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Abstract: Adaptive fuzzy sliding-mode control design for omnidirectional mobile robots with pre-
scribed performance is presented in this work. First, an error transformation which transforms the
constrained variable into an unconstrained one is carried out. Next, a fuzzy logic system (FLS) for
approximating the unknown dynamics is constructed. Based on such a model, a nominal adaptive
linearizing controller incorporating a serial-parallel model (SPM)-based composite algorithm, which
improves the tracking performance of the overall closed-loop system, is synthesized. To solve the
so-called “loss of controllability” problem, a smooth-switching algorithm is embedded which hands
over the control authority to an auxiliary sliding-mode controller until the danger is safely bypassed.
The proposed design ensures the semi-globally uniformly ultimately bounded stability of the closed-
loop signals. Simulation works demonstrating the validity of the proposed design are presented in
the final.

Keywords: omnidirectional mobile robot; adaptive fuzzy; composite algorithm; sliding-mode;
smooth switching

1. Introduction

Omnidirectional mobile robots (OMR) are platforms that are able to move in any direc-
tion without reorientation. Owing to their great potential in a wide variety of industrial and
military applications, the corresponding tracking control issues have attracted a great deal
of attention over the decades [1–4]. The conventional PID controller, though still popular
in industrial applications, may however exhibit discounted tracking performance when
nonlinear dynamics or uncertainties are non-negligible. Regarding this, various nonlinear
control schemes, such as feedback linearization [5], adaptive control [6], robust adaptive
control [7–10], model-predictive control [11,12], etc., have been proposed to achieve better
tracking performances in recent years. In particular, for an OMR with structured and
unstructured uncertainties, the smooth robust adaptive control proposed in [10] was able
to improve the tracking performances and avoid the control singularity simultaneously.
However, all the aforementioned works rely heavily on the system modeling, which may
be time-consuming or become difficult in complex environments.

In contrast, fuzzy logic controllers (FLCs) are able to translate the knowledge of human
experts into robust control strategies without the need of a mathematical model of the
system. Therefore, the numbers of fuzzy logic-based control algorithms for OMRs have
been continuously increasing in the past few decades [13–17]. The work in [18] proposes
a fuzzy controller for navigation and a behavioral method for obstacle avoidance. The
works in [5,9,19] incorporated fuzzy logic with the popular PID control method for the path
planning or trajectory tracking of OMRs. FLSs are used to approximate an ideal control law
with an adaptive Mamdani-type fuzzy controller for an omnidirectional spherical mobile
robot in [20]. Liu and Hsiao proposed an adaptive fuzzy sliding-mode tracking controller
for OMRs [21]. Ren et al. presented a fuzzy-based intelligent obstacle-avoidance strategy
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for a wheeled mobile robot in [22]. Despite these achievements, issues of tracking control
for uncertain OMRs fulfilling a pre-specified output performance are seldom addressed.

Mobile robots are usually subjected to output/state constraints in reality, and various
control schemes addressing such issues have been presented in the literature. To solve the
aforementioned constraint problem, the so-called prescribed performance control (PPC) or
the barrier Lyapunov function (BLF) techniques are generally adopted [23,24]. An adaptive
NN-based control approach for wheeled mobile robots with full-state constraints was
proposed in [24,25]. Considering the desired trajectory as a virtual servo constraint, an
Udwadia–Kalaba-based adaptive robust control method is proposed for the trajectory
tracking of an OMR in the presence of uncertainties [2]. The control of mobile robots
with bounded torques is reported in [26], and control with velocity constraints is reported
in [27,28]. In [12], a virtual-vehicle concept and an MPC strategy were combined to handle
robot motion constraints and the path-following problems. However, issues of unknown
input-gain functions and composite update algorithms were not taken into account in the
aforementioned works.

Regarding this, a composite robust adaptive fuzzy control design for an OMR with
prescribed performance is synthesized in this paper. To fulfill the prescribed performance
imposed on the configuration variables, an error transformation that transforms the con-
strained problem into an unconstrained one is carried out first. Next, to render the adaptive
control applicable, an FLS is invoked to approximate the unknown dynamics. Based
on such a model, a nominal adaptive linearizing controller incorporating an SPM-based
composite algorithm, which exhibits better tracking performance than the conventional
Lyapunov-based update algorithm, is built. To conquer the so-called “loss of controllabil-
ity” problem, a smooth-switching algorithm that hands over the control authority to an
auxiliary sliding-mode controller is embedded. The major contributions of this paper are
summarized as follows.

