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Abstract: For decades, industrial companies have been collecting and storing high amounts of data
with the aim of better controlling and managing their processes. However, this vast amount of
information and hidden knowledge implicit in all of this data could be utilized more efficiently. With
the help of data mining techniques unknown relationships can be systematically discovered. The
production of semiconductors is a highly complex process, which entails several subprocesses that
employ a diverse array of equipment. The size of the semiconductors signifies a high number of units
can be produced, which require huge amounts of data in order to be able to control and improve the
semiconductor manufacturing process. Therefore, in this paper a structured review is made through
a sample of 137 papers of the published articles in the scientific community regarding data mining
applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data
mining applications are classified in function of the application area. The results are then analyzed
and conclusions are drawn.

Keywords: data mining; semiconductor manufacturing; quality control; yield improvement; fault
detection; process control

1. Introduction

The last few decades have seen the birth of a great diversity of products and ser-
vices associated with electrical and electronic equipment, and witnessed the presence of
electronic and electrical equipment in a large number of products and services, which
are subject to constant change [1]. During the last few years, since semiconductor man-
ufacturing processes have gradually diminished in size, the number of transistors that
can be fabricated on a sole silicon wafer can amount to a billion units [2]. In order to
account for the dynamic evolution of production and distribution and the changes caused
by technological advances and inventions, companies that operate in this field need to be
flexible and to be able to adapt quickly to a constantly changing environment [3].

Semiconductor production is the process that creates integrated circuits, such as tran-
sistors, LEDs, or diodes that can be found in electrical devices and consumer electronics.
During the front-end process, the crystalline silicon ingot is produced and the wafers are
cut, the electrical circuits are created by photolithography and other chemical processes
and, finally, they are electronically tested. In the back-end process, the chunks are cut
from the wafer, wired (glued), encapsulated, and tested [4]. The semiconductor manu-
facturing industrial units (known also as fabs) are one of the highest capital-intensive
and entirely automated production systems, in which agnate processes and equipment
are utilized to manufacture integrated circuits through a wide range of extensive and
complex processes with firmly controlled manufacturing processes, reentering process
flows, advanced and complex equipment, and demanding deadlines for complying with
constantly unpredictable demands of a constantly increasing product mix [5].
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The concept Industry 4.0 involves employing artificial intelligence technologies, data
mining techniques, big data and deep learning analysis to the current industrial infras-
tructure for the purpose of developing innovations that are disruptive [6]. The objective
is to strive to put into practice this concept, which will allow flexible decision-making
and smart manufacturing systems, as anticipated by the Industry 4.0 concept. Therefore,
by turning Industry 4.0 a reality, the role of the Internet of Things (IoT) and additional
emergent technologies will have a central role [7]. So far, the tendency to have unmanned
operations and increasing automation in semiconductor production systems, as in other
production technologies, is constantly growing [8].

Conventionally, semiconductor production systems are known for having a highly
complex and lengthy manufacturing process. Typically, semiconductor wafers require a
number of process steps that could easily surmount half of a thousand to be produced [9,10].
The level of complexity of every step is frequently equated to that of a medium-sized indus-
trial unit, particularly in such areas such as logistics, planning, control, and data volume,
among other steps. Consequently, growing requirements and pressure to perform with a
high plant productivity pose a difficult challenge for companies operating in semiconductor
manufacturing [1].

The ever-growing demand for integrated circuits that are able to deliver higher per-
formances at lower costs is something semiconductor companies are well familiar with.
Therefore, wafer metrology tools are employed for designing and producing semiconduc-
tors, cautiously monitoring line widths, film properties, and possible defects in order to
improve the production process. Data mining techniques together with metrology tools
and wafer verification abilities guarantee a close desired result of the electrical and physical
properties of produced semiconductors. Data mining with wafer metrology can accurately
and quickly recognize surface pattern defects, particles, and additional conditions that are
capable of causing adverse effects on semiconductor performance [11].

