of the equilibrium equations of reactions (4) and (5) and calculated the reaction
equilibrium constants with the new parameters in Table 2.
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To verify the prediction performance of the improved thermodynamic model on the
partial pressure data of CH3SH in the system, the calculated value of the model is compared
with the value measured by Jou et al. [15] in Figure 8. It can be seen that the predicted
CH3SH partial pressure data are in good agreement with the experimental value. This
shows that the improved thermodynamic model not only has higher prediction accuracy
but also has a larger application range.
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Figure 8. Parity plot for CH3SH partial pressure, experimental data vs. model predictions. CH3SH–
H2O–MDEA system: �, T = 313.15 K, MDEA mass fraction = 0.50; N, T = 343.15 K, MDEA mass
fraction = 0.50. CO2–H2S–CH3SH–H2O–MDEA system: •, T = 313.15 K, MDEA mass fraction = 0.50;
H, T = 343.15 K, MDEA mass fraction = 0.50.

In short, the proposed thermodynamic model has strong applicability, and its accuracy
has been verified by various experimental data. In this study, the thermodynamic model is
employed to calculate the solubility and partial pressure of acid components and organic
sulfur in the aqueous sulfone–MDEA solution.
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3.2. Rate-Based Absorption Model Validation

Before the rate-based model is applied to investigate the absorption process, its
accuracy must be verified. The data were collected on an industrial sieve plate tower of
3.4 m in diameter with a mixed solvent comprising 20 wt% H2O, 40 wt% sulfolane, and
40 wt% MDEA. The tower was operated under a different number of plates (22, 26, and
30) and overflow weir heights (0.1 and 0.15 m). The Inlet gas–liquid ratio (vol./vol.) was
adjusted from 490.2 to 720.0. CO2 and H2S loading were varied from 4.11vol% to 4.73
vol% and 1.34 vol% to 1.57 vol%, respectively. The concentration of CH3HS and COS were
changed from 14.12 to 25.41 mg/m3 and 11.18 to 34.58 mg/m3, respectively. As shown
in Table 3, the simulation results of removal efficiency for absorption components are in
good agreement with the data from the industrial absorber. For CO2, COS, and CH3SH, the
average relative errors are only 3.3%, 3.0%, and 4.1%, respectively. Therefore, the rationality
of the absorption model can be confirmed.

3.3. Rate-Based Absorption Model Calculation

The specifications and operating parameters of the absorption column are summarized
in Table 4, and the mass fractions of H2O, sulfolane, and MDEA in the mixed solvent
are 0.20, 0.40, and 0.40, respectively. The parameters of the absorber are obtained from
(the desulfurizing column of) PetroChina Southwest Oil and Gasfield Company, and
the operating parameters are obtained by analyzing the operating parameters of typical
industrial absorbers and by making appropriate extensions.

The concentration profile of each component and the gas–liquid temperature profile
are also obtained. As shown in Figure 9, the absorption rate of H2S is fast, and the
concentration of H2S in the feed gas drops rapidly after entering the absorption column;
it is completely removed in the middle of the column. This is the result of the synergistic
effect of physical absorption and chemical reaction. However, the absorption rate of CH3SH
is low. After the feed gas enters the column, the concentration of CH3SH decreases slowly
and the final removal rate is low. The main reason for this is that the physical adsorption
and absorption processes are controlled by equilibrium.
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Table 3. Comparison of experiment data and model calculation data from the industry.

Experimental
No.