1. The cases with an unknown control gain function and unknown nonlinearity arising
from unmodeled dynamics, exogenous disturbances such as low-velocity friction [29],
etc., are considered together at once;

2. The FLC is invoked to approximate the lumped unknown nonlinearity, which renders
the adaptive control easy to formulate;

3. The PPC technique is incorporated to ensure the fulfillment of a prescribed perfor-
mance requirement imposed on the configuration variables;

4. The composite update algorithm is incorporated to improve the tracking performance
further.

The paper is organized as follows: in Section 2, we state the problem and present some
preliminaries. The adaptive sliding-mode control design that guarantees the prescribed
performance is provided in Section 3. To verify the proposed design, simulation studies of
an OMR are given in Section 4. Finally, we conclude in Section 5.

2. Preliminaries
2.1. Fuzzy Logic Systems

An FLS is an artificial decision-making system that emulates a human’s reasoning
processes. It is composed of four principal components: a fuzzifier, fuzzy rule base,
inference engine, and defuzzifier. For the two-input/single-output system considered later
in this paper, the fuzzy rules in the rule base will have the following forms [30]:

Rj : IF x1 is Aj
1 and x2 is Aj

2,

THEN y is Bj (1)

where j = 1, 2, · · · , m are the indices of the fuzzy rules, x = [x1, x2]
T and y are the input

and output vectors of the FLS, respectively; and Aj and Bj are linguistic terms characterized
by their membership functions µAj(xi) and µBj(y), respectively.
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By using a singleton fuzzifier, product inference, center-average defuzzifier, and Gaus-
sian membership function, the output of the FLS can be expressed as linear combinations
of fuzzy basis functions as follows:

y =
∑m

j=1 ȳj(Πn
i=1µ

Aj
i
(xi))

∑m
j=1(Π

n
i=1µ

Aj
i
(xi))

, (2)

where ȳj is the point at which µBj has its maximum.
Define θ = [ȳ1, ȳ2, · · · , ȳm]T as the adjustable parameter vector and φ(x) = [φ1(x),

φ2(x), · · · , φm(x)]T as the corresponding fuzzy basis vector, where

φj(x) =
Πn

i=1µ
Aj

i
(xi)

∑m
j=1(Π

n
i=1µ

Aj
i
(xi))

(3)

Then, the output y in (2) can be rewritten in a compact form as

y = θTφ(x) (4)

Such a fuzzy logic system can be applied to approximate any continuous function
f (x) over a compact subset of input space to any given accuracy [30].

2.2. System Dynamics

This section introduces the kinematics and dynamics of an omnidirectional mobile
platform with three independent driving wheels equally space 120 degrees apart. A photo
of a real system is given in Figure 1. To describe the planar motion of a mobile platform,
as shown in Figure 2, two coordinate frames—a moving frame {om, xm, ym} located at the
geometrical center of the cart and a stationary world frame {o0, xw, yw}—are generally
required. In the sequel, the world coordinate is selected as the default frame. Clearly, the
motion of the platform can be decided if p(t) = [xp(t) yp(t)]T and θ(t) are specified.
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Figure 2. Coordinate system of an omnidirectional mobile robot
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Assuming non-slip conditions, the inverse kinematics are described by [31]

ω = r−1H(θ)ξ̇ (5)

where ω = [ω1, ω2, ω3]
T is the angular velocity of the wheels, ξ = [xp, yp, θ]T , and

H(θ) =



−Sθ Cθ l
−Sθ+ 2π

3
Cθ+ 2π

3
l

−Sθ− 2π
3

Cθ− 2π
3

l


, (6)
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with Sθ = sin(θ) and Cθ = cos(θ).
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j=1 ȳj(Πn
i=1µ

Aj
i
(xi))

∑m
j=1(Π

n
i=1µ

Aj
i
(xi))

, (2)
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It is noted that H(θ) is nonsingular for all θ ∈ R and hence is always invertible. By a
direct calculation, we have

H−1 =
2
3



−Sθ −Sθ+ 2π

3
−Sθ− 2π

3
Cθ Cθ+ 2π

3
Cθ− 2π

3
1
2l

1
2l

1
2l


 (7)

The balances of linear and angular momentum result in [31]

mp̈c =
3

∑
i=1

fiti,

Jθ̈ẑ =
3

∑
i=1

l fi(ni × ti), (8)

where m and J are the mass and the moment of inertia of the system, respectively, ẑ is the
unit vector of the z axis, and fi are the three contact frictions of the wheels.

