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Abstract: The presence of endocrine disruptors in surface waters can have negative implications
on wildlife and humans both directly and indirectly. A molecularly imprinted polymer (MIP) was
explored for its potential to enhance the UV-Vis determination of trenbolone in water using solid-
phase extraction (SPE). The synthesized MIP was studied using Fourier transform infrared spectra
(FTIR) and scanning electron microscopy (SEM). Using the MIP resulted in a preconcentration and
enrichment factor of 14 and 8, respectively. Trenbolone binding on the MIP was shown to follow
a Langmuir adsorption and had a maximum adsorption capacity of 27.5 mg g−1. Interference studies
showed that the MIP selectivity was not compromised by interferences in the sample. The MIP could
be recycled three times before significant loss in analyte recovery.

Keywords: androgenic hormones; solid-phase extraction; molecularly imprinted polymers; tren-
bolone; endocrine disruptors

1. Introduction

Water is the most important natural resource for the survival of all living organisms [1].
Due to the rise of urbanization, climate change, industrial production and population,
the quality of water has been negatively affected [2–4]. As a result, many cities are facing
water shortages [1]. Moreover, pollution to surface waters not only contributes to water
shortages but can also lead to the degradation of grain quality. Pollutants entering the
soil or water pose a varying number of threats to the functioning of the ecosystem as
well as human health [5]. Soil is usually polluted with polycyclic aromatic hydrocarbons
(PAHs), petroleum-related compounds, chlorophenols, heavy metals, organic pollutants
and pesticides [5]. There is an overlap of the types of pollutants present in water and soil.
This is because of water runoff from contaminated soils, wastewater and septic tanks [6].
The United States and European Union, in 2002 and 2009, reported the presence of organic
pollutants, especially ones with endocrine-disrupting properties, in at least 80% of sam-
ples [7]. Since 2013, there have been approximately 1000 synthetic and natural compounds
with endocrine-disrupting properties [7]. The most investigated endocrine disruptors
include some personal care products, pharmaceuticals, poly brominated diphenyl ethers
(PBDEs) and hormones [8].

Androgenic hormones such as testosterone are C19 steroids and are responsible for
the development of masculine characteristics [9]. Thus, they are normally used as growth
promoters in human and veterinary therapies [10]. Anabolic androgenic steroids such as
testosterone are widely used by athletes to improve athletic performance because of their
mytrophic action [11]. Trenbolone and zeranol are hormonally active substances that can
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be used as growth promoters [12]. The use of these anabolic growth agents is banned by
the European Union, Russia and China [13]. This is because a number of studies have
shown that residues of these substances can be found in meat and other food stuffs [14].
Whereas this is the case in some countries such as South Africa, there is no information on
whether these substances are used legally or illegally. These substances have been detected
in the liver, bile, plasma, kidney and urine of the cattle [15]. This means that hormonal
residues can be found in animal excreta, which can directly pollute the soil and indirectly
affects water quality through leaching [16]. In the environment, these substances are per-
sistent [17]. More concerning is their endocrine-disrupting properties, even at extremely
low concentrations [18]. It is suspected that trenbolone can result in neurodegenerative
disorders such as Alzheimer’s disease when people are exposed to it for extended peri-
ods [19]. Therefore, analytical methods with the ability to detect these substances in water
are required.

With modern analytical chemistry, it is possible to determine an analyte of interest in
different kinds of sample matrices [20]. The analysis and quantification of hormones in wa-
ter matrices has predominantly been done using chromatographic techniques coupled with
different detectors [21–23] and electrochemical [24,25] and spectrophotometric [26,27] tech-
niques. Among these, gas and liquid chromatography (GC and LC) are the most prevalent
due to efficient separation and identification success [28]. However, the biggest limitation
of GC determination is the need for derivatisation and conversion [29]. These manipula-
tions can result in loss of analyte [29]. This has driven a surge in liquid chromatography
(LC) methods, which do not require chemical pre-treatment for hormonal analysis and
quantification [30]. LC methods often lack the GC specificity in complex matrices and thus
require sample preparation in order to ensure accurate quantification [31]. Spectropho-
tometric determination offers short analysis run times. It is also readily available and
simple, which makes it an attractive technique for routine analysis [32,33]. The major draw-
back of UV-Vis spectrophotometry is low sensitivity and poor selectivity in comparison to
chromatographic and electrochemical methods [34,35]. A sample preparation step can be
used to combat this disadvantage [34,35]. Hence, the goals of sample preparation include
the preconcentration of analytes to concentrations higher than the instrument’s limits of
detection, removal of interferences and isolation of the analytes from matrix effects [36].