Data mining is one of the areas of the knowledge data discovery process and is
capable of providing innovative avenues for interpreting data. Data mining comprises
the extraction of significant and implicit, previously unidentified, and possibly valuable
information from data. Data mining offers the ability to detect patterns that are hidden
amid a set of data. Data mining is the process of sorting and classifying data, then finding
anomalies, patterns, and correlations in large data sets to predict outcomes. Employing
a wide variety of techniques, companies can use this information for problem detection,
quality control, increase revenue, cut costs, improve customer relationships, and reduce
risk, among others [12]. Since modern semiconductor manufacturing processes suffer from
a great degree of complexity, and the amount of data is overwhelming, it is still challenging
to reach fast yield improvement by discovering manually useful patterns in raw data [11].

Throughout wafer manufacturing, equipment data, process data, and the historic
data will be semiautomatically or automatically collected and grouped in a database in
order to be able to diagnose faults, to monitor the process, and to effectively manage
the production process. Nevertheless, in such advanced manufacturing units such as
semiconductor production, numerous aspects and details are interconnected and have
an effect on the yield of the produced wafers [13]. Therefore, data mining techniques are
a solution for a significant amount of challenges that the semiconductor manufacturing
faces, such as yield improvement [5,11], quality control [14], fault detection [15], predictive
maintenance [16], virtual metrology [17], scheduling [18], business improvement [19], and
market forecasting [20], among others.

Despite the existence of a high number of studies regarding data mining applications
in semiconductor manufacturing, a gap was identified in the literature, in which the
necessity to compile and analyze in a more comprehensive way through the compilation in
a single paper every published study arose, and expressly perform it without restrictions
on location or characteristics. With the intention of filling the identified gap in the research,
the aim of this paper is to compile all the existing publications on this topic on Scopus
and WoS and to classify and compare them. Therefore, one of the goals of this study is to
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understand the state of the art regarding data mining solution to existing challenges in
semiconductor manufacturing. A bibliometric study is presented, in which are analyzed
the number of publications over time, the co-occurrence network, the most cited authors,
the distribution of keywords by observed frequency, among other bibliometric metrics.
This analysis, besides analyzing bibliometric indicators and making a comparison between
distinct features, it also has the purpose to frame these indicators in distinct categories and
highlighting every case, not only to seek and detect future research pathways, but also to
have a better comprehension of data mining applications in semiconductor industry and to
endorse it in order to disseminate its use.

This paper is organized as follows. In Section 2, a brief overview of the semiconductor
manufacturing process is given. In Section 3, a structured bibliometric analysis is made.
In Section 4, a qualitative organization and analysis data mining application studies in
semiconductor manufacturing can be found. In Section 5, a brief result analysis and
discussion is made. Finally, in Section 6, overall conclusions are given.

2. Bibliometric Analysis

According to the literature, a systematic literature review neutralizes the perceived
weaknesses of a narrative review [21]. A systematic literature review usually has distinct
stages of preparation, direction-finding and publishing, and diffusion. Every stage might
comprise numerous steps of the review process by being part of a method or system
that is created to precisely and objectively focus on the overall question the review is
bound to answer. In this study, the research design applied in [21–24] was followed, as
seen in Figure 1, by comprising five steps: problem conception; literature search; research
evaluation; research analysis; and finally result summarizing.
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The objective of this bibliometric analysis is to know the state-of-the-art of data mining
application in the semiconductor manufacturing. In a scenario where companies store
large amounts of data, data mining approaches are used to extract useful information and
knowledge automatically [25]. To achieve that, data mining approaches use a combina-
tion of algorithms and concepts from artificial intelligence, statistics, machine learning,
and data management [26]. Accordingly, in this bibliometric analysis we look for data
mining applications in semiconductors where authors attempt to extract information and
knowledge in semiconductor manufacturing from large datasets.

After the topic of data mining data mining applications in semiconductor manufac-
turing was selected as an object of intensive study in this literature review, an extensive
bibliographic research was carried out on the subject and its surroundings. The purpose
of this analysis is to identify and evaluate the adopted methodologies of data mining
applications in semiconductor manufacturing, by taking into account all the scientific
studies found.