The torques τi and the driving voltages ui, i = 1, 2, 3 for a DC motor are related
as follows:

τi = aiui − biωi, i = 1, 2, 3 (9)

where ai, bi > 0, i = 1, 2, 3 are the proportional constants.
Due to the non-slip condition, and by neglecting the wheel dynamics, we have

fi =
τi
r

(10)

Define u = [u1 u2 u3]
T . After a straightforward calculation, the dynamical equation

can be written in a compact form:

Mξ̈ +
1
r2 HT Ib Hξ̇ =

1
r

HT Iau + h(ξ, ξ̇) (11)

where Ia = diag[Ii], Ib = diag[bi], i = 1, 2, 3, h(ξ, ξ̇) ∈ R3 is the the unknown nonlin-
earity arising from un-modeled dynamics, exogenous disturbances such as low-velocity
friction [29], etc., and

M =




m 0 0
0 m 0
0 0 J


 (12)
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3. Control Design

Define the tracking error vector

e(t) = ξ(t)− ξd(t) (13)

The paper aims to synthesize a control algorithm for u such that

(i) The position vector ξ(t) tracks the reference trajectory ξd(t) accurately;
(ii) The following prescribed tracking performance is achieved:

−ρi(t) < ei(t) < ρi(t) (14)

for all t ≥ 0, where 1 ≤ i ≤ 3 and ρi(t) is a performance function given by

ρi(t) = (ρ0,i − ρ∞,i)e−α0,it + ρ∞,i (15)

with ρ0,i, ρ∞,i, α0,i being positive constants at disposal.

To attain the aforementioned objectives, the following error transformation is carried out
first [23]:

ei(t) = ρi(t)T(εi), i = 1, 2, 3 (16)

where εi is the transformed error and

T(εi) = tanh(εi) (17)

It is clear that item (ii) is equivalent to keeping εi bounded for all time. On the other
hand, the inverse transformation

εi = tanh−1(
ei
ρi
) (18)

is well-defined provided that (14) holds.
A direct differentiation of (18) yields

ε̇i =
1
gi
(

ėi
ρi
− ei

ρ2
i

ρ̇i)

ε̈i =
2(ei/ρi)

g2
i

(
ėi
ρi
− ei

ρ2
i

ρ̇i)
2 +

1
gi
[(

ëi
ρi
− 2

ėi

ρ2
i

ρ̇i) + (
2ei

ρ3
i

ρ̇2
i −

ei

ρ2
i

ρ̈i)] (19)

where gi = 1− (ei/ρi)
2. We can start by defining the following error metric:

s = ε̇ + λsε (20)

where λs > 0 is the gain constant at disposal. By a direct differentiation of s(t) in (20), and
taking (19) into account, one has

ṡi =
1
gi
{2(ei/ρi)

gi
(ėi −

ei
ρi

ρ̇i)
2 + [(ëi − 2

ėi
ρi

ρ̇i) + (
2ei

ρ2
i

ρ̇2
i −

ei
ρi

ρ̈i)]

+λs(
ėi
ρi
− ei

ρ2
i

ρ̇i)}. (21)

By virtue of the exponential stability of the ε1 dynamics on the sub-manifold s = 0, the
control of the original three dimensional system (11) is reduced to the stabilization problem
of the one-dimensional s-dynamics in (21).