Solid phase extraction (SPE) is the most widely used sample preparation technique
for the preconcentration and analysis of organic pollutants [37,38]. This is due to its
advantages, such as its simplicity, potential for automation, high enrichment factors and
high selectivity [39]. In addition, the most attractive advantage for analytical chemists is
the possibility of using a reduced amount of organic solvents and the fact that SPE is highly
tuneable with regard to the adsorbents used [35]. Previously, silica-bonded phases such as
C18 have been used for as adsorbents for SPE of wide range of organic pollutants [33,40–44].
However, recently, modified and tuned solid phase materials have been used to achieve
more specificity [45]. One of the most promising adsorbents with regard to selectivity
are molecularly imprinted polymers. Molecularly imprinted polymers (MIPs) have been
demonstrated to be useful for the specific recognition, binding and isolation of chemically
active target molecules [46]. MIPs can be prepared by moulding polymeric structures
around a target molecule through polymerisation in the presence of a cross-linking agent
and initiator [47]. The formation of a MIP follows a two-step process, where the first step
includes the formation of a template-monomer complex followed by polymerisation around
the template. Then, the template is removed by washing resulting in a polymer matrix
with specific analyte-binding sites [47,48]. MIPs provide high selectivity combined with
easy preparation and application. As such, they can be used for a variety of applications,
such as sensors [49–51], catalysis [52,53], capillary electrophoresis and separation [54] and
solid phase extraction [55,56].

The aim of this work was to prepare a molecularly imprinted polymer using trenbolone
as a template. The synthesised MIP was then evaluated for its binding and adsorption
characteristics. The effects of the sample pH, mass of the adsorbent, extraction time and
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eluent volume on the preconcentration of trenbolone using the prepared MIP were investi-
gated using multivariate optimisation. Quantification and method performance evaluation
were carried out using simple UV spectrophotometry. In our knowledge, molecularly
imprinted polymers have not been explored for the quantification of trenbolone using
UV-Vis spectrophotometry.

2. Materials and Methods
2.1. Materials

Ethanol, methanol, acetic acid, sodium hydroxide, methylacrylic acid, trenbolone
(analytical grade), anhydrous toluene, ethyleneglycoldimethacryate (EGDMA) and azo-
bisisobutyronitrile (AIBN) were all purchased from Sigma-Aldrich (München, Germany).
A 1000 mg L−1 trenbolone stock solution was prepared by dissolving the accurate appro-
priate amount with methanol. The stock solution was stored at 2 ◦C in a fridge until it
was required for use. Working solutions were prepared by diluting the stock solution with
ultra-pure water (Thermo Scientific, Deionizer Nanopure Diamond UV TOC Water System,
Waltham, MA, USA).

2.2. Instrumentation

A Heraeus Megafuge 16 centrifuge (Thermo Scientific) was used for all separations
during the study. A Heraeus vacuum oven (Thermo Scientific) was used for drying, and a
Thermomixer C (Eppendorf, Hamburg, Germany) was used for agitation. The polymer
surface was studied using a Quanta 3DFEG scanning electron microscope. The Carl Ziess
Axio light microscope was used to evaluate the surface of the particles using the Axiovision
software. Analyte quantification was done using an Analytik Jena Specord S600 UV-Vis
spectrophotometer in the wavelength range 180–400 nm with a 10 mm UV cuvette.

