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Abstract: Hypertoxic materials make it critical to ensure the safety of the fluorochemical engineering
processes. This mainly depends on the over maintenance or the manual operations due to the
lack of precise models and mechanism knowledge. To quantify the deviations of the operating
variables and the product quality from their target values at the same time and to overcome the
measurement delay of the product quality, a novel quality integrated fuzzy inference system (QFIS)
was proposed to estimate the reliability of the operation status as well as the product quality to
enhance the performance of the safety monitoring system. To this end, a novel quality-weighted
multivariate inverted normal loss function was proposed to quantify the deviation of the product
quality from the target value to overcome the measurement delay. Vital safety process variables were
identified according to the expert knowledge. Afterward, the quality loss and the vital variables were
inputs to an elaborate fuzzy inference system to estimate the process reliability of the fluorochemical
engineering processes. By integrating the abundant expert knowledge and a data-driven quality
prediction model to design the fuzzy rules of QFIS, not only the operation reliability but also the
product quality can be monitored on-line. Its superiority in estimating system reliability has been
strongly proved by the application of a real fluorochemical engineering process located in East
China. Moreover, the application of the Tennessee Eastman process also confirmed its generalization
performance for other complicated black-box chemical processes.

Keywords: process reliability estimating; fluorochemical engineering process; fuzzy inference system;
quality prediction; prognostics and health management

1. Introduction

With the diversification of products and the continuous development of application
fields, the fluorochemical industry has become more and more important. However,
hypertoxic materials widely exist in the fluorochemical engineering process. Even a tiny
leak of these hypertoxic materials in the environment would cause huge damage to people,
equipment and even public safety. Additionally, nowadays, the operation condition of
chemical industrial processes is typically monitored by a large number of different types
of sensors, capturing temperature, pressure, flow, vibration, solution concentration and
other process variables. This not only results in very heterogeneous data at different time
scales but also introduces the signals affected by measurement and transmission noise. In
many cases, consequently, the sensors are partly redundant or highly related variables.
Failures in such redundant sensors would not cause the same influence on the operation
reliability as what a vital process variable would cause. Therefore, the requirement of the
monitoring system goes far beyond fault detection and diagnosis, whose major tasks are
limited to react after there are failures or faults happen. In order to avoid any possible
failures or faults, and to reduce maintenance costs and equipment uptime at the highest
level, proactive maintenance measures should be taken. This means that the maintenance
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strategy should swift from fault detection and diagnosis (FDD) to Prognostics and Health
Management (PHM).

The goal of PHM is to provide methods and tools to design optimal maintenance
policies for a specific process under its distinct operating and degradation conditions,
achieving a high availability at minimal costs [1,2]. It is not limited to the predictions of
failure times or the remaining useful life (RUL) and supports optimal maintenance and
logistics decisions by considering the process operation status, the operating context and
the economic consequences of different faults. System reliability estimating (SRE) plays an
important role in PHM. It focuses on assessing the operational reliability based on outputs
from process operation status, available resources and operational demand.

SRE is developing rapidly and there are many methods currently available [3]. Fault
tree analysis (FTA), reliability graph, Monte Carlo Simulation and Bayesian Networks (BN)
are commonly used methods for it [4]. FTA is a systematic way to obtain the reliability
of complex systems both qualitatively and quantitatively by using exact values of root
causes’ occurrence probability. Fuzzy methods are often applied in FTA to make up for the
shortcomings of insufficient probability values [5,6]. Monte Carlo Simulation-based tools
are useful for reliability assessment of large and complex power systems [7], but they may
lead to a combinatorial explosion of the number of states to model a system [8]. They are
more suitable for estimating the reliability of a component or system of low complexity
rather than of highly complex systems [9].

Due to the complicated mechanism, copyright protection, hypertoxicity and so on,
the lack of mathematical models is one of the major reasons hindering the applications
of advanced control and monitoring methods in fluorochemical engineering processes.
On the other hand, plenty of background and expert knowledge has accumulated along
with the continuous operation of such processes. When there are differences in expert
knowledge, expert consistency prioritization can be conducted for expertise differences
instead of assuming experts identical or assigning some predefined weights [10]. Currently,
because of the aforementioned reasons, over maintenance strategies and manual operations
are the most commonly used strategies in the safety management of the fluorochemical
engineering processes [11]. It is obvious that these methods lead to big economic losses
and security risks [12]. Therefore, it is very urgent to propose an appropriate SRE method
for further application of the PHM system in these processes.