The s-dynamics in (21) can be written in a compact form:

ṡ = g−1(YT
a ϑau + η + ψ), (22)
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where g = diag[gi], YT
a ϑa = r−1M−1HT Ia,

YT
a =



−Sθ −Sθ+ 2π

3
−Sθ− 2π

3
0 0 0

Cθ Cθ+ 2π
3

Cθ− 2π
3

0 0 0
0 0 0 l l l


,

ϑT
a =

1
r




a1m 0 0 a1 J 0 0
0 a2m 0 0 a2 J 0
0 0 a3m 0 0 a3 J




ψi =
2(ei/ρi)

gi
{(ėi −

ei
ρi

ρ̇i)
2 + [−(ξ̈d,i + 2

ėi
ρi

ρ̇i) + (
2ei

ρ2
i

ρ̇2
i −

ei
ρi

ρ̈i)]

+λs(ėi −
ei
ρi

ρ̇i)}, i = 1, 2, 3, (23)

and
η = M−1(h− 1

r2 HT IbHξ̇) (24)

In this work, the FLSs are introduced to approximate the unknown function η in (24).
By virtue of the universal approximation property, given an a priori constant ε,

η = ϑT
b Yb + ε (25)

where ϑb ∈ Rnb×3 and Yb ∈ Rnb are the optimal weight vector and the regression matrix,
respectively. The major advantage of such an approach is that the tedious procedure of
determining the regression matrices indispensable to a standard adaptive controller is no
longer required.

Substituting (25) into (22) yields

ṡ = g−1(YT
a ϑau + ϑT

b Yb + ε + ψ). (26)

To stabilize (26), the following adaptive linearizing controller is frequently applied:

ua = −[YT
a ϑ̂a]

−1(ksgs + ϑ̂T
b Yb + ψ). (27)

As can be easily seen, such a control algorithm may suffer from control singularity
when det(Yaϑ̂a) → 0. To prevent this occurrence, a smooth-switching algorithm in [10]
is adopted. First, it is noted that YT

a ϑa H + HTϑTYa = (M−1HT Ia H + HT IaHM−1) is
positive-definite since

xT(M−1HT Ia H + HT Ia HM−1)x ≥ 2λmin(M−1)λmin(HT IaH)|x|2 > 0, (28)

for all x ∈ R3, x 6= 0.
There, then exists a go > 0 such that

1
2
(g−1x)T(YT

a ϑaH + HTϑTYa)(g−1x) ≥ go|x|2, (29)

for all x ∈ R3, x 6= 0.
The proposed control algorithm can now be specified as follows:

u = $ua + (1− $)us, (30)

where

ua = −[YT
a ϑ̂a]

−1(ksgs + ϑ̂T
b Yb + ψ),

us = − 1
go

(ks +
|g−1(ϑ̂T

b Yb + ψ)|
|s| )Hg−1s, (31)
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with ks being the gain constant and $ a smooth-switching function given by [10]

$ = 1− exp[−(det[YT
a ϑ̂a]

w
)2]. (32)

Basically, w defines a region without a sharp boundary of the value det[YT
a ϑ̂a], within

which the sliding-mode control is in charge due to the approach of singularity. The control
authority will be handed over to the nominal adaptive fuzzy controller until the singularity
goes away. In addition to smoothness, the function $ has two more desired properties:

(P1) limη→0
$(η)

η = 0;

(P2) νs
∆
= supη 6=0

∣∣∣ $(η)
η

∣∣∣ is well defined.

By virtue of (P1), the singularity phenomenon will be totally avoided, while (P2)
ensures the boundedness of the virtual control inputs for all time.

The following property is useful in the upcoming derivation and is quoted here for
ease of reference [32]

|s(t)| ≤ ε =⇒ |ε(t)| ≤ ε

λs
, |ε̇(t)| ≤ 2ε (33)

Substituting (30) and (31) into (26) yields

ṡ = g−1{YT
a ϑa[$ua + (1− $)us] + ϑT

b Yb + ε + ψ}
= $g−1{−(YT

a ϑa)(YT
a ϑ̂a)

−1(ksgs + ϑ̂T
b Yb + ψ) + ϑT

b Yb + ψ}

+(1− $)g−1{−YT
a ϑa

1
go

(ks +
|g−1(ϑ̂T

b Yb + ψ)|
|s| )Hg−1s + ϑT

b Yb + ψ}

+g−1ε

= −$(YT
a ϑ̃a)(YT

a ϑ̂a)
−1(ksgs + ϑ̂T

b Yb + ψ) + (1− $)g−1

·{−YT
a ϑa

1
go

(ks +
|g−1(ϑ̂T

b Yb + ψ)|
|s| )Hg−1s + ϑ̂T

b Yb + ψ}

−ks$s + g−1ϑ̃T
b Yb + g−1ε (34)