Number of
Plates

Overflow
Weir

Height (m)

Inlet Gas Flow
Rate (104

Nm3/d)

Inlet
Gas-Liquid

Ratio (vol/vol)

Pressure
(Mpa)

Inlet Gas
Loading H2S

(vol.%)

Inlet Gas
Loading CO2

(vol.%)

CH3SH
Concentration

(mg/m3)

COS
Concentration

(mg/m3)

Experimental Removal
Efficiency (%)

Simulated Removal
Efficiency (%)

CO2 COS CH3SH CO2 COS CH3SH

1 26 0.15 384.0 490.2 6.14 1.49 4.26 15.53 12.33 74.1 82.9 76.9 76.4 80.2 70.7

2 26 0.15 417.0 568.4 6.14 1.44 4.17 15.62 14.64 70.4 79.2 61.9 72.6 78.3 62.8

3 26 0.15 446.0 608.6 6.13 1.41 4.32 15.53 11.18 73.3 78.0 56.3 73.1 78.4 58.1

4 30 0.15 535.2 614.3 6.20 1.55 4.62 22.42 32.53 73.4 79.4 57.7 73.4 80.3 58.6

5 26 0.15 458.0 622.8 6.13 1.41 4.31 15.75 13.78 76.6 76.6 53.9 72.6 78.1 56.8

6 26 0.15 553.0 645.4 6.11 1.49 4.73 20.20 41.18 69.7 81.1 56.8 70.3 76.5 54.0

7 30 0.15 553.4 655.1 6.44 1.57 4.58 25.41 34.58 74.8 79.7 52.1 76.6 82.0 56.1

8 26 0.15 570.0 659.7 6.18 1.50 4.71 19.40 29.94 68.8 79.1 51.2 70.9 76.9 53.2

9 26 0.15 442.0 661.1 6.18 1.40 4.28 16.09 23.57 72.0 79.1 51.5 72.1 78.2 54.0

10 30 0.15 600.2 661.8 6.11 1.52 4.26 24.39 28.08 70.4 76.7 50.5 71.8 79.0 53.7

11 26 0.15 448.0 662.4 6.18 1.41 4.17 16.12 24.29 73.6 79.1 50.4 71.7 77.9 54.1

12 26 0.15 596.0 665.8 6.11 1.51 4.23 23.49 19.78 67.8 75.9 54.1 69.3 75.3 53.2

13 22 0.15 600.0 666.0 6.11 1.52 3.69 20.54 20.81 57.1 67.2 53.2 59.5 67.6 54.5

14 22 0.15 602.3 673.0 6.10 1.51 4.49 24.33 25.01 61.0 71.0 54.0 59.5 67.9 52.7

15 30 0.15 612.0 674.3 6.19 1.51 4.31 24.31 31.01 66.8 74.3 56.6 71.7 79.0 53.3

16 26 0.15 589.0 681.2 6.16 1.50 4.51 14.85 21.59 66.7 70.9 52.9 68.9 75.6 51.9

17 26 0.15 614.7 720.0 6.26 1.51 4.48 17.42 17.45 66.7 75.9 47.7 69.3 76.0 49.5

18 26 0.1 475.0 547.6 6.19 1.35 4.34 15.49 17.66 67.0 61.2 66.3 65.9 63.0 65.0

19 26 0.1 399.0 558.9 6.15 1.39 4.37 15.23 11.90 71.6 64.8 66.5 68.5 65.9 63.2

20 30 0.1 412.0 575.8 6.14 1.38 4.18 14.63 11.82 68.4 66.1 63.2 71.2 68.2 62.4

21 26 0.1 407.0 576.0 6.15 1.39 4.30 14.95 11.57 70.0 61.7 63.0 67.9 65.4 61.6

22 30 0.1 414.0 582.3 6.15 1.38 4.37 14.12 12.23 67.7 68.9 64.2 71.6 68.9 61.4

23 30 0.1 448.0 630.8 6.14 1.38 4.15 14.26 13.48 68.4 67.7 53.2 72.7 71.0 56.4

24 26 0.1 599.0 653.3 6.27 1.45 4.23 16.70 26.95 60.8 57.3 52.9 61.8 59.6 56.2

25 26 0.1 470.0 653.8 6.22 1.36 4.11 15.48 9.35 65.9 61.3 56.6 65.2 63.0 55.6

26 30 0.1 595.0 656.2 6.42 1.35 4.53 17.76 25.27 65.6 63.3 55.1 68.3 66.5 56.5

27 22 0.1 605.0 660.6 6.26 1.34 4.53 17.78 24.15 61.1 55.7 53.6 55.5 54.0 55.1

28 26 0.1 602.0 661.0 6.51 1.46 4.58 18.48 30.04 62.7 59.5 57.1 62.6 60.7 57.0

29 30 0.1 603.0 663.6 6.45 1.45 4.41 17.35 27.17 66.3 63.1 56.9 68.8 67.2 56.2

30 26 0.1 597.0 664.9 6.25 1.41 4.45 17.15 28.45 61.8 56.8 59.5 61.5 59.7 54.7

31 22 0.1 599.0 671.3 6.31 1.35 4.50 17.21 28.49 61.1 55.1 57.0 55.3 53.7 54.8

32 22 0.1 612.0 681.6 6.35 1.35 4.60 17.72 29.77 58.9 53.6 54.7 55.2 53.8 54.2