Unlike principal component analysis (PCA) and other multivariate statistical process
monitoring (MSPM) methods [13,14], a fuzzy inference system (FIS) can integrate data-
driven modelling and the priceless expert knowledge by the designation of membership
functions and fuzzy rules [15]. Successful applications of it are also attributable to its
superiority to manage uncertainty and computation for noisy and imprecise data. It also
takes advantage of operational experience and provides suggestions on chemical processes
without hard intervention [16,17]. The success of FIS is evident from its applicability and
relevance in extensive research areas: control systems, engineering, medicine, chemistry,
finance and business, computer networks, computational biology, fault detection and
diagnosis and pattern recognition [18,19]. It holds high promise in the realization of SRE
for complicated and black-box processes like the fluorochemical engineering processes.

Additionally, an important aspect of any industrial operation is conformance to
standards. This relates to how closely the operational performance, process safety, as well
as quality of the final products, match the design specifications. Whether the product
quality matches the expected value is an important standard to estimate how healthy the
process operation status is. However, quality control has not been taken into consideration
when the SRE or PHM system was designed. It is very important for decision-makers
to know the overall status both reflects the safety assessment and the product quality of
the chemical process to make the best response. Unfortunately, for chemical engineering
industries, there is always an intolerably long time-delay in the measurement of product
quality. This paper, therefore, is aimed to propose a quality integrated SRE method to fill in
the gap between the PHM system and quality control.
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Therefore, a quality integrated FIS model (QFIS) based system reliability estimating
method was proposed and applied to a process in a fluorochemical factory located in
East China. A novel quality loss function was proposed to estimate the quality deviation
based on a product quality regression model trained with the Partial Least Squares (PLS)
algorithm to overcome the time-delay in quality measurement. Meanwhile, vital safety
variables of the fluorochemical process operation were selected under the guidance of
expert knowledge. Then, these vital safety variables and the quality loss value were used
as inputs to the FIS model. By making good use of the expert knowledge and the operation
experience, the membership functions and fuzzy rules were well-constructed to obtain
the system reliability of the fluorochemical engineering process. To test the generalization
ability of our proposed QFIS method, it was also used in the Tennessee Eastman process, a
widely applied benchmark for advanced control and monitoring system.

The rest of the paper is organized as follows: Section 2, brief introduction of R22
refrigerant producing process and existing algorithms used in this paper; Section 3, details
of the proposed quality integrated fuzzy inference system; Section 4, applications in the R22
refrigerant producing process and the Tennessee Eastman process; Section 5, conclusion.

2. Background and Methods
2.1. Brief Introduction of R22 Refrigerant Producing Process

R22, also known as HCFC-22, is one of the most widely used fluorides. It is mainly
used as a kind of common propellant and refrigerant. The global use of R22 continues to
increase because it is a versatile intermediate in the organic fluorine chemical industry, e.g.,
as a precursor to tetrafluoroethylene.

The producing process of R22 is presented in Figure 1. The main operating units
include a Feeder, a Reactor, a Water Scrubber, a Separator and two Rectifying columns. R22
is prepared from the chloroform as: HCCl3 + 2 HF→ HCF2Cl + 2 HCl.

Figure 1. The producing process of R22.

All materials and byproducts like AHF, HCL and HF become intensely corrosive when
meeting water in the air. Therefore, it is very vital to public safety and environmental
protection to secure the safety of the R22 producing process and to improve the performance
of the PHM system of it. As mentioned above, however, the complicated characteristics,
the confidential agreement, and the time-varying mechanisms of it adversely hinder the
performance of the traditional FDD methods. Over maintenance and manual operations
are still the most commonly used strategies in the safety management of it.
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The most important thing is that even a tiny amount of material or byproduct leakage
into the environment can cause terrible damage to equipment and workers. PHM or at
least SRE should play a bigger role than the traditional FDD, which can only react after
a disaster happens, in predicting the operation stability to react and prevent a disaster
from happening.

On the other hand, the sampling interval of the product quality is 180 min while
the DCS process variables are 1 min. Such a long delay in product quality measurement
is completely intolerable for quality control and safety management practice. It is not
practical to use product quality as an input to estimate its deviation neither.

