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Abstract: A car side-outer is an iron mold that is applied in the design and safety of the side of a
vehicle, and is subjected to a complicated and detailed molding process. The side-outer has three
features that make its quality inspection difficult to automate: (1) it is large; (2) there are many objects
to inspect; and (3) it must fulfil high-quality requirements. Given these characteristics, the industrial
vision system for the side-outer is nearly impossible to apply, and indeed there is no reference for an
automated defect-inspection system for the side-outer. Manual inspection of the side-outer worsens
the quality and cost competitiveness of the metal-cutting companies. To address these problems,
we propose a large-scale Object-Defect Inspection System based on Regional Convolutional Neural
Network (R-CNN; RODIS) using Artificial Intelligence (AI) technology. In this paper, we introduce
the framework, including the hardware composition and the inspection method of RODIS. We
mainly focus on creating the proper dataset on-site, which should be prepared for data analysis and
model development. Additionally, we share the trial-and-error experiences gained from the actual
installation of RODIS on-site. We explored and compared various R-CNN backbone networks for
object detection using actual data provided by a laser-cutting company. The Mask R-CNN models
using Res-net-50-FPN show Average Precision (AP) of 71.63 (Object Detection) and 86.21 (Object
Seg-mentation), which indicates a better performance than that of other models.

Keywords: artificial intelligence; laser cutting; automotive industry; defect inspection; R-CNN

1. Introduction

In the automotive industry, a side-outer is an iron mold that is applied to a vehicle’s
design and safety by means of a complicated and detailed molding process. A side collision
is the type of car accident that most significantly threatens drivers’ safety. The Insurance
Institute for Highway Safety (IIHS) statistics indicate that 5350 deaths were caused by side
collisions in 2018 alone, accounting for 23% of all automobile deaths that year [1]. To protect
drivers from the side collisions, the side-outer uses a hot stamping of Press Hardened
Steel (PHS). Hot stamping is a technique that makes light and strong parts by placing
steel materials heated to more than 950 ◦C into the press and then cooling them rapidly
with a hot stamping technique of more than 1500 MPa or more [2]. Thus, the side-outer
is not processed by the commonly used press manufacturing, but by three-dimensional
(3D) laser-cutting. “Telstar”, a laser-cutting company located in Gyeongju City, Republic of
Korea, uses 3D laser-cutting machines to pierce and trim the side-outer. The side-outer has
three characteristics that make it challenging to automate its defect inspection. First, the
size of the product is large. The side-outer is about 1.6 m wide and about 1.4 m deep. Large
products limit the use of vision systems that are conventionally applied in manufacturing-
defect inspections. The biggest challenge is the image distortion that grows proportionally
with size. Typical lens distortions are both radial and tangential [3]. Although a large
side-outer requires a wide field of view (FoV) to be filmed, lenses with a wide field of view
typically have severe distortion because of their Cubic Field Dependency [4]. This image
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distortion can be improved by expanding the Working Distance (WD) between the target
object and the lens to increase the focal distance and eliminate the perspective by using
a telecentric lens [5]. However, telecentric lenses are more expensive than regular lenses.
The lenses’ size also increases proportionally to the object, resulting in huge investment
costs. Second, the side-outer has numerous inspection points. The side-outer is pierced and
trimmed by a 3D laser-cutting machine. There are 50 processing points for the side-outer.
At Telstar, the entire process for manufacturing the side-outer is automated. It takes 120 s
to transport, process, and inspect a single product. Considering the cycle-time, it takes
roughly 30 s for the inspection, which means that only 0.6 s of inspection time can be
allocated to inspect each point. Third, the quality required for the side-outer is high and
differs from point to point. Some processing points, such as the path for wire cables, require
only relatively low quality. However, some machining points play a vital role in assembly,
and require a high machining quality up to 20 µm.