2.3. Synthesis of Molecularly Imprinted Polymer

The method for the synthesis of core-shell molecularly imprinted polymers (MIP)
was adopted from the authors of [57]. First, we added 50 mL of anhydrous toluene to a
2-neck round bottom flask, followed by the template molecule (0.264 mmol), methacrylic
acid (1.06 mmol), EGDMA (2.11 mmol) and 20 mg of AIBN. The solution was mixed for
10 min under a gentle stream of argon. The solution was heated at 50 ◦C for 6 h, then at
60 ◦C for a further 24 h. The products were then matured at a temperature of 85 ◦C for 6 h.
The template was then removed by washing the resulting polymer using methanol/acetic
acid mixture (9:1, v/v). The polymer was then dried under vacuum at 40 ◦C for 24 h before
use. Nonimprinted polymers (NIPs) were synthesised in the same way in the absence of
the template molecule.

2.4. Binding Characteristics and Adsorption Capacity

The binding studies were performed on solutions made using ultra-pure water at
room temperature by appropriately modifying the method described by Fernandes et al.,
2017 [58]. To investigate adsorption capacity, the MIP and NIP were weighed into cen-
trifuge tubes containing 10 mL of the trenbolone solution with concentrations varying
from 10–50 mg L−1 and shaken for 180 min at room temperature. The adsorbents were
then separated by centrifuging at 3500 rpm for 10 min and the supernatant absorbance
was measured at 350 nm. The difference between the initial and equilibrium trenbolone
concentration, Equation (1), can be considered as the amount of trenbolone bound to the
adsorbent. The adsorption capacity (Qe) was calculated using Equation (1).

Qe =
(C0 − Ce)× V

w
(1)

where C0 and Ce represent the initial and equilibrium concentrations (mg L−1), respectively,
V is the volume of the trenbolone solution used (L) and w is the amount of polymer used
for the adsorption process (g). The specific MIP recognition properties were evaluated
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using the imprinting factor (IF), which is the ratio between the MIP and NIP adsorption
capacity ratio, Equation (2):

IF =
Qe(MIP)

Qe(NIP)
(2)

where Qe(MIP) and Qe(NIP) are the MIP and NIP adsorption capacities, respectively.

2.5. Solid Phase Extraction of Trenbolone Using MIP

The extraction of trenbolone was done using solid-phase extraction in which an
appropriate amount of polymer was weighed into a centrifuge tube containing 10 mL
(3 mg L−1) of the trenbolone solution. The mixture was then agitated using a thermo
mixer. After extraction, the polymer and bulk solution were separated by means of
centrifugation at 3500 rpm for 10 min. After which, the analyte was eluted with a mix-
ture of methanol and acetic acid (9:1, v/v) by agitation and separated by centrifugation.
UV-Vis spectrophotometry was used to analyse the bulk and elute solution.

2.6. Optimisation of SPE Method

The optimisation of the factors (Table 1) that could affect the extraction of trenbolone
was done multivariately using a 2-level central composite design with mass of adsorbent
(MA), sample pH, extraction time (the time the sample and polymer were agitated, ET)
and eluent volume (EV) as the factors of interest.

Table 1. Parameter and levels used in central composite experimental design.

Factors Low Level (−1) Central Point (0) High Level (+1)

Mass of adsorbent (MA) (mg) 10 30 50
pH 4 6.5 9

Extraction time (ET) (min) 10 20 30
Eluent volume (µL) 400 700 1000

2.7. Analytical Performance and Validation of MIP Extraction Method

The selectivity of the MIP was tested using both adsorption and signal enhancement.
Briefly, 30 mg of polymers (NIP and MIP) were weighed into 15 mL centrifuge tubes. Then,
10 mL of 3 mg L−1 spiked lake water was added to the tube. The tubes were then agitated
for 20 min using a thermo mixer, after which centrifugation for 10 min at 3500 rpm was
used to separate the polymers from the bulk solution. The analyte was then eluted using
a methanol/acetic acid mixture (9:1, v/v) (700 µL). The elute and bulk solutions were both
analysed using a UV-Vis spectrophotometer. The analytical performance of the method was
evaluated using the limit of detection (LOD), limit of quantification (LOQ), linear range
(LR) and preconcentration and enrichment factors (PF and EF).