Therefore, we proposed a quality integrated fuzzy inference system to integrate the
quality control and the system stability estimating at the same time for further applications
of PHM in such a complicated and hypertoxic process. It also can overcome the time delay
in quality measurement to evaluate the process operation through the quality control point
of view.

2.2. Brief Introduction of Existing Algorithms
2.2.1. Partial Least Squares (PLS)

Partial Least Squares (PLS) is a widely used linear regression method. It aims at
modeling linear relationships between the input variables X ∈ Rm×n (n is the number of
process variables and m is the number of observations) and output variables Y ∈ Rm×p (p
is the number of output variables) [20]. Regularly, X and Y are supposed to be normalized.
The PLS model structure can be described as [21]:

Y = XB + V (1)

where B ∈ Rn×p is the regression coefficient matrix and V ∈ Rm×p is the residual matrix.
It iteratively extracts the Latent Variables (LVs) ti ∈ Rm, ui ∈ Rm and the weight vectors

wi ∈ Rn, ci ∈ Rp from X and Y matrices in decreasing order of their corresponding singular
values, where i = 1, . . . , v, and v is the number of LVs, which is usually determined by
cross-validation. In other words, the PLS algorithm decomposes X and Y matrices as
follows [22]:

XT =
v

∑
i=1

tipT
i + E = TPT + E (2)

YT =
v

∑
i=1

uiqT
i + F = UQT + F (3)

where E and F are the residual matrix of X and Y, respectively. Therefore, by extracting
LVs, the n-dimensional original input space X is compressed into the v-dimensional LV-
space. In common cases, v << n. By doing this, PLS can effectively remove the noise and
multi-collinearity of the original data, which is especially true for the chemical process
data [23].

Then the estimated regression coefficient matrix can be obtained by the following
Equation:

B̂ = XTU
(

TTXXTU
)−1

TTY (4)

The absolute value of the coefficient represents the contribution of the corresponding
variable to the linear model, therefore, it can be used to quantify the importance of the
corresponding variable.

Root mean square error (RMSE) is usually used as a metric on the determination of
the value of v in the PLS model. The definition of RMSE is:

RMSE =
√

∑(ŷi − yi)
2/n (5)



Processes 2021, 9, 292 5 of 15

where yi is the observed value of the output variable and ŷi is the corresponding predicted
value. PLS model performed better when the RMSE of the training data and testing data
were smaller.

2.2.2. Fuzzy Inference System (FIS)

A fuzzy inference system (FIS) is a tool for modeling a complex system without a
thorough mathematical explanation [24]. It is capable of modeling uncertainties commonly
represented in linguistic form and extending the functionality of the engineering system.
The term “fuzzy” refers to the fact that the involved logic can deal with concepts that
cannot be expressed as “true” or “false” but rather as “partially true” or “partially false”.
The design of fuzzy rules is a delicate task, and it can be generally carried out by an expert,
who, on the basis of some heuristics that s/he has developed about the system. This makes
it easier to mechanize tasks that are already successfully performed by humans.

The application procedure of a FIS system consists of three steps: an input stage, a
processing stage, and an output stage [15,25]:

(1) The input stage maps inputs to the appropriate membership functions and true values.
The most common shape of membership functions is triangular, although trapezoidal
and bell curves are also used. The shape is generally less important than the number
of curves and their placements.

(2) The processing stage invokes each appropriate rule and generates a result, then
combines the results of all rules. It is based on a collection of logic rules in the form of
IF-THEN statements, where the IF part is called the “antecedent” and the THEN part
is called the “consequent”. Typical a fuzzy control system has dozens of rules.

(3) The output stage converts the combined result into a specific control output value.

3. The Quality Integrated FIS Based System

PHM aims to provide an integrated framework for degradation prediction and system
maintenance [2,26]. Since PHM can be considered as a holistic approach to an effective and
efficient system health management, the quality of the produced products of a concerned
process should be taken into serious consideration. However, most proposed methods
and tools mainly focus on operation stability and maintenance cost. On the other hand,
as aforementioned, for fluorochemical engineering and other chemical industries, there
is always a long time-delay in the measurement of product quality. For example, in the
R22 refrigerant producing process, the sampling interval of the product quality is 180 min
while the DCS process variable is 1 min. It is not practical, in other words, to use product
quality as an input to estimate its drift. Therefore, a novel quality integrated FIS (QFIS)
based system reliability estimating method was proposed to evaluate the stability of the
operation status and the quality of the product simultaneously.