Because of the three characteristics of the side-outer mentioned above, the application
of automated defects inspection by means of the commonly used industrial vision system
is nearly impossible. A vision system in a factory automates production work by analyzing
images obtained from cameras. A stand-alone vision system is commonly used in the
manufacturing industry. This includes components (cameras, lenses, software, controllers,
lighting, etc.) necessary for vision inspection. It has the advantage of being able to be
easily activated and applied by adjusting some parameters, but it has limited hardware
and software specifications in use. The requirements for the design and development
of a successful machine vision system depends on the application domain [6]. For the
side-outer, it is nearly impossible to apply a stand-alone vision system because of its
characteristics, as mentioned above. At Telstar, the full precise inspection of the side-outer
is conducted by operators with the help of an inspection jig. The sampling quality control
restricts Telstar from tracking and tracing every product, undermining the quality and cost
competitiveness.

The side-outer is a steel mold and has the defects of the steel product, which are often
caused by the poor quality of materials, external forces, and equipment abnormalities [7].
Steel surface-defect inspection has been actively researched, and the conducted studies
mainly focus on regional proposals and classification. One of the conventional regional
proposal methods is the Ostu threshold segmentation based on the watershed algorithm [8].
By comparison, for extracting features, such as the wavelet transform feature [9], the tradi-
tional machine-learning algorithm, such as the Support Vector Machine (SVM), has been
studied for defect classification [9]. Recently, machine-learning methodologies, including
decision-tree algorithms, have been introduced [10]. Deep-learning-based surface-defect
inspection methods have been proposed to overcome the shortcomings of traditional
machine-learning methods. To achieve a balance between inspection performance and in-
ference efficiency, a deformable convolution is applied to extract the features of multi-shape
defects [7]. Defect inspection using a Computer Aided Design (CAD) model has also been
actively researched. Viana et al. [11] used a CAD model to generate a theoretical image
of the inspected object, which was further matched with the sensed image acquired with
a 2D camera. Berndt et al. [12] introduced the digital comparison of assembled products
with CAD data. After the finishing assembly, a camera takes a picture of the product, and
the software compares it with the CAD data. Abdallah et al. [13] examined aeronautical
mechanical assemblies by comparing and analyzing 3D CAD models with real 2D images.

To develop an automated inspection, this paper proposes a large-scale Object-Defect
Inspection System based on a Regional Convolutional Neural Network (R-CNN; RODIS).
In this paper, we suggest the RODIS framework, including a defect-inspection method and
hardware compositions. The various R-CNN backbone networks for object detection were
compared using actual data provided by Telstar. We found that the Mask R-CNN model
using Resnet-50-FPN showed an Average Precision (AP) of 71.63 (Object Detection) and
86.21 (Object Segmentation), which exceeded other models in performance.
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The paper is organized as follows. Section 2 introduces the theoretical background of
the proposed system. The section focuses on AI technology as a breakthrough that improves
the conventional vision system. Section 3 explains the RODIS framework, including the
hardware components and inspection workflow. Section 4 describes the experimental
setup, including Detectron2 Software System for object detection and data pre-processing,
such as data annotation and augmentation. This section also describes the computational
experiment environment. Section 5 introduces the results of the system implementation
on-site. Both the lessons learned from the installation of RODIS in the field and the result
of the experiment for exploring the optimal backbone network for object detection are also
highlighted in this section. In Section 6, the experimental results are critically discussed.
The final section summarizes the experiment and suggests future research.

2. Theoretical Background

Computer-based machine vision imports images from cameras into a computer to
be analyzed and processed. It can be customized by means of programming. For side-
outer defect inspection, the application of high-level computer-based machine vision
must be considered. The machine-vision process is conventionally divided into (1) image
acquisition, (2) digitalization, (3) processing, (4) analysis, and (5) interpretation [14]. Image
analysis is then divided into image segmentation and feature extraction tasks. Image
analysis, along with Artificial Intelligence (AI) technology, is evolving in many ways.
In particular, as a result of Convolutional Neural Networks (CNNs), the image analysis
tasks’ performance and efficiency have been improved significantly. A CNN uses locality,
shares weight, and has multiple layers with pooling operations. This allows the CNN to
automatically learn features from the data and classify images without separate manual
feature-extraction tasks. Because of these characteristics, the application of CNN and its
derived models are being studied for quality inspection in various industries. In fact,
research that applies AI technology for quality inspection in the manufacturing industries
is actively being conducted, especially with R-CNN. CNN can classify objects well but
shows its limitation in locating objects. R-CNN is a model with the addition of a box-offset
regressor that improves the accuracy and localization [15]. Fast R-CNN is a model derived
from R-CNN that applies Region of Interest (RoI) pooling and softmax classification to
compensate for R-CNN’s shortcomings. Fast R-CNN enables Single Stage Training and
backpropagation to improve object detection performance [16].