The research methodology was carefully developed in order to allow the identification
of relevant patterns and areas for the study under analysis. The literature research process
comprises such characteristics as the collected qualitative and quantitative information
being well defined and delimited, a detailed analysis being made based on the evidence
and characteristics recognized in the subject of the study, the analyzed papers are organized
by application areas, all contents are analyzed in a qualitative manner, which favors the
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identification of important subthemes and the successful interpretation of results. We
considered papers that address the application of data mining to exploit data stored during
semiconductor manufacturing processes. So, in the first step, the usefulness of each article
was verified by reading its summary and introduction, so that those who seemed to be
out of the review due to imprecision and a lack of details were excluded. Additionally,
despite that some of the data mining algorithms and techniques may be applied by semi-
conductor manufacturing authors, we excluded any papers that do not approach its use for
information and knowledge extraction. After defining the aforementioned delimitations,
a more detailed analysis was made on the articles that effectively added value in their
incorporation in the review article. The purpose of data mining application has been
carefully revised. This more detailed analysis includes: a selective reading and choice of
material that suits the objectives and proposed theme; an analytical reading of the texts
grouping them by application areas; and concludes with the interpretative reading and
writing of the literature review body.

After the main elements of the research process have been well established, it becomes
essential to adopt some essential assumptions for the accomplishment of this analysis.
First, following the guidelines from [27], only indexed and peer-reviewed articles were
taken into account, and the indexing databases considered were Scopus and Web of Science
(WoS). The keywords utilized were “Data Mining” and “Semiconductor Manufacturing”,
which garnered the highest number of results. However, also, all the possible variants,
such as “Semiconductor Fabrication”, “Semiconductor Production”, and “Semiconductor
Packaging” were utilized in order to cover all the possible published papers through this
combination. Table 1 shows the results from different combinations of keywords in the
database.

Table 1. Results from different combinations of keywords in the database.

Search Stream
Results

Scopus WoS

“Data Mining” AND “Semiconductor Manufacturing” 142 87
“Data Mining” AND “Semiconductor Fabrication” 11 9
“Data Mining” AND “Semiconductor Production” 8 5
“Data Mining” AND “Semiconductor Packaging” 2 2

The publications considered for this study were publications in English and the type
of articles were journal research articles, journal review articles, conference articles, book
chapters, and editorials. A few papers were found in Chinese and Polish, but were excluded
from this study. In Figure 2 the flowchart of the paper selection process can be observed.
In the end, a final sample of 137 papers was used for the article analysis. This sample
comprises almost all papers found with the keywords used.

All the selected studies were classified by year and the result can be seen in Figure 3.
Three waves can be seen, the first wave that comprises paper from 2004 to 2007 peaked
in 2006 with 10 publications and then the interest waned. The second wave peaked in
2014 and comprises the years 2011 until 2015. Finally, the last wave of interest in this topic
can be seen, peaking in 2019, with 12 publications. This wave is still ongoing. However,
if divided by decades, one can notice that the decade 2010–2020 comprises 64% of all
publications, while the previous decade comprises only 33.5%. This interest reveals the
growing scientific interest in this topic. This increase coincides with the overall interest in
data mining applications for other industries [28,29].
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Figure 3. Publications by year of data mining applications in semiconductor manufacturing.