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Table 4. Specifications of the absorber column and typical operating data.

Parameters Data

Column diameter (m) 3.4

Number of plates 25

Overflow weir height (m) 0.08–0.2

Inlet gas flow rate (104 Nm3/d) 500

Inlet gas temperature (◦C) 40

Inlet liquid temperature (◦C) 20

Inlet gas-liquid ratio 400–800

Absorption pressure (MPa) 4.0–8.0

Inlet gas loading CO2 (vol.%) 0–6.0

Inlet gas loading H2S (vol.%) 0–6.0

CH3SH concentration (mg/m3) 15.0

COS concentration (mg/m3) 15.0

Physical absorption and chemical reactions are usually accompanied by a thermal
effect, which changes the system temperature and, in turn, affects the absorption of compo-
nents. Therefore, the temperature of the absorber column needs to be strictly controlled.
Figure 10 shows the gas and liquid phase temperatures in the column at different concen-
trations of H2S and CO2. It can be seen that the gas phase and the liquid phase exchange
heat in the column, and as the concentration of H2S and CO2 increases, the heat release
during the absorption process increases, resulting in an increase in the outlet temperature
of the liquid phase at the top of the column. When the feed composition is the same, the
H2S is completely absorbed in the middle section of the column, and then the heat release
is rapidly reduced, resulting in a rapid drop in the gas phase temperature at the top of the
column.
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The calculated total mass transfer coefficient and mass transfer resistance of each
solute component at different column positions are shown in Figure 11.
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Figure 11. Total mass transfer coefficient and mass transfer resistance of different column positions
(overflow weir height: 0.15 m; absorption pressure: 6 Mpa; inlet gas flow rate: 5.0 × 106 Nm3/d;
inlet gas–liquid ratio: 600; inlet gas loading: CO2, 4.5 vol.%; H2S, 1.5 vol.%; COS, 15 mg/m3; CH3SH,
15 mg/m3).

For CO2 and COS, the gas mass transfer resistance can almost be ignored. In the whole
absorption column, the gas mass transfer coefficient is less than 0.01 kmol/m2/kPa. For
H2S, however, the gas mass transfer coefficient is almost ten times greater than that of CO2
and COS. Additionally, the liquid mass transfer coefficient of H2S is also much higher than
that of CO2 and COS, accounting for 15–25% of the total mass transfer resistance, so the
gas-side mass transfer resistance cannot be ignored. The gas-side mass transfer resistance
of CH3SH accounts for 5–10% of the total mass transfer resistance, which also needs to be
considered in the calculation process. This is consistent with the calculation method of the
absorption model.

Based on the mass transfer characteristics analysis, the rate-limiting steps of absorption
processes for different components can be clarified. Furthermore, it is helpful to simplify
the model calculation.