When updating the estimated parameter vectors ϑ̂a and ϑ̂b, it is known that the com-
posite update algorithm generally results in better tracking performance [32]. Regarding
this, the following serial–parallel estimation model is adopted in this paper:

˙̂s = g−1(YT
a ϑ̂au + ϑ̂T

b Yb + ψ) + βs̃. (35)

where ŝ is the state of the SP estimation model, β > 0 is a gain constant, and s̃ = s− ŝ is
the prediction error s̃.

By subtracting (26) from (35), the prediction error dynamics become

˙̃s = g−1(YT
a ϑ̃au + ϑ̃T

b Yb)− βs̃ + g−1ε (36)

The composite update algorithms for ϑ̂a and ϑ̂b can now be assigned as

˙̂ϑa = −γ1[$Yas(ksgs + ϑ̂T
b Yb + ψ)T(YT

a ϑ̂a)
−T − γ2Yag−1 s̃uT + σ1ϑ̂a]

˙̂ϑb = γ1[(YbsT + γ2Yb s̃T)g−1 − σ1ϑ̂b] (37)

Now, we are ready to state our main achievements as follows.

Theorem 1. Consider the closed-loop system consisting of the system dynamics in (11), the control
in (30), and the update algorithm in (37). If the value go is known a priori and the gain constants
are selected to satisfy β > 1/2, then the following points hold:
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• (T1): All the signals in the closed-loop system remain bounded for all time;
• (T2): The tracking error ei(t) converges to the following set Ωi, which can be made arbitrarily

small by increasing λs and kv appropriately.

Ωi = {ei||ei| ≤ ρ∞,i tanh(

√
2dv

kvλ2
s
)} (38)

where

kv = min(2ks,
2β− 1

γ2
, 2γ1σ1)

dv =
1
2
(|g−1ε|2 + σ1tr[ϑaϑT

a ] + σ1tr[ϑT
b ϑb]) (39)

Proof of Theorem 1. Select the following Lyapunov function

V(t) =
1
2
{sTs + γ−1

1 (tr[ϑ̃aϑ̃T
a ] + tr[ϑ̃T

b ϑ̃b]) + γ2 s̃T s̃} (40)

where ˜(·) = (·)− ˆ(·).
The time derivative of V(t) along the system dynamics in (11) can be calculated

as follows:

V̇(t) = sT ṡ + γ2 s̃T ˙̃s + γ−1
1 (tr[ϑ̃a

˙̃ϑT
a ] + ϑ̃T

b
˙̃ϑb)

= sT{−$(YT
a ϑ̃a)(YT

a ϑ̂a)
−1(ksgs + ϑ̂T

b Yb + ψ)− ks$s + g−1ϑ̃T
b Yb}

+(1− $){ −1
2go

sT g−1(YT
a ϑaH + HTϑT

a Ya)g−1s(ks +
|g−1(ϑ̂T

b Yb + ψ)|
|s| )

+sT g−1(ϑ̂T
b Yb + ψ)}+ sT g−1ε + tr[ϑ̃a{$(YT

a ϑ̂a)
−1(ksgs + ϑ̂T

b Yb + ψ)sTYT
a

−γ2us̃T g−1YT
a + σ1ϑ̂T

a }]− tr[ϑ̃T
b ((YbsT + γ2Yb s̃T)g−1 − σ1ϑ̂b)]

+γ2 s̃T [g−1(YT
a ϑ̃au + ϑ̃T

b Yb)− βs̃ + g−1ε] (41)

Note that

−$sT(YT
a ϑ̃a)(YT

a ϑ̂a)
−1(ksgs + ϑ̂T

b Yb + ψ) + tr[ϑ̃a{$(YT
a ϑ̂a)