A particular importance has to be given to the papers that garner the highest interest
in the community, which is measured by the number of citations that a study has. Figure 4
shows the most cited studies of data mining applications in semiconductor manufacturing,
according to Scopus. It can be observed that the first four articles are much more cited than
the remaining ones. The most cited paper is proposed by [30] and deals with maintenance.
It addresses a multiple classifier machine learning technique for predictive maintenance in
the ion implantation process, and, at the time of the writing of this study, it is only 5 years
old. The second most cited article is an overview data preprocessing with two examples,
with one in semiconductor manufacturing [31]. This study has more than two decades and
it is one of the main reasons why it has 185 citations. The third most cited study deals with
quality issues and proposes a framework that combines traditional statistical methods and
data mining techniques for fault diagnosis and low yield product for the process of wafer
acceptance testing and probing [13]. Finally, the fourth most cited study, with 168 citations,
addresses a rule-structuring algorithm based on rough set theory to make predictions for
the semiconductor industry [32]. This study is focused on decision support systems and
has almost two decades. Still, these four studies, which address data mining applications
in different contexts and areas of semiconductor manufacturing and distinct subprocesses,
are an example of how vast the applications of data mining techniques in this process
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are. The interest that these studies attracted is a staple in their respective subcategories of
semiconductor manufacturing. Lotka’s Law states that the large number of small paper
producers bring together about as much as the small number of large paper producers [33].
The frequency distribution of scientific productivity according to Lotka’s law is shown
in Figure 5, Chen-Fu Chien being the most productive author. This can also be observed
in Figure 4, in which Chen-Fu Chien is the author of nine of the most cited papers, since
Chen-Fu Chien is also a coauthor of the fifth [34] and last [5] most cited papers from this
figure.
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Keyword Analysis

A bibliometric keyword analysis was performed. This analysis was made with the help
of VOSViewer software [35] and biblioshiny, which is a web application for Bibliometrix,
and R Package [36]. Both have similar but distinct applications. First, the intention was to
identify which were the most employed keywords. Therefore, a keyword analysis with
VOSViewer software was performed with the main goal to evaluate the specifics of the
discussion on how data mining applications in semiconductor manufacturing.

For the goal of this paper, the Keywords Plus function has been employed with the
purpose of harmonizing the keywords that other authors have employed in the Abstract
and Keyword section of their respective publications. This analysis shows that 2845 key-
words were employed in the selected studies. However, only 51 of these terms appear at
least 12 times. The six keywords with the highest occurrences are “data” (which appears
264 times), process (which appears 134 times), system (appearing 117 times), approach
(appearing 109 times), and, finally, terms “model” and “semiconductor manufacturing”
(both appearing 94 times). The network of co-occurrence links between these keywords is
also shown in this paper with the intention of complementing the analysis of keywords
co-occurrence. The generated keywords co-occurrence network map can be observed in
Figure 6. Three different clusters can be observed.
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However, another analysis was made with biblioshiny of the Bibliometrix, from the R
Package. With this application it is possible to go more in-depth regarding keyword analy-
sis. Here, only keywords inserted by the authors of their respective papers were considered.
The top five keywords that are inserted more often are “data mining”, “semiconductor
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manufacturing”, “machine learning”, “feature selection”, and “yield enhancement”. How-
ever, by making just this simplified analysis not enough can be deduced. In Figure 7 the
obtained frequency chart with biblioshiny can be observed with the distribution of the
47 most often found keywords in the selected sample of papers. A total of 349 keywords
were found through the simplified technique employed in [37] to represent Zipf’s law. This
law stated that certain terms occur much more frequently than others and the distribution
is similar to a hyperbole 1/n. As the authors from [37], however, the occurrence of the
keywords is stratified in decreasing order of frequency and categorized into three areas
of analysis. First, the most important zone represents the basic or trivial information area,
which shows the most essential terms on the subject. The second zone comprises the
terms considered “interesting information”. This zone can comprise potentially innovative
information and fringe themes. Finally, the last area is the noise zone. This area could
represent concepts not yet emerging or even simply, noise.
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Figure 7. Distribution of keywords by observed frequency.

3. Semiconductor Manufacturing Process

The term “semiconductor” refers to a critical component in millions of electronic
devices employed in current daily lives in education, research, communications, healthcare,
transportation, energy, and other industries. Smartphones, mobile, wearable devices rely
on semiconductors for both core operations and advanced functions and are driving global
demand for semiconductors and printed circuit boards (PCBs).