Faster R-CNN uses a Region Proposal Network (RPN) to diversify the anchor-box
size based on a feature map to independently detect objects. Furthermore, Faster R-CNN
leverages a Feature Pyramid Network (FPN) to detect small objects by rescaling feature
maps to different sizes. The algorithm proposed by Ren et al. [17] has been tested on
Common Objects in Context (COCO) and Pascal Visual Object Classes (VOC) datasets, and
requires complements to be used for manufacturing inspection. Ren et al. [17] suggests the
operation of the Faster R-CNN as follows:

1. Features are extracted from images via a Feature Extraction Network (FEN) that in-
cludes the convolutional layers, Batch Normalization (BN) layers, and pooling layers.

2. Create high-quality proposals by means of RPN.
3. Create feature map based on proposals.
4. Use RoI pooling to fix the size of each proposal.
5. Using classification layers and border regulation layers, perform classification and

regression analysis for boundaries.
6. Map the original image again.

The Mask R-CNN proposed by He et al. [18] added a Fully Convolutional Network
(FCN) to Faster R-CNN, complementing the shortcoming of location information disap-
pearing from the Fully Connected layers (FC). Mask R-CNN also applies RoI alignment
to improve the problem with the discrepancy that Faster R-CNN with RoI pooling forces
objects of different sizes to specific values. The mask prediction and class prediction work
separately. The operation of Mask R-CNN proposed by He et al. [18] is as follows:
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1. Resize the image by means of bilinear interpolation.
2. Adjust the image size to 1024 × 1024 by means of padding to use the backbone network.
3. Create feature maps at each layer via ResNet-101.
4. An additional feature map is generated from the feature map previously generated

by means of the FPN.
5. Classification and bounding-box regression outputs are derived by applying each

RPN to the final feature map.
6. Produce an anchor box by projecting the bounding box regression value obtained

from the output to the original image.
7. Delete all of the anchor boxes generated by Non-Max-Suppression except for the

anchor box with the highest score.
8. Size different anchor boxes with RoI alignment.
9. Pass the anchor-box value to the Mask branch along with the classification and

bounding-box regression branch in Fast R-CNN.

The object-detection algorithm is actively being studied for inspecting defects. Faster
R-CNN is a model that boasts high accuracy among object-detection algorithms and is
being studied in the industrial field. For example, the defects of the body, heads, and
turbo blades of car engines were inspected by Faster R-CNN [19,20]. Oh et al. [21] used
Faster R-CNN to automatically detect welding defects. By comparison, Mask R-CNN is
used for inspecting cracks in building and cable brackets of aircraft [22,23]. Other object
detection and instance segmentation models, such as YOLO and YOLACT, are also applied
for surface detection [24].

3. RODIS: R-CNN-Based Large-Scale Object-Defect Inspection System

This paper proposes RODIS for the side-outer. We propose the RODIS framework,
including a method for defect-inspection, which uses the digital comparison between a 3D
CAD model and the detected object from R-CNN. The various R-CNN backbone networks
for object detection were analyzed and compared using actual data provided by Telstar.
For the side-outer, various quality inspection objects and geometric characteristics should
be considered for the defect inspection. Therefore, in this paper, the various backbone
networks based on the Mask R-CNN were applied.

3.1. System Framework

RODIS uses sophisticated AI inference geometric data for defect inspection. RODIS
consists of an aluminum frame, an inspection table, four high-resolution vision cameras,
a network hub, two computers for AI inference, and backup data storage. The ground
workflow for RODIS is as follows: When the four high-resolution (12 megapixel) vision
cameras, fixed on the defect inspection table, acquire data, the data goes through a hub and
enters an AI inference computer equipped with defect detection AI. The edge AI computer
decides in real time whether a side-outer is defective or not. The acquired raw data is then
sent to the Network Attached Server (NAS) and stored for a week. The inspection results
are sent to the Manufacturing Execution System (MES) as the Boolean data type. Figure 1
shows the framework of RODIS.