3.1. A Novel Quality Weighted Multivariate Inverted Normal Loss Function (QMINLF)

Inverted normal loss function (INLF), Modified inverted normal loss function (MINLF),
Inverted Beta loss function (IBLF) and Inverted Gamma loss function (IGLF) are different
loss functions considering a random deviation from target values and are widely used in
industrial applications [27].

For a multivariate process, to consider the deviation of a variable from its expected
value as well as the importance of it to the final product, a novel quality weighted multi-
variate inverted normal loss function (QMINLF) was proposed as:

L(Q) =
1

1− e−ρ2

n

∑
i=1

(
1− e−

1
2 βi(xi−ai)

2)
(6)

where L(Q) is the estimated quality loss, ρ is a shape parameter, n is the number of process
variables, xi (i = 1, 2, . . . , n) is the observed value of the ith process variable, ai is its
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expected value and βi is the corresponding importance index. βi =
|bi |

∑n
i=1|bi |

and |bi| is the

absolute value of the ith element value of B̂ in Equation (4).
From the definition of L(Q), we can see that L(Q) is decided by the deviation values

(xi − ai)
2 of all quality-related process variables. The bigger the deviation, the bigger the

L(Q) value. Additionally, for the same deviation value, because of being weighted by βi, the
more important the process variable xi to the final quality, the bigger the L(Q) value, which
means the bigger the quality loss. Therefore, QMINLF is more sensitive to the deviations
of the comparatively higher quality-related process variables.

Note: ρ should be optimized according to the operation knowledge or the performance
to make sure 0 ≤ L(Q) ≤ 1. It also can be optimized by a genetic algorithm or other
optimization methods.

3.2. The Procedure of the Proposed QFIS Method

To make good use of operation knowledge and to consider the quality loss at the same
time, a quality integrated fuzzy inference system was proposed to estimate the system’s
reliability. The procedure of it consists of four major steps:

(1) Identifying the vital safety variables to process stability based on operation experience
and background knowledge;

(2) Quantifying the importance of variables to product quality using PLS algorithm;
(3) Estimating the quality loss according to Equation (6);
(4) Designing the membership functions and fuzzy rules for operational reliability using

quality loss and vital safety variables as inputs.

The designing of the membership functions is the most time-consuming step for
the QFIS method, and it is also the most important step to make sure the performance
of the QFIS method. It is supposed to integrate the operation experience, background
knowledge and mechanism analysis in this step. Therefore, the membership functions
should be designed specifically. Strict membership functions are more preferred when the
system is designed to provide warning of system reliability, so triangular and trapezoid
are suggested as the membership curves. The details of membership functions and fuzzy
rules construction will be given with the specific cases in Section 4.

The structure of the proposed method is presented in Figure 2 and the details are
listed in Table 1.

Figure 2. The structure of the quality integrated FIS.
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Table 1. The procedure of the quality integrated fuzzy inference system (FIS).

The Procedure of the Quality Integrated FIS

Vital safety variables identification
Step 1: Determining important operating unit and their process variables;
Step 2: Selecting vital safety variables under the guidance of expert knowledge;

Quality loss estimation (after collecting a certain number of normal observations)
Step 1: Quantifying the importance of quality-related process variables to product quality

using PLS;
Step 2: Estimating quality loss using loss function in Equation (6);

Fuzzy inference system
Step 1: Normalizing the quality loss and vital safety variables as the inputs;
Step 2: Constructing fuzzy rules and membership functions;
Step 3: Obtaining the system reliability of the chemical process;

4. Application Results and Discussion
4.1. Application in R22 Refrigerant Producing Process

To test the performance of the proposed QFIS method, the observations of a part of an
R22 producing process in a large-scale fluorochemical industry company located in East
China were applied. The flowchart of the R22 producing process is shown in Figure 1.
There are 69 process variables in total. The sampling period was from May to November
2019 (Sampling interval was one minute), which included dozens of procurement cycles of
raw materials and experienced through the summer, autumn and winter of the location.

According to the operation experience, as shown in Figure 3, data in the green box
were observations in normal operation status which were used as training data. Data in red
boxes were observations corresponding to three types of abnormal status. Ten thousand
observations for each of them were used to test the performance of the proposed method.

Figure 3. The selection of training and testing data for R22.