−1

·(ksgs + ϑ̂T
b Yb + ψ)sTYT

a }] = 0,

sT g−1ϑ̃T
b Yb − tr[ϑ̃T

b YbsT g−1] = 0,

−γ2tr[ϑ̃aus̃T g−1YT
a ] + γ2 s̃T g−1YT

a ϑ̃au = 0,

−γ2tr[ϑ̃T
b Yb s̃T g−1] + γ2 s̃T g−1ϑ̃T

b Yb = 0,

− 1
2go

(ks +
|g−1(ϑ̂T

b Yb + ψ)|
|s| )sT g−1(YT

a ϑa H + HTϑT
a Ya)g−1s

≤ −kssTs− |g−1(ϑ̂T
b Yb + ψb)||s| (42)

Substituting (42) into (41) yields

V̇(t) ≤ −kssTs + σ1tr[ϑ̃aϑ̂T
a ] + σ1tr[ϑ̃T

b ϑ̂b]− γ2βs̃T s̃

+sT g−1ε + γ2 s̃T g−1ε (43)

Next, by completing the squares,

s̃T g−1ε ≤ 1
2
(−s̃T s̃ + |g−1ε|2)

σ1tr[ϑ̃aϑ̂T
a ] ≤

σ1

2
(−tr[ϑ̃aϑ̃T

a ] + tr[ϑaϑT
a ])

σ1tr[ϑ̃T
b ϑ̂b] ≤

σ1

2
(−tr[ϑ̃T

b ϑ̃b] + tr[ϑT
b ϑb]) (44)
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Substituting (44) into (43) yields

V̇(t) ≤ −kvV(t) + dv, (45)

Apparently V(t) is bounded for V̇(t) ≤ 0 when V(t) ≥ dv/kv; the boundedness of the
signals s(t), s̃(t), ϑ̂a(t), and ϑ̂b(t) follows directly by definition. This in turn ensures the
boundedness of the error signals e(t) and ė(t) in (13) and the controllers in (30). Therefore,
T1 is proven.

On the other hand, (45) also implies that

1
2

sTs ≤ V(0)e−kvt +
dv

kv
(1− e−kvt) (46)

It is easy to see that |s(t)| eventually converges to a small set with radius
√

2dv/kv. Based
on (33), |ε(t)| eventually converges to a set with radius

√
2dv/kv/λs, which in turn implies

that e(t) converges to Ωe as t→ ∞.

Remark 1. As is well known, the sign function appearing in (31) can be replaced with the saturation
function to eliminate the possible chattering behavior [32].

4. Simulation

Based on the pseudo code listed in Algorithm 1, simulation results are presented in
this section to demonstrate the validity of the proposed design.

The desired trajectory is a circle given by ξd = 0.5[cos(0.4t), sin(0.4t), 0]T . The
unknown nonlinearity is as follows: h(ξ, ξ̇) = [ξ2ξ3 cos(ξ1 + ξ̇1 + ξ̇2ξ̇3), sin(ξ1 + 2)ξ2 +
ξ3 cos(ξ2 + ξ̇1) + ξ̇2ξ̇3, ξ̇1ξ̇2ξ̇3/(2 + sin(ξ1ξ̇2 + ξ3 + 2))]T . The approximations of ηi(ξ, ξ̇),
i = 1, 2, 3 are conducted within the following fuzzy region:

Ω = {(ξ, ξ̇)| − 0.6 ≤ ξp ≤ 0.6,−0.5 ≤ ξ̇p ≤ 0.5, p = 1, 2, 3} (47)

The membership functions for the input variables ξp and ξ̇p are given respectively by

µk
ξp

= exp[−( ξi − 0.3(k− 3)
0.45

)2], 1 ≤ k ≤ 5

µl
ξ̇p

= exp[−( ξ̇ j − 0.5(l − 2)
0.75

)2], 1 ≤ l ≤ 3 (48)

The corresponding fuzzy basis function φj in (3) can then be easily constructed. The
remaining numerical values adopted in this simulation are m = 10.0 kg, J = 0.5 kg
m2, r = 0.05 m, l = 0.4 m, a1 = 0.2, a2 = 0.3, a3 = 0.4, b1 = 0.01, b2 = 0.015, b3 = 0.02,
λs = 1.0, go = 0.1, δ = 0.5, ρ0 = [0.5, 0.5, 0.5]T , ρ∞ = [0.05, 0.05, 0.05]T , α0 = [0.5, 0.5, 0.5]T ,
ks = 1.0, γ1 = γ2 = 1.0, and σ1 = 0.1. The initials are randomly generated within [0, 0.2].