The line width of semiconductors has undergone a drastic reduction, passing from the
micrometer to the nanometer scale, while, in parallel, the process power and memory have
been increased. Integrated circuits, made of a semiconductor material (such as silicon),
are an important part of modern electronic devices in both commercial and consumer
industries. These circuits must have the ability to act as an electrically controlled on/off
switch (transistor) in order to perform basic arithmetic operations in a computer. To
achieve this almost instantaneous switching capability, the circuits must be made of a
semiconductor material, a substance with electrical resistance that lies between a conductor
and an insulator.

The manufacturing process for semiconductor devices requires several steps that take
place in highly specialized facilities. Semiconductor production is a considerably complex
process with long lead times that are necessary to deliver the capabilities expected from
everyday use of our devices. The semiconductor production times vary depending on the
complexity; however, on average, it can take three to five years from initial research to final
product.

Highly pure silicon is the most important raw material for the production of micro-
electronic components such as ICs, microprocessors, and memory chips. Figure 8 shows
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a summarized version of the manufacturing process. The first step in manufacturing a
semiconductor device is to obtain semiconductor materials, such as germanium, gallium
arsenide, and silicon, of the desired level of impurities [38,39]. Impurity levels of less
than one part in a billion are required for most semiconductor manufacturing [40,41].
Due to the microscopic size of semiconductors, even the slightest hint of contamination
can compromise their performance. The partly aggressive liquids required in the further
manufacturing process of the microchips for metallizing, developing, etching, and cleaning
should be safely conveyed, circulated, and processed [42].
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The second main step is the crystal growth of monocrystalline silicon and growth
of multicrystalline ingots [43]. Then, from these ingots, wafers are cut, and then shaped,
polished, and cleaned with the purpose of being ready for further processing or for device
manufacturing [44]. To achieve a functional device with predetermined specifications as a
final result, it is necessary to carry out a prior design process for each of the manufacturing
steps and a mask design, especially, for the masks used in the photolithographic processes
that makes semiconductor manufacturing possible. The mask comprises the master copy
of the pattern that will be printed on the wafer [45].
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The next important step consists of chemical mechanical planarization or chemical
mechanical polishing (CMP) is a process in which topographical irregularities can be re-
moved from wafers with a combination of chemical and mechanical (or abrasive) polishing
in order to obtain the smoothest surface possible [46,47]. The process is usually used to
planarize oxide, polysilicon, or metal layers in order to prepare them for the subsequent
lithographic step [48,49]. During ion implantation, high-energy ions are shot onto the
substrate to be doped by the doping agent. The distribution of the implanted atoms in the
semiconductor can be specifically influenced by the energy, the entry angle, and the use
of masks. With multiple implants carried out one after the other, even complex doping
profiles can be produced with good accuracy and replicability [50,51].

As seen in Figure 8, one of the most important steps in semiconductor manufacturing
is extreme ultraviolet (EUV) lithography a process that allows carving more electrical
circuits in semiconductor silicon wafers. In a lithographic system, images are transferred to
silicon with light [52,53]. EUV lithography is considered to be essential to semiconductor
manufacturing since it is able to produce a shorter wavelength that allows a greater quantity
of electrical circuits to enter a chip [54]. Then, an important step is etching, which is utilized
in microfabrication to chemically eradicate layers of a material from the surface of a wafer
in order to create a pattern of that material on the substrate [55].

The following step is wafer probing, which is the procedure of electrically verifying
each die on a wafer. This is accomplished by utilizing an automatic wafer probing sys-
tem, which is actively searching for functional defects through by employing special test
patterns [56–58]. The next step, semiconductor packaging and assembly process, involves
enclosing ICs and encompasses from die-attach adhesives to liquid and film-shaped encap-
sulation compounds, sealing, lead forming/trimming, deflash, wirebonding, lead finish
to heat-conducting materials, and conductive and non-conductive adhesives for sensors,
among others. The encapsulation technology protects the sensitive layers from external
influences and maintains their efficiency [59,60]. Finally, the final component is carefully
tested in order to verify if it meets the requirements of standard specifications. The testing
process is employed to test semiconductors in the context of design verification, specialized
production, and quality assurance [61].