RODIS’s aluminum frame is designed to maximize the WD to secure the FoV needed
for side-outer photography and minimize image distortion. Considering the height of the
site where the RODIS is installed, the overall RODIS was designed to be 2.25 m (width) ×
2.225 m (length) × 4.96 m (height), and the distance between the inspection-jig and the
camera vision was set to 2.9 m to provide sufficient WD.
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Figure 1. RODIS Framework.

We selected the cameras and lenses for RODIS by considering the size of the side-
outer, FoV, WD, and the quality level demanded by Telstar. To achieve the quality level
of 20 µm, ten high-resolution (31.4 MP) cameras are required. However, the price of a
high-resolution camera is USD 6000, which means that the total investment sum is USD
60,000. Therefore, Telstar suggested to present a Proof of Concept (PoC) for the system
which can inspect the defect level of 500 µm. Although the performance of the system is
insufficient to replace the manual inspection, it can increase the cost competitiveness of
Telstar, for the following reason. Currently, the side-outers are precisely inspected by the
operator three times a day by sampling. This inspection method has the disadvantage that
the operator cannot recognize the defects between sampling inspections. Thus, sometimes
production continues without acknowledging the defects, which leads to the production of
large amounts of defective products, causing additional costs. This unnecessary production
of defective products can be avoided if obvious defects in the product can be identified
automatically and quickly through the system.

Accordingly, we selected both the Tri120s and Tri122s cameras from Lucid Vision Labs.
Both cameras use the Sony IMX304 sensor and offer the desired high resolution of 12 MP
but differ in shutter type. The Tri120s has the global shutter type, for which each pixel in
the sensor array starts and ends the exposure simultaneously, and all pixels of the image
will obtain information from the sensor at once [25]. The Tri122s has a rolling shutter type.
The pixels of the image captured by the rolling-shutter camera are processed row by row,
so that different lines of the array image are exposed at various times to read the light
intensity by means of the sensor [25]. For the lens, we selected the V1228-MPY2 model from
Computar. Considering the size of the side-outer, WD, and the Angle of View (AoV) of the
lens, we regarded this lens as suitable for our research. However, as the installation on-site
progressed, the lens was replaced with another model (AZURE-1623ML12M), which is
precisely described in Section 5.

RODIS has a table with a grid pattern to measure the degree of image distortion and
to correct it, which is a burden for comparing the data detected by R-CNN with the CAD
model. RODIS has a total of three fine height adjustment devices for sophisticated image
capture. As a result, one can fine-tune the table’s height with the grid pattern, the vision
camera, and the entire frame. Four lamps are fixed to the aluminum frame to maintain
constant brightness during image shooting. Finally, in order to keep the side-outer stable
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when being photographed, the aluminum frame is fastened to the floor with four anchors,
and the inspection jig is fixed by the fastening units.

3.2. Inspection Workflow

As shown in Figure 2, the specific method of side-outer defect inspection using RODIS
is as follows:

1. The shooting of the side-outer with the four high-resolution cameras;
2. Data generation by merging of the split images;
3. Objects (processed holes) detected from images acquired by means of AI technology

to obtain detailed geometric information;
4. Calculate the error after comparing the 3D CAD data with the obtained information

acquired by the object detection;
5. Inspection based on the error range.
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4. Experimental Setup

As mentioned in Section 3, this paper explored different object-detection networks
to identify the optimal object-detection model for defect inspection of side-outers. In our
research, we applied the Detectron2 Software System by Facebook Artificial Intelligence
Research (FAIR). Detectron2 provides various backbone network combinations, which
differ in FEN and layer depth. The overall composition of Detectron2 is similar to the
concept suggested by He et al. [18], which was precisely explained in Section 2.