The purity of one of the major intermediate materials was used as the quality variable.
Because it is sampled and measured offline per hour while the DCS process variables are
1 min, therefore, it is not practical to use product quality as an input to estimate its drift.
To match with the measured product quality, only the process variables sampled at the
same time were used to train the QFIS model. In this way, 849 observations of normal
operation status were available. Of the observations, 699 were used as training data while
the other 150 observations were used as testing data of the PLS-based quality prediction
model. Three-fold cross-validation was performed in the training step to optimize the
quality prediction model so that the importance index of each process variable can be
evaluated comprehensively.
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Besides the reactor, which is always the major unit of a process, rectifying column
1 is another major one suffering from corrosion according to the operation records and
the expert knowledge. Consequently, the reactor level, reactor temperature, rectifying
column 1 pressure and rectifying column 1 level were selected as vital safety variables.
Then these four vital safety variables and quality loss value calculated by Equation (6) were
normalized and input to the QFIS model to estimate the operation reliability.

As we mentioned above, membership functions or fuzzy rules are very important.
The membership functions were determined strictly according to the characteristics of
each input, and was basically divided into three levels: high, medium and low reliability.
According to the expert knowledge and experimental experience, triangle and trapezoid
curves were used. The membership functions for each input and output is presented in
Figure 4a. For the reactor temperature, higher than the up limitation would cause much
worse damage than lower than the low limit. Then the level of reactor temperature was
defined as Not-high and High. For the reactor level, Rectifying column 1 pressure and
Rectifying column 1 level, low pressure or level has the potential risk of leakage and high
pressure or level would bring damage to the equipment. Then the levels of them were
defined as Low, Medium and High. For the quality loss, obviously, normally, it is supposed
to be as low as possible. Medium or high-quality loss will bring huge economic loss which
is unacceptable. So the level of quality loss was defined as Low and Not-low.

Figure 4. The examples of the application of the proposed method in R22 producing process.

The shape and position of membership function curves were determined according
to the range of the corresponding variables and the operation experience which plays
an important role due to the particularity of the R22 producing process. For example,
according to equipment condition and operating status in the field. The reactor would
experience a strong decrease in reliability when the reactor temperature is over 0.7. Then the
starting point of the high reactor temperature curve is set as 0.7. The vertex of the medium
reactor level curve (0.63) was the average value of reactor level in normal observations.

The fuzzy rules were determined according to the level of each input. Table 2 lists the
level of each input and whether it is allowed. They were formulated as follows:

(1) If there was no input in state “No”, then the system reliability was in “safe” status;
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(2) If one or two inputs were in state “No”, then the system reliability was in “warning”
status;

(3) If three or four inputs were in state “No”, then the system reliability was in “alarm”
status;

(4) If there were five inputs in state “No”, then the system reliability was in “danger”
status.

Table 2. Constraints of inputs of R22 refrigerant producing process.

Index Low Medium High

Reactor temperature Yes No
Reactor level No Yes No

Rectifying column 1 pressure No Yes No
Rectifying column 1 level No Yes No

Quality loss Yes No

For example, if Reactor temperature was not high, Reactor level was medium, Rectify-
ing column 1 pressure was high, Rectifying column 1 level was low and Quality loss was
low, then the system reliability was in “warning” status.

A total of 108 fuzzy rules were constructed. Parts of them are presented in Figure 4b.
Then, the estimated system reliability of three abnormal cases is shown in Figure 5

with the corresponding value of an important inlet flow (IIF), which partly indicated the
operation status of the process.

Figure 5. The important inlet flow and system reliability of three abnormal cases in R22; (a–c) are
three abmormal cases’ important inlet flow and system reliability.

In fact, the valve of the important inlet had to be shut down for a while to protect the
process. Correspondingly, there was a very big deviation in the IIF value of Case 1 from its
target value (1.8). As a result, there was a big fluctuation in the system reliability curve
with a delay of only 40 min (see the period between the first two blue lines in Figure 5).
The system reliability was continuously lower than 50% triggered a “Danger” notice.
During the recovering period of the process, the overall trend of the system reliability was
upward volatility because the spread of this shutdown influenced other vital variables. The
system reliability was recovered to “Alarm”, then “Warning”. Unfortunately, another big
disturbance happened at the end of the period of Case 1, and the reliability went back to
“Alarm” status again. The system reliability was always under the control line of warning
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which represented that the system was not reliable and the “shut down” of the important
inlet was necessary.