4. Data Mining Applications in Semiconductor Manufacturing

Data mining techniques can have a vast array of applications in the semiconductor
industry. The obtained articles were classified accordingly to areas of application. Five
major areas for data mining applications in semiconductor manufacturing emerged: quality
control, maintenance, production, decision support systems, and finally, categorized as
a whole, measurement, metrology, and instrumentation. However, other applications
also exist, such as for human resources and talent recruitment and retainment [62], patent
analysis [63], supply chain and inventory management [64], and stock market analysis [20],
proving that data mining techniques can truly be employed for a wide range of applications.

Figure 9 shows the schematic representation of these applications. In some cases, only
one article exists, and as such the direct reference is provided. In other cases, the identified
five major areas are divided by subsections, in which a more detailed analysis is made.
Additionally, this section is also useful for practicing engineers, since they can quickly find
the semiconductor process step or data mining model they are looking for. They can also
find the study that has been implemented and validated in industrial setting and through
corresponding references, access to it.
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4.1. Data Mining Applications for Quality Control

Misaligned image processing can cause thousands of auxiliary operations and dam-
aged wafers during a machine’s life during the photolithography process, wafer scrutiny
and inspection, or wafer mounting and cutting [65]. Inefficient image processing systems
cost semiconductor companies market share and contribute significantly to their overall
costs [66]. Data mining techniques are able to provide robust, precise, and fast wafer and
chip pattern location for wafer inspection, probing, assembly, cutting, and test equipment
to avoid such types of problems. These techniques allow manufacturers to control the
quality of wafers and chips with high precision and accuracy, ensuring reliable equipment
performance during the semiconductor manufacturing process.

The main purpose of quality prediction tools is to forecast the behavior of the product
and then to be able to also forecast the trends of values of its critical parameters, typically
accomplished by employ learning functions that have the capacity to stem knowledge from
the preceding information. Forecasting quality with the help of data mining techniques
normally starts by creating a model based on previous data, for instance labeling samples,
and then assess and verify the unidentified samples, or to evaluate, from a given sample,
the attributes’ value ranges [67].

Table 2 shows the categorized papers by data mining applications for quality control in
distinct steps of semiconductor manufacturing. These steps are identified, when possible,
and can be found in the summary proposal. The table is subdivided into eight major
columns and in a few can be observed the year of publication, reference, and the overall
summarized description of the study. One of the remaining columns describes the proposed
and/or used data mining algorithm, which can be helpful by quickly identifying a specific
algorithm. The next column shows which DM technique is used. The remaining columns
show if the sample data is collected from a real production site or if it was simulated, and
if it is real, it is identified, when possible, by company and country of origin. Additionally,
if experimental validation studies were performed on site, it is also highlighted.
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Table 2. Data mining applications for quality control in distinct steps of semiconductor manufacturing.

Year Overall Proposal Proposed/Used Algorithm DM Techniques Real World
Dataset

Real World
Validation

Location of Dataset
or Company Refs.

2020 A review of data mining applications for quality
control of semiconductor manufacturing Several Several No No - [67]

2020
Correctly identifying actual defective patterns in

Wafer Bin Maps (WBM) to support the improvement
of production yield

Hybrid clustering algorithm that integrates cluster
analysis and spatial statistics Clustering Yes Yes - [68]

2020
A new approach of measuring similarity of wafer bin
maps in order to improve defect diagnosis and fault

detection

Mountain clustering algorithm
Weighted Modified Hausdorff Distance (WMHD) Clustering Yes Yes Taiwan [10]

2020

An Expected Margin–based Pattern Selection model,
that is able to select patterns based on an estimated

margin for Support Vector Machines (SVMs)
classifiers for wafer quality classification in the

photolithography process

Expected Margin-based Pattern Selection (EMPS)
Support Vector Machines (SVMs) Classification Yes Yes South Korea [69]