We applied ResNet-50, ResNet-101, and ResNext-101 from ImageNet pretrained mod-
els as FEN. ResNet is a convolutional neural network with 50 layers that uses the concept
of skip connection and residual learning to solve the gradient vanishing problem [26].
ResNext is a model derived from ResNet and uses the concept of group convolution to
solve the problems caused by the deep layer in ResNet [27]. Both ResNet and ResNext mod-
els used Batch Normalization (BN) to improve performance and prevent overfitting. Each
layer used Rectified Linear Units (ReLU) as a neuron activation function and was connected
to the previous layer. The applied backbone combinations were ResNet-FPN, ResNet-C4,
and ResNet-DC5. ResNet-FPN does masking and boxing using general convolutional
layers and fully connected layers. FPN is a technology that rescales an image without loss
of information while deconvolving information accumulated by means of a convolution
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process at the last stage of convolution. FPN is used in many studies that require the
detection of high-resolution objects [28,29]. ResNet-FPN showed the best speed/accuracy
tradeoff in previous studies. ResNet-C4 is the baseline of Faster R-CNN presented by Ren
et al. [17], using the conv4 backbone and conv5 head, which means that the fourth layer is
applied as a feature map. ResNet-DC5 (Dilted-C5) is a model introduced by Dai et al. [30],
using the fifth-stage layer of ResNet as the backbone and dilating by means of standard
convolutional layers and FC. The blocks of ResNet-50 and ResNet-101 used in this paper
are three layers deep.

The experiment was conducted on an Ubuntu 18.04 32-bit operating system, and the
deep learning framework used PyTorch. The equipment’s hardware was an Intel®® Core
TMi9-10900X, 2080ti GPU, with 32 GB of memory. Telstar provided images of the side-outer
that were collected manually. There are four types of processing holes required for object
detection: (1) key, (2) square, (3) circle, and (4) doghouse, depending on their shape as
shown in Figure 3. To improve the object detection performance, first the background of
the provided data was removed, as shown in Figure 4. The COCO Annotator was utilized
to annotate it in a COCO format, as shown in Figure 5.

Table 1 shows the information contained in the annotated data in json format, and the
data format for each item of information.

In order to improve overfitting problems and performance, we performed data aug-
mentation. Specific methods included ResizeShortestEdge and RandomFlip provided by
Detectron2. For ResizeShortestEdge, we undertook the rescaling without adjusting the
image ratio, increasing the shortest edge to the set value, and then resizing the longest
edge and checking whether it had exceeded the limit. For Random Flip, the image was
flipped vertically or horizontally for augmenting the data. Table 2 shows the data type
and the actual input data that we used in this paper for each method. The input values
of ResizeShortestEdge are the list of the short edge lengths, which is used for resizing the
longest edge.
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Table 1. Labeled data in json format.

Information Data Type

Area Int [Scalar]
Coordinate Int [Vector]

Category_ID Int [Scalar]
Color String [Scalar]

Height Int [Scalar]
ID Int [Scalar]

Image_ID Int [Scalar]
Bounding Box Boolean [Scalar]

Width Int [Scalar]

Table 2. Data augmentation method.

Method Data Type Input

ResizeShortestEdge Int [Vector] [640, 672, 704, 736, 768, 800]
RandomFlip Boolean True

5. Experiment and Results
5.1. Implementation

Telstar, a laser-cutting company located in Gyeongju City, Republic of Korea, uses
3D laser cutting machines to pierce and trim the side-outer. In the research, RODIS was
installed at the Telstar plant, which is equipped with three automated and one manual
laser-cutting systems. RODIS was installed close to the existing precise-quality inspection
station as shown in Figure 6. Figure 7 shows RODIS at the site after the installation, and
the components including the visions, the network devices, the inspection jig, the anchors,
and the table with a grid pattern.

The layout and components of RODIS, which were planned initially, were supple-
mented by trial and error at the site. For example, we considered using the camera with
the global shutter method (Tri120s), which provides a higher pixel size than the method
using a rolling shutter type. However, after discussions on the site, there was a dominant
opinion that the rolling shutter has advantages that the global shutter type does not have,
such as lower noise, and lower price for fixed-object photography, such as for side-outer
inspection. Thus, we decided to change the cameras from the global to the rolling-shutter
type (Tri122s). The detailed information about the specification is shown in Tables 3 and 4.
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Table 3. Inspection camera specifications.

Specification Tri120s Tri122s

Frame rate 10 FPS 9.7 FPS
Shutter Type Global Rolling

Resolution (h × v) 4096 × 3000 px 4024 × 3036 px
Resolution 12.3 MP 12.2 MP

Pixel Size (h × v) 3.45 µm × 3.45 µm 1.85 µm × 1.85 µm
Sensor Size 17.6 mm 9.33 mm

Table 4. Inspection lens specifications.