2.8. Reusability Studies

The reusability and regeneration of the polymer was studied by weighing 30 mg
of the polymer and 10 mL of a synthetic sample. The mixer was then agitated using a
thermo mixer for minutes. The polymer and supernatant were separated using a centrifuge
at 3500 rpm for 10 min. The analyte was then eluted with a mixture of methanol and
acetic acid (9:1, v/v) by shaking the eluent with polymer in a thermo mixer for 10 min.
Subsequently, centrifugation was used to separate the polymer and eluent. The elute was
quantified using UV-Vis spectrophotometry at 350 nm.

2.9. Selectivity Studies

The selectivity of the MIP was assessed using β-estradiol, which is one of the most
commonly detected hormones in the environment. In order to test the real sample selectivity
of the MIP in comparison to the NIP, lake water was spiked with 3 mg L−1 of trenbolone
and β-estradiol. After, the adsorption and preconcentration methods were applied on the
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samples. The distribution ratio was calculated according to Azodi-Deilami et al., 2014 [59]
using the equation:

KD =

(
Ci − C f

)
V

C f m
(3)

where Ci, Cf, V and m are the initial and equilibrium concentrations, solution volume and
polymer mass, respectively. The KD was then used to calculate the selectivity coefficient (α)
defined by the equation:

α =
KD(Trenbolone)

KD(β − estradiol)
(4)

3. Results and Discussion
3.1. Characterisation

The characterisation of the molecularly imprinted polymer (MIP) was done after the
removal of the template. The synthesized polymers were characterised to understand
their most prominent functional groups using Fourier transform infrared spectra (FTIR)
(Figure 1) and their surface characteristics were studied using scanning electron microscopy
(SEM) equipped with an energy dispersive X-ray spectrometer (EDS) in order to investigate
the chemical compositions of the polymers (Figure 2A–D).

Figure 1. Fourier transform infrared spectra (FTIR) for the molecularly imprinted polymer (MIP) and
nonimprinted polymer (NIP).

As seen in Figure 1, the MIP and NIP spectra shared a similar FTIR profile. This was
due to the fact that the MIP and NIP synthesis were similar except for the absence of the
template molecule in the synthesis of the NIP. The band at 1720 cm−1 was a characteristic
peak attributed to the COOH functional group. The second characteristic peak for poly
methacrylic acid was found at 1456 cm−1, which was as a result of the C-C double bond,
whereas the bands at 2900 cm−1 and 3000 cm−1 were due to the C-H stretching. A similar
profile observed by Gupta and colleagues [60].

The SEM images of the MIP and NIP (Figure 2A,B) showed the presence of a bulk
polymer. There were no significant differences between the MIP and NIP surfaces, as ex-
pected. This was because the synthesis routes of the two polymers was similar except for
the presence of the template in the preparation of the MIP. The EDS spectra (Figure 2C,D)
for both the MIP and NIP showed that both polymers had similar elemental compositions.
This was due to the removal of the template from the MIP, resulting in the MIP and NIP
having relatively similar elemental compositions [61].
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Figure 2. Scanning electronic microscopy (SEM) images for (A) MIP and (B) NIP and X-ray spectrometer (EDS) spectra for
(C) MIP and (D) NIP.

3.2. Binding Characteristics and Adsorption Capacity

The binding characteristics and adsorption capacity studies were carried out to evalu-
ate the differences in analyte binding between the MIP and NIP. From the sorption studies,
there was a clear difference between the adsorption of trenbolone on the MIP and NIP
(Figure 3 shows the UV spectra for the analyte solution before incubation (sample) and
the solutions after incubation on the MIP and NIP). This was shown by the difference
in the absorbance, which can be directly correlated to the trenbolone concentration on
the respective solutions. The imprinting factor was used to evaluate the MIP recognition
properties. According to the literature, a MIP with an IF of >1.2 can be classified as suitable
for the recognition of the analyte [55]. The calculated imprinting factor for the synthesized
polymer was 2.41, which is greater than 1.2, meaning that the MIP had suitable recognition
properties [62,63].