2019
Fault detection and diagnosis model directly taken

from the variable-length status variables
identification (SVID) in the etch process

Convolutional neural networks (CNNs) Classification Yes Yes South Korea [70]

2019 Clustering-based defect pattern detection and
classification framework for WBMs

Density-based spatial clustering of applications with
noise (DBSCAN) Clustering Yes No - [71]

2019

An yield prediction model based on the selected
critical process steps by taking into account

difficulties such as imbalanced data, random
sampling, and missing values

Expectation maximization (EM), MeanDiff technique,
Synthetic minority over-sampling technique

(SMOTE), decision tree, logistic regression, k-nearest
neighbors (k-NN), and SVM

Classification
Regression Yes No - [9]

2018
A framework based on Bayesian inference and Gibbs
sampling to investigate the intricate semiconductor

manufacturing data for fault detection

Bayesian inference, Gibbs sampling, high
dimensional linear regression, multivariate adaptive
regression spline (MARS), Cohen’s kappa statistics

Classification Yes No - [5]

2018 Process errors detection and practical process
improvement

Decision tree-based classification
C4.5 in KNIME Association rules Yes Yes France [19]

2018

A robust incremental on-line feature extraction
method by ensuring the accuracy of data analysis

and by meeting real-time demands of semiconductor
manufacturing process for product quality

supervision

PCA (Principal Component Analysis)RIPCA (Robust
Incremental Principal Component Analysis)

CCIPCA (Covariance-Free Incremental PCA)

(+)Feature selec-
tion/Dimensionality

reduction
Yes No - [72]

2018 Data mining applications semiconductor
manufacturing process quality control

Fisher criterion algorithm, Support Vector Machines
(SVMs) and Random Forest Classification Yes No Northern Ireland [73]

2018

A mutually-exclusive-and-collectively-exhaustive
feature selection framework applied to two cases of

datasets, one being from a real manufacturing
process

Mutually-exclusive-and-collectively-exhaustive
(MECE)

Two-phase clustering selection (TPS), stepwise
selection (SS)

Chi-Square Automatic Interaction Detector (CHAID)

(+)Feature selec-
tion/Dimensionality

reduction
Yes No - [74]
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Table 2. Cont.

Year Overall Proposal Proposed/Used Algorithm DM Techniques Real World
Dataset

Real World
Validation

Location of Dataset
or Company Refs.

2017

Yield analysis operation performed by engineers
with the aim of identifying the causes of failure from

wafer failure map patterns and manufacturing
historic records. An integrated automated

monitoring system with deep learning and data
mining techniques is proposed.

Convolutional Neural Networks (CNNs), Support
Vector Machine (SVM), Clustering and pattern
mining methods of K-Means++ and FPGrowth

Classification
Clustering Yes No - [11]

2017

A data-driven approach for analyzing semiconductor
manufacturing big data for low yield diagnosis

purposes for detecting process root causes for yield
improvement

Random Forest Regression Yes Yes Taiwan [75]

2017

Comparison between Angle Based Outlier Detection
(ABOD), Local Outlier Factor (LOF), onlinePCA

(online Principal Component Analysis) and osPCA
(os Principal Component Analysis) for

semiconductor Manufacturing Etching process

Angle Based Outlier Detection (ABOD), Local Outlier
Factor (LOF), onlinePCA, osPCA (+) Outlier detection Yes No - [76]

2015

A statistical comparison of fault detection models for
six datasets which were obtained by simulating of a

plasma etching machine for a semiconductor
manufacturing etching process

Support vector machine recursive feature elimination
(SVM-RFE), principal component analysis (PCA),

(k-nearest neighbors (kNN), SVMs, neural network
(NN), logistic regression, partial least-squares
discriminant analysis (PLS-DA), decision tree,
squared prediction error, multi-way principal

component analysis (MPCA)

Classification
(+)Feature selection No No - [77]