Specification V1228-MPY2 AZURE-1623ML12M

Focal Length 12 mm 16 mm
Angle of View (1.1 type, d × h × v) 71.1◦ × 60.5◦ × 46.2◦ 54.39◦ × 44.56◦ × 34.45◦

Angle of View (2/3 type, d × h × v) 48.6◦ × 39.6◦ × 30.1◦ 35.67◦ × 28.85◦ × 21.83◦

Distortion <0.5% <0.4%

However, the corresponding machine vision did not provide the desired FoV, because
even though the same lens was applied, the AoV differed depending on the camera’s
shutter type. The AoV specifications of the lens considered in the initial application were
71.1◦ (D), 60.5◦ (H), and 46.2◦ (V) for the global-shutter type, and 66.4◦ (D), 55.5◦ (H),
and 42.9◦ (V) for the rolling-shutter type, as shown in Table 2. To solve this, the lens was
replaced with RMA’s AZURE-1623ML12M lenses, which have the AoV of 54.39◦ (D), 34.45◦

(V), and 44.56◦ (H) for the 1.1” format, and 35.67◦ (D), 21.33◦ (V), and 28.85◦ (H) for the
2/3” format. Because the sensor size of the selected camera is 1”, the combination of the
camera and lens was assumed to provide an AoV between 21.33◦ and 34.45◦ (V). The
actual implementation proved that the selection of camera and lens is appropriate for the
side-outer inspection. The calculation of the FoV with the changed equipment based on
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the required FoV for each vision system, and the size of the inspection table, is shown in
Figure 8.
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In addition, trial and error was needed because of the installation of multiple vision
cameras. After installing the vision cameras, when individual camera power conditions
were checked, they all operated normally, and the image storage became stable. However,
when four cameras were operated simultaneously, it was impossible to recognize them,
because of screen noise. Figure 9 shows image noise, which is represented by colored
horizontal lines crossing the image.

The same symptoms were repeated when three cameras were operated. Although
lowering the number of cameras to two reduced the degree of noise, the image remained
difficult to recognize. The cause of the noise was the excessive amount of data transmitted
from the camera. Thus, the applied Category 5E (Cat.5E) Local Area Network (LAN) for
connecting the computer with the hub was changed to Category 6 (Cat.6), which has up
to 250 MHz bandwidth. After this change, a significant improvement was seen in the
image noise.

5.2. Results

The RODIS on-site succeeded in reliably collecting data. Figure 10 illustrates the results
of the data collected using the RODIS. Each of the four cameras filmed their responsible
territory. The filming areas are divided into four parts as followed: (1) left-bottom, (2) left-
top, (3) right-bottom, and (4) right-top. The lamp was on because the image was taken
during nighttime without natural light.
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At the same time as creating a data-acquisition environment by means of the field
installation of RODIS, the various R-CNN models were explored based on data provided by
Telstar. The research aimed to find the optimal backbone network for the defect inspection.
Table 5 explains the various backbone networks applied in our research.

Table 5. Different types of backbone network.

Labeled Name Baseline Feature
Extraction

Dataset
Size

mask_rcnn_R_101_FPN_3x ResNet-101 FPN 37 epochs
mask_rcnn_R_50_C4_3x ResNet-50 Conv4 * 37 epochs

mask_rcnn_R_50_DC5_3x ResNet-50 Conv5 ** 37 epochs
mask_rcnn_R_50_FPN_3x ResNet-50 FPN 37 epochs

mask_rcnn_X_101_32xBd_FPN_3x ResNeXt-101 FPN 37 epochs
* Features are extracted from the final convolutional layer of the 4th stage [18]. ** Features are extracted from the
final convolutional layer of the 5th stage with dilations [30].

The results of training the object-detection model for quality inspection of RODIS are
shown in Figure 11. The X-axis represents the number of iterations which indicates how
many times the model has been learnt. The Y-axis represents the loss value. The loss value
is used for a relative comparison among various models based on the same loss function.
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Figure 11. Loss rate.