The concentration difference was further confirmed by actual concentrations in study-
ing the adsorption capacities of the respective polymers, as shown in Figure 4. The MIP
generally had higher adsorption capacity in comparison with the NIP. This was expected
as the MIP has specific imprinted sites on the polymer for the analyte [56]. Thus, this in-
formed the choice of using the MIP only for the optimisation of the extraction procedure.
Adsorption studies were done to investigate the adsorption behaviour of the MIP and NIP.
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The equilibrium adsorption data for trenbolone onto the polymers was investigated using
Langmuir [64] and Freundlich [64] isotherms with the nonlinear Equations (5) and (6).

Langmuir : qe =
qmkLCe

1 + kLCe
(5)

where qe, qm, kl and Ce are amount of trenbolone adsorbed, maximum adsorption capacity,
Langmuir constant and concentration of trenbolone at equilibrium respectively.

Freundlich : qe = KFCe
1
n (6)

where KF, Ce and n are the measure of adsorption capacity, equilibrium concentration and
indicator of adsorption effectiveness, respectively.

Figure 3. Graph showing the effect of the MIP for the removal of trenbolone in a 10 mg/L solution.
NIP = 10 mg/L solution after adsorption onto the nonimprinted polymer, MIP = 10 mg/L solu-
tion after adsorption onto the imprinted polymer and Sample = original 10 mg/L solution before
adsorption.

Figure 4. Adsorption capacity studies for the NIP and MIP.

The adsorption data obtained for trenbolone adsorption onto the MIP were shown to
fit the Langmuir isotherm with a correlation coefficient of 0.9263, which was greater than the
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R2 of 0.8100 for the Freundlich isotherm. This meant that the adsorption of trenbolone onto
the MIP was homogenous and thus assumed monolayer adsorption [65–67]. The maximum
adsorption capacity calculated using the Langmuir isotherm was found to be 27.5 mg g−1.
Trenbolone adsorption onto the NIP was characterized by the Freundlich adsorption
isotherm with an adsorption capacity of 11.4 mg g−1.

3.3. Multivariate Optimisation

The optimisation results were analysed using the analysis of variance (ANOVA), re-
sponse surface methodology and desirability function in order to determine the significant
factors, interaction effects and desirable conditions for optimum extraction [68]. The anal-
ysis of variance is reported in the form of a Pareto chart (Figure 5), where the redline is
indicative of the 95% confidence interval that a factor has significant effect on the extraction
of trenbolone using the MIP [69]. From the Pareto chart, there was no factor that was
significant for the extraction at the 95% confidence level. The reason for this could be the
dependency of the analyte adsorption on the sites created during the imprinting, resulting
in the extraction being a result of the analyte removal from the MIP.

Figure 5. Pareto chart of standardized factors for the extraction of trenbolone. Factor (Q): Factor
(quadratic); factor (L): Factor (linear); 2Lby3L: MA-EV (mass of adsorbent and eluent volume)
interaction; 1Lby4L: ET-pH (extraction time—solution pH) interaction; 1Lby2L: ET-MA (extraction
time—mass of adsorbent) interaction; 3Lby4L: EV-pH interaction; 1Lby3L: ET-EV interaction; 2Lby4L:
MA-pH interaction.

The response surface methodology was used to investigate the interactive effects of the
independent factors on the analytical response (extracted trenbolone concentration). The 3D
response surface plots are presented in Figure 6. The combined effected of MA and other
factors (ET, pH and EV) revealed that better adsorption was obtained as the mass increased
from 10–50 mg (Figure 6A,D,E). This suggests that an increased mass of a polymer increases
the available template binding sites, thus leading to quantitative trenbolone extraction.
The interactive effect between MA and EV shows that high recoveries were obtained
when the eluent volume was between 700 µL and 800 µL (Figure 6D). This implies that
higher eluent volumes (>500 µL) are required for the complete removal of the template
(trenbolone) from the polymer. A similar trend was observed in Figure 6B,F. The combined
effect of ET with pH, MA and EV shows that quantitative extraction of trenbolone took
place at any point where ET > 0. These findings correspond to the Pareto chart results,
which show that this factor was not significant at the 95% confidence level. The effect of
pH showed that, at highly acidic pH < 4, the extraction efficiency of the adsorbent was
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low (Figure 6C,E,F). The reason for this could be that an acidic environment causes the
unbinding of the analyte from the MIP.