3.4. The Influence of the Operating Parameters

Based on the validated thermodynamic-absorption coupled model, the effects of
gas-liquid ratio, overflow weir height, and absorption column pressure on the removal
efficiency of each component were studied, and the results are shown in Figures 12–14. In
addition, the effect of the acid component content in the feed gas on the removal efficiency
of methyl mercaptan was studied, and the results are shown in Figure 15.
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absorption of CH3SH because CH3SH is physically absorbed and controlled by equilib-
rium. When the gas–liquid ratio increases from 400 to 800, the removal efficiency of 
CH3SH decreases from 0.8 to 0.4. Obviously, a more liquid phase is conducive to the 
physical absorption process. Since the absorption rate of CO2 and COS is determined by 
mass transfer rate, it is less affected by the gas–liquid ratio. 
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ing: CO2, 4.5 vol.%; H2S, 1.5 vol.%; COS, 15 mg/m3; CH3SH, 15 mg/m3). 

Figure 13 shows the effect of the overflow weir height on the absorption perfor-
mance of each component. As the reaction rate of CO2 in the absorption solvent is very 
fast, the absorption rate is mainly controlled by the mass transfer rate of CO2. As the 
overflow weir height increases, the liquid thickness over the tray increases, and, thus, 
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Figure 13. The effect of overflow weir height on removal efficiency (number of plates: 25; absorption
pressure: 6 Mpa; inlet gas flow rate: 5.0 × 106 Nm3/d; inlet gas–liquid ratio: 600; inlet gas loading:
CO2, 4.5 vol.%; H2S, 1.5 vol.%; COS, 15 mg/m3; CH3SH, 15 mg/m3).
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Author Contributions: Conceptualization, K.L. and J.L.; Formal analysis, K.L., G.X., J.H. and Q.L.; 
Funding acquisition, J.L.; Investigation, K.L.; Methodology, K.L.; Resources, J.L.; Software, H.C.; 
Writing–original draft, K.L.; Writing–review & editing, K.L. and J.L. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable.  

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 15. The effect of acid component content in feed gas on the removal efficiency of CH3SH
(number of plates: 25; overflow weir height: 0.15 m; absorption pressure: 6 Mpa; inlet gas flow rate:
5.0 × 106 Nm3/d; and inlet gas–liquid ratio: 600).

It can be seen from Figure 12 that the gas–liquid ratio has a greater impact on the
absorption of CH3SH because CH3SH is physically absorbed and controlled by equilibrium.
When the gas–liquid ratio increases from 400 to 800, the removal efficiency of CH3SH
decreases from 0.8 to 0.4. Obviously, a more liquid phase is conducive to the physical
absorption process. Since the absorption rate of CO2 and COS is determined by mass
transfer rate, it is less affected by the gas–liquid ratio.

Figure 13 shows the effect of the overflow weir height on the absorption performance
of each component. As the reaction rate of CO2 in the absorption solvent is very fast, the
absorption rate is mainly controlled by the mass transfer rate of CO2. As the overflow
weir height increases, the liquid thickness over the tray increases, and, thus, the mass
transfer area increases, resulting in an increase in the removal rates of CO2 and COS. For
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CH3SH, the overflow weir height has little effect on its removal rate. One reason is that the
absorption rate of CH3SH is controlled by its physical solubility in the mixed solvent. The
second reason is that the increase in the overflow weir height strengthens the absorption of
CO2 and H2S, which reduces the solubility of CH3SH in the liquid phase. Figure 15 shows
the effect of acid component content in the feed gas on the removal rate of CH3SH. As the
acid component content increases, the absorption rate of CH3SH decreases significantly.
The reason for this is that, as the acid component content in the liquid phase increases, the
Henry constant of CH3SH absorption increases significantly.