Case 2 was during the recovering period of the process after an overhaul. The system
reliability was going upward at the beginning. The ups and downs of the reliability had the
same trend as the IIF value, and both of them were because of the operation fluctuations
caused by the DCS (distributed control system). It was obvious that the system reliability
was around the control line of warning and was improved in the recovering period.

Case 3, the operation was almost recovered back to normal with only small fluctua-
tions. The system reliability was going upward toward 90% with fluctuations too. Most of
the observations were above the control line of warning. It showed that the system was
reliable.

With the lowest average reliability of Case 1 and the better system reliability in Case 2
and Case 3, the same trends between the system reliability and the IIF value strongly proved
the performance of our method. It can predict the system reliability with a reasonable delay
using only normal observations to train the model. The proposed method comprehensively
considered both safety and economic factors, and the result fully reflected the status of
the system, so as to provide appropriate suggestions to the decision-makers of the R22
refrigerant producing process operation.

Due to the confidential agreement, it is not allowed to show the quality variables of
the R22 producing process. The contribution of quality loss to the final estimated system
reliability would be discussed in the application in the Tennessee Eastman process in
Section 4.2.

4.2. Application in the Tennessee Eastman Process

To further test the proposed method, it was applied to predict the system reliability
of the Tennessee Eastman chemical process (TEP). TEP is a chemical simulation process
that was promoted by J. J. DOWNS and E. F. VOGEL in 1992. It consists of five major
operating units namely, a reactor, a product-condenser, a vapor-liquid separator, a recycle
compressor and a product stripper. Its process flow diagram is shown in Figure 6. G and H
are products of the TEP. Twenty-two process variables and twelve manipulated variables
are measured online. Among them, two manipulated variables are constant. Additionally,
nineteen variables are measured by offline equipment. There are 28 process fault types
(IDV1-IDV28) in the revised version for researchers to test their monitoring methods [28,29].
Details of them are available in Refs. [28,29].

According to the literature research, the reactor pressure, reactor level, product sepa-
rator level and stripper base level were selected as the vital safety variables. Normally, the
reactor temperature should be considered as a vital variable, but it will not be affected by
any available IDVs provided by TEP. Therefore, it was not selected as a vital variable.

The 22 process variables and 10 non-constant processes manipulated variables were
used as the input of the PLS-based quality prediction model. The ratio of the product G and
H was used as the output of this quality model. A total of 960 observations, which were
sampled per 3 min, were used as training data and 240 observations were used as testing
data. The longest time delay in the G/H ratio was 30 min, which was ten times of the
process variables. Five-fold cross-validation was taken to optimize this model. The result
showed when v = 2, both the RMSEs of training data and testing data had the smallest
values. It meant the quality model had the best regression performance when v = 2. So the
corresponding regression coefficient vector β was used to obtain the quality loss defined in
Equation (6).



Processes 2021, 9, 292 11 of 15

Figure 6. The producing process of Tennessee Eastman process.

The principles of designing membership functions and fuzzy rules were similar to
those of the R22 refrigerant producing process. The constraints of the five inputs of QFIS are
presented in Table 3. A total of 72 fuzzy rules were designed. The membership functions of
input and output are presented in Figure 7a and part of the fuzzy rules viewer is presented
in Figure 7b. Details of the codes for TEP is provided in the supplementary material at the
end of the paper.

Table 3. Constraints of inputs of Tennessee Eastman process.

Index Low Medium High

Reactor pressure Yes No
Reactor level No Yes No

Product separator level Yes No
Stripper base level No Yes No

Quality loss Yes No

These 28 IDVs occur in a different part of the TEP with different characteristics and
amplitudes, they cause different influences on the process operation. According to the
system reliabilities calculated with our method, these 28 IDVs can be divided into three
categories: (1) Low danger: The system reliabilities were minor impacted by some IDVs
and they were always around 90%; (2) Medium danger: Some IDVs had a middle impact
on the safe operation of TEP and the corresponding system reliabilities were between 60%
and 90%; (3) High danger: A few IDVs impacted the operation severely and the system
reliabilities were under 50%. The IDV descriptions of TEP and their danger levels were
given in Table 4. We selected three typical IDVs as examples to demonstrate our QFIS
method. The system reliabilities and corresponding ratio of G/H and quality loss are
shown in Figure 8.
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Table 4. The fault description of Tennessee Eastman Process.