The profile of desirability and predicted values (Figure 7) was used to estimate the
optimum conditions based on the desirability of each factor [70]. The highest extraction
was assigned a desirability of 1, while the central and lowest were assigned 0.5 and 0,
respectively. A desirability value of 1 was selected as the target and used to estimate the
conditions required for optimum signal enhancement. These conditions included a sample
pH of 6.5, MA of 30 mg, ET of 20 min and EV of 700 µL. The predicted conditions were
then experimentally confirmed and resulted in an average concentration of 19.57 ± 0.15
and enhancement factor of 7.8.

 

Figure 6. Response surface methodology plots showing the interaction between the independent factors (A) MA and ET,
(B) EV and ET, (C) pH and MA, (D) pH and ET, (E) EV and MA and (F) pH and EV.

3.4. Analytical Performance and Validation of MIP Extraction Method

The analytical performance of the method was evaluated using the limits of detection
(LOD) and quantification (LOQ), the linear range (LR), %RSD, enrichment factor (EF)
and preconcentration factor (PF). The LOD and LOQ are described by the expressions
LOD = 3×sd

m and LOQ = 10×sd
m , respectively, where sd is the standard deviation of

seven replicates of the lowest concentration standard sample prepared in ultra-pure water
and m is the slope of the calibration curve [71]. From this method, the LOD, LOQ, LR,
%RSD, EF and PF were found to be 0.07, 0.24 mg L−1, LOQ—10 mg L−1, 0.75, 7.2 and
14, respectively.

The adsorption and recovery % of trenbolone was then used to determine the effec-
tiveness of the polymers in selectively binding trenbolone. The experimental results are
presented in Figure 8, where it can be noted that the MIP had superior adsorption and
enhancement in comparison to the NIP. This means that the MIP could selectively bind
trenbolone in the presence of interferences better than the NIP. The selectivity coefficient
(α) for the MIP was found to be 4.96, with distribution ratio (KD) values of 1.14 and 0.23 for
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trenbolone and b-estradiol, respectively. The α for the NIP was found to be 1.17, with KD
values of 0.15 and 0.13, respectively. The higher KD for the trenbolone confirmed better
MIP selectivity when compared to the NIP.

Figure 7. Desirability profiles with predicted values for the investigated factors affecting the extraction of trenbolone.

 

Figure 8 

 

Figure 9 
Figure 8. Adsorption and extraction performance of the MIP in comparison to the NIP.
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3.5. Polymer Reusability

The reusability studies of the polymer were carried out using the polymer in the
preconcentration procedure, eluting the analyte, washing the polymer with the eluent
and vacuum-drying the polymer for reuse after each cycle. The reusability results are
presented in Figure 9, where it can be noted that, in cycles 1–3, the trenbolone recovery was
above 95%. A significant decrease in recovery was observed in the fourth cycle, where the
recovery was 70.7 ± 0.32%.

 

Figure 8 

 

Figure 9 
Figure 9. Trenbolone percent recovery during different cycles of reusing the MIP (n = 3).

4. Conclusions

A molecularly imprinted polymer based on a trenbolone template was prepared.
The FTIR spectra of MIP and NIP showed that the chemical compositions of the polymers
were similar, while the SEM image of MIP was more ordered in comparison to that of NIP.
Using UV-Vis spectrophotometry quantification and adsorption data, the imprinting factor
and isotherms showed that the MIP was favourable. The MIP was then used in solid-phase
extraction of trenbolone. The extraction procedure was optimised using a multivariate
experimental design based on central composite, and the SPE optimum conditions were
found to be pH of 6.5, MA of 30 mg, ET of 20 min and EV of 700 µL. The adsorption
of trenbolone was found to favour Langmuir, which meant the adsorption followed a
monolayer mechanism with an imprinting factor (IF) of 2.41. The MIP was found to be
recyclable for up to three times with recoveries above 95%.
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