The influence of tower pressure is shown in Figure 14. As the absorption pressure
increases, the absorption driving force increases, and the removal efficiency of each compo-
nent increases. Additionally, the physical absorption process is more sensitive to the tower
pressure. With the increase in tower pressure, the removal efficiency of CH3SH achieves
a significant increase when compared with the removal efficiency of CO2 and COS. Due
to the chemical absorption being the rate-limited step for the removal of CO2 and COS,
the absorption pressure on their removal efficiency is insignificant. As shown in Figure 14,
the removal efficiency of COS increases by less than 10% when the absorption pressure
increases from 4 MPa to 8 MPa.

4. Conclusions

In this study, a rate-based absorption model coupled with a thermodynamic model
was developed to characterize the removal of acid components (CO2 and H2S) and organic
sulfur (COS and CH3SH) from natural gas with an aqueous sulfolane–MDEA solution. The
thermodynamic model was improved by improving the calculation method of the chemical
equilibrium constant and by incorporating the influence of acid components for COS
removal, which made the gas–liquid equilibrium (GLE) data more accurate. The absorption
model was validated by the experimental data obtained from an industrial device, and
the average relative errors of the removal rates of CO2, COS, and CH3SH obtained by
experiment and calculation are 3.3%, 3.0%, and 4.1%, respectively. The validated coupled
model indicated that the gas mass transfer resistance can almost be ignored for CO2 and
COS, but both gas and liquid mass transfer resistance for H2S and CH3SH should be
considered. Additionally, the analysis of influencing factors shows that the gas–liquid ratio
has a greater impact on the physical absorption process controlled by equilibrium but has
a limited effect on the absorption process determined by a chemical reaction. An increased
overflow weir height increases the gas–liquid contact time and mass transfer area, thus
resulting in an increase in the removal rates of CO2 and COS, which, however, inhibits the
absorption of CH3SH due to the increased Henry coefficient. Furthermore, the physical
absorption process rather than the chemical absorption process is more sensitive to the
tower pressure.
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to the published version of the manuscript.
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Nomenclature

P system pressure Pa
yi mole fraction of component i in the vapor phase -
xi mole fraction of component i in the liquid phase -
Hi Henry’s law constant of component i Pa m3/mol
ϕi fugacity coefficient of component i in the vapor phase -
γi* unsymmetric activity coefficient in the mixed solvent solution -
wA weighting factor -
γ∞ infinite dilution activity coefficient -
HiA Henry’s constant of component i in pure solvent A Pa m3/mol
HCH3SH Henry’s constants of CH3SH considering the influence of Pa m3/mol

acid gas
HCH3SH’ Henry’s constants of CH3SH ignoring the influence of acid gas Pa m3/mol
f unremoved rate of MDEA
c effect factor
K chemical equilibrium constant
F mole flow rate of feed kmol/s
L mole flow rate of liquid kmol/s
V mole flow rate of liquid kmol/s
N mole transfer rate kmol/s
Q heat input J/s
q heat transfer rate J/s
HF enthalpy of feed J/kmol
HV enthalpy of the vapor J/kmol
HL enthalpy of the liquid J/kmol
KG overall mass transfer coefficient kmol/m2 s kPa
Pi

* partial pressure of component i in equilibrium with the -
liquid phase

Pi partial pressure of component i in the gas bulk -
ap effective mass transfer area of the column per unit area of m2/m2

the tray
Ac cross-sectional area of the column m2

kG mass transfer coefficient without reaction in the gas phase kmol/m2 s kPa
kL mass transfer coefficient without reaction in the liquid phase m/s
E enhancement factor -
Ha Hatta number -
E∞ enhancement number for infinite fast reactions -
DL diffusivity in an aqueous sulfolane–MDEA solution m2/s
CIn concentration at the gas–liquid interface kmol/m3

CBulk concentration in the bulk liquid kmol/m3

k2t rate constant m3/kmol s
T temperature K
Subscripts
i component i
i’ product i’
j stage number
Superscripts
L liquid phase
V vapor phase
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