No. Description Type Danger Level

1 A/C feed ratio, B composition constant (stream 4) Step Medium
2 B composition. A/C ratio constant (stream 4) Step Low
3 D feed temperature (stream 2) Step Low
4 Reactor cooling water inlet temperature Step Low
5 Condenser cooling water inlet temperature Step Low
6 A feed loss (steam 1) Step High
7 C header pressure loss-reduced availability (steam 4) Step Low
8 A, B, C feed composition (stream 4) Random Medium
9 D feed temperature (stream 2) Random Low

10 C feed temperature (stream 4) Random Low
11 Reactor cooling water inlet temperature Random Low
12 Condenser cooling water inlet temperature Random Medium
13 Reaction kinetics Slow drift Medium
14 Reactor cooling water valve Sticking Low
15 Condenser cooling water valve Sticking Low
16 Unknown Unknown Low
17 Unknown Unknown Low
18 Unknown Unknown Medium
19 Unknown Unknown Medium
20 Unknown Unknown Low
21 A feed temperature (stream 1) Random Low
22 E feed temperature (stream 3) Random Low
23 A feed pressure (stream 1) Random Low
24 D feed pressure (stream 2) Random Medium
25 E feed pressure (stream 3) Random Low
26 A and C feed pressure (stream 4) Random Low
27 Pressure fluctuation in the cooling water re-circulating unit of the reactor Random Low
28 Pressure fluctuation in the cooling water re-circulating unit of the condenser Random Low

Case 1 was the IDV6 (A feed loss) in TEP. The loss of the main raw material of the
reactor caused a severely bad influence on the product quality and the process operation.
After IDV6 was introduced, the system reliability dropped very quickly to a lower 40%,
which indicated that the process was in a very dangerous status. The quality loss increased
quickly and the ratio of G/H deviated from its target value severely at the end of the
simulation. Actually, the simulation would shut down in 6.2 h after IDV6 was introduced.
This strongly proved how serious the damage was caused by IDV6. It also proved how
good the performance of our system reliability estimating method.

Case 2 was the IDV12 (A random fluctuation in the condenser cooling water inlet
temperature) in TEP. The condenser was not the major part of the TEP. Moreover, according
to the mechanism and the flowchart of TEP, a random fluctuation in the condenser cooling
water inlet temperature could not cause severe damage because of the time delay and the
operation of the automatic DCS system. The product quality was only slightly affected and
the simulation could still keep running. The ratio of G/H was in a reasonable fluctuation
too. Consequently, the system reliability did not drop seriously. Except for several points
that were lower than 70% (the control line of warning), it was around 90% most of the time.

Case 3 was IDV9 (A random fluctuation in the D feed temperature) in TEP. D was a
reaction raw material in TEP. The automatic DCS system tuned the process parameters
to overcome the influence caused by it. Therefore, it only caused mild fluctuations in the
process operation. The quality loss was extremely small and the ratio of G/H was around
the target value. The system reliability was around the control line of safety which meant
the status was safe and reliable.

Therefore, the following conclusion can be summarized from the results: (1) The
proposed method is sensitive to the change both in product quality and in the safety of
TEP. (2) The degree of the abnormal status of TEP can be accurately estimated by our
proposed method.
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5. Conclusions

The proposed methodology considers both the effect of quality control and safety as-
sessment on the reliability of the chemical process system. To estimate the quality deviation
and to overcome the time delay in quality measurement, which is very common for engi-
neering practice, a novel quality loss function was proposed by weighting the contributions
of the process variables to the final product. Meanwhile, the vital safety variables of the
fluorochemical process operation were selected under the guidance of expert knowledge.
Finally, the system reliability was estimated with an elaborate fuzzy inference system
using the quality loss and vital process variables as inputs. The membership functions
and fuzzy rules were constructed by making good use of the expert knowledge and the
operation experience. Applications on a practical fluorochemical engineering process in
East China and on the Tennessee Eastman process strongly confirmed the superiority of
QFIS in system reliability estimating of the proposed system for complicated black-box
chemical processes. The most important contribution of the proposed methodology is
to provide an overall system reliability assessment method on both quality control and
operation status which can offer a comprehensive proposal on further PHM. However, the
estimated system reliability which should serve as a reference for decision-makers can not
control or regulate the chemical process directly. The result shows the overall status of the
chemical process and more research needs to be carried out on identifying specific reasons
leading to the decline in system reliability.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-971
7/9/2/292/s1, MATLAB codes for TEP.
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