As training progressed, the loss value decreased drastically. Given the rapid decrease
in loss, we inferred that the learning rate was appropriate. Among the five different models,
the loss value of ResNeXt-101-FPN was 0.477, showing better training than ResNet-50-FPN
(0.5174). During the training, the ResNeXt-101-FPN model had a better accuracy rate than
did the other four models, as represented in Figure 12.

Figures 13 and 14 show the result for bounding-box prediction and object segmenta-
tion, respectively. The numbers in the figures indicate the confidence for hole classification.

Both bounding-box prescription and masking showed a probability of more than
an 80% for all processing holes, and most showed a probability of more than 90%. To
measure the algorithm’s performance, we used Average Precision (AP), which is used as a
performance indicator for object detection. Higher AP implies that the model works better
to detect specific classes of objects. AP is the area under the Precision-versus-Recall (PvR)
curve [31].

As shown in Table 6, the most commonly used ResNet-50-FPN worked fairly well
for both bounding-box and masking prediction. The AP of ResNeXt-101-FPN, which
produced the best training results, was lower than that of ResNet-50-FPN, suggesting that
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the ResNeXt-101-FPN model may have overfitting issues. The AP is affected by various
factors. Specifically, the key is the choice of Feature Extraction method to be applied. FPN
is known as being effective compared to C4 and DC5 for detecting small objects. The size of
the detected holes is relatively small compared to the image. Therefore, the result that FPN
has the best effect among the methods seems to be reasonable. These results are consistent
with those presented in many of the prior studies described in Section 2, indicating that
ResNet-50-FPN is highly likely to be the best alternative for defect inspection.
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Table 6. Average Precision.

Backbone Network AP(BBox) 1 AP(Mask) 2

ResNet-50-FPN 71.6339 86.2131
ResNet-50-C4 58.9034 64.0677

ResNet-50-DC5 64.3613 66.3074
ResNet-101-FPN 71.8172 84.8889

ResNeXt-101-FPN 70.4178 85.4494
1 Average Precision for bounding box prediction (object detection). 2 Average Precision for masking
(object segmentation).

6. Discussions

Although data was successfully generated by RODIS, hardware, especially the vision
systems, must be upgraded to meet the quality requirements that would allow Telstar to
eliminate the manual inspection. For processing the high-resolution images, the network
and computational devices also must be improved. In addition, automating the integration
of the split images for quality inspection will be also challenging. The method currently
under consideration is as follows: (1) merging images with the heuristic method, (2) im-
proving the quality by comparing the merged image with the CAD drawing, (3) making a
reference model, and (4) automating the merging process based on the comparison with the
reference model. However, the development of the automation process must be researched
and experimented with based on the existing literature. Regarding object detection, FPN is
considered the most effective feature extraction model because the holes are relatively small
in comparison to the whole image. However, there are no significant differences among
ResNet-50-FPN, ResNet-101-FPN, and ResNeXT-101-FPN. Based on the accumulated data
generated by RODIS, further studies must be conducted to more precisely compare the
performance of these three models. However, the other backbone networks (C4, DC5) are
not considered to be efficient for extracting features for the side-outer.



Processes 2021, 9, 2043 16 of 17

7. Conclusions

This paper presents RODIS to perform defect inspection of large objects, such as
side-outers. We introduced the RODIS framework, hardware layout, and compositions,
and described the trial and error experienced in the actual site deployment. In particular,
the lack of FoVs that resulted from the inappropriate combination of camera shutter
types and lenses, and the image noise that occurs when multiple cameras are operated
simultaneously, should be considered during similar research tasks. In this paper, the
optimal algorithms were explored by reviewing and implementing various object-detection
models. Based on the dataset provided by Telstar, we compared various backbone networks
based on the Mask R-CNN. The Resnet-50-FPN-based model showed the highest Average
Precision (AP), representing good object-detection performance. Following the completion
of the installation and prior research on various backbone networks, further research
and development on RODIS has become possible. Future research subjects for RODIS
are as follows: (1) extraction of geometric data using R-CNN; (2) digital comparison of
extracted geometric data with a 3D CAD model for defect inspection; and (3) performance
improvement by comparing the inspection result from RODIS with the result of inspections
conducted manually by operators.
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