2016

A simulator that carefully mimics data from a real
etching process in a wafer production for the

identification and prediction of unspecified situations
by adopting data mining techniques to derive

predictive patterns in order to detect flows and
failures

Decision Tree, Naïve Bayes, Support Vector Machines
with k-Means and hierarchical clustering

Regression
Classification No No - [78]

2016

A wafer fault detection and essential step
identification for semiconductor manufacturing by

employing principal component analysis (PCA),
AdaBoost and decision trees

Adaptive Boosting algorithm, decision trees,
principal component analysis (PCA), SVMs Classification Yes No - [79]

2016

Predictive analytics methods and its application in
improving semiconductor

manufacturing processes by considering several
situations in semiconductor fabrication

Artificial neural networks (ANN), Clustering
Method- K- Nearest Neighbor, robust regression Classification Yes No - [80]

2015

A framework based on a linear model in order to
obtain the weight tensor in a hierarchical manner for

wafer quality prediction in semiconductor
manufacturing

Hierarchical Modeling with Tensor inputs (H-MOTE
algorithm), ridge regression, potential support vector

machine (PSVM), tensor least squares (TLS)
Regression Yes No - [81]



Processes 2021, 9, 305 14 of 38

Table 2. Cont.

Year Overall Proposal Proposed/Used Algorithm DM Techniques Real World
Dataset

Real World
Validation

Location of Dataset
or Company Refs.

2015
A data driven framework for degraded pogo pin

detection in semiconductor manufacturing integrated
circuit product testing process

Linear regression and classification algorithms
(unspecified)

Regression
Classification Yes No USA [82]

2016
A multi-feature sparse stacking-based approach for

detecting defects and classification in produced
semiconductor units

A proposed multi-feature sparse-based classification
model

Other models for comparison
Classification Yes No Intel (USA) [83]

2015

A combination of distinct data sources with the
intention of identifying yield loss causes. The test is
on a production step, comprising an implantation

manufacturing step and its quality control step, a test
done during the wafer sorting/probing (or wafer

test).

K-means algorithm, “a priori” association rules
mining algorithm, decision trees

Clustering
Association rules Yes Yes France [84]

2014

A design-of-experiment (DOE) data mining for
yield-loss diagnosis for semiconductor

manufacturing (lithography, etching, among others)
by detecting high-order interactions and show how

the interconnected factors respond to a wide range of
values

Regression analysis, Kruskal–Wallis test, Dunn’s test,
Holm–Bonferroni method, closed test procedure Regression Yes Yes Taiwan [85]

2014

A yield analysis method employing basic yield and
in-line defect information to statistically determine

significant root-causes of yield loss in semiconductor
manufacturing

Proposed yield accounting system, other unspecified Classification Yes Yes USA [86]

2014

A morphology-based support vector machine for
similarity search of binary wafer bin maps defect

patterns during the probing test for yield
enhancement

Support Vector Machines (SVM), morphology-based
SVM (MSVM), Receiver Operating Characteristic

(ROC), mountain
method clustering

Classification Yes Yes Taiwan [87]

2014

Sequence mining and decision tree induction, to
discover frequently occurred patterns of the low

performance wafer lots in the semiconductor
manufacturing industries

Decision Trees, Sequence Mining Classification
Association rules No No - [88]

2014

A united outlier detection framework that uses data
complexity reduction by employing entropy and
abrupt change detection using cumulative sum

(CUSUM) method. Over an 8-month use period, the
developed method was applied to reactive ion

etching (RIE) and photolithography tools and recipes.

Algorithm I—Data Complexity Reduction Using
Entropy

Algorithm II—Abrupt Change Detection Using
CUSUM

(+)Outlier detection Yes Yes IBM (USA) [89]

2014
A framework for root cause detection of sub-batch

processing system in wafer testing and probing
process

Random forest (RF), Sub-batch processing model
(SBPM) Regression Yes Yes Taiwan [90]



Processes 2021, 9, 305 15 of 38

Table 2. Cont.

Year Overall Proposal Proposed/Used Algorithm DM