The actual trajectory of the omnidirectional mobile robot follows the commanded
circle faithfully, as can be seen from Figure 3. The corresponding tracking errors shown
in Figure 4 converge quickly to a small set around zero while fulfilling the prescribed
performance (black dashed lines) at the same time. The switching signal in Figure 5 indi-
cates that the nominal adaptive fuzzy controller dominates during the first few seconds
and then switches the control authority to the sliding-mode controller due to the quick
decay of the estimated parameter vector ϑ̂a(t) to a small value. The control inputs de-
picted in Figure 6 are rather mild except for the initial peaks due to the large tracking
errors therein.
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Table 1. Pseudo code for the proposed control algorithm.

Start

Initialization: PPC parameters ρ0, ρ∞, α0; FLS parameters in µAj , µBj , j = 1, · · · , m;
control and tuning gains λs, ks, γ1, γ2, σ1

1 For i = 1 : n
2 % Read the sensor inputs ωi, i = 1, 2, 3
3 % Calculate the forward kinematics
4 ξ̇ = rH−1(θ)ω,
5 ξ =

∫
ξ̇dt

6 % Calculate the transformed error εi in (18) and ε̇i in (19)
7 % Calculate the error metric s in (20)
8 % Calculate the control input u(t) in (30)
9 % Calculate the composite update algorithms ˙̂ϑa and ˙̂ϑb in (35)
10 End For i
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Algorithm 1: Pseudo code for the proposed control algorithm.

Start
Initialization: PPC parameters ρ0, ρ∞, α0; FLS parameters in µAj , µBj , j = 1, · · · , m;
control and tuning gains λs, ks, γ1, γ2, σ1
1 For i = 1 : n
2 % Read the sensor inputs ωi, i = 1, 2, 3
3 % Calculate the forward kinematics
4 ξ̇ = rH−1(θ)ω,
5 ξ =

∫
ξ̇dt

6 % Calculate the transformed error εi in (18) and ε̇i in (19)
7 % Calculate the error metric s in (20)
8 % Calculate the control input u(t) in (30)
9 % Calculate the composite update algorithms ˙̂ϑa and ˙̂ϑb in (35)
10 End For i
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The actual trajectory of the omnidirectional mobile robot follows faithfully the190

commanded circle, as can be seen from Fig. 3. The corresponding tracking errors shown191

in Fig. 4 converge fast to a small set around zero while fulfills the prescribed performance192

(black dashed lines) at the same time. The switching signal in Fig. 5 indicates that the193

nominal adaptive fuzzy controller dominates during the first few seconds and then194

switches the control authority to the sliding-mode controller due to the decay of the195

estimated parameter vector ϑ̂a(t) to a small value fast. The control inputs depicted in196

Fig. 6 are rather mild except the initial peaks due to the large tracking errors therein.197

Next, to see how different prescribed performances may affect the tracking per-198

formance and the control efforts, we change the corresponding parameters as ρ∞ =199
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can be expected, it is better than those in Fig. 4 with the price of a larger control effort in201

the beginning, as shown in Fig. 8.202
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Next, to see how different prescribed performances may affect the tracking per-
formance and the control efforts, we change the corresponding parameters as follows:
ρ∞ = [0.02, 0.02, 0.02]T , α0 = [1.0, 1.0, 1.0]T , The tracking performance is depicted in
Figure 7. As can be expected, the perfromance is better than those in Figure 4 with the price
of a larger control effort in the beginning, as shown in Figure 8.
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5. Conclusions

We have constructed a fuzzy sliding-mode controller to achieve the objectives of the
trajectory tracking of a three-wheeled uncertain omnidirectional mobile robot system under
a prescribed performance constraint. The proposed design ensures asymptotical tracking
stability and avoids the control singularity at the same time. Compared with conventional
control methodologies, such an approach exhibits the major advantage of avoiding the
tedious procedure of determining the regression matrices. Extensions to more difficult
tasks such as slipping avoidance are currently under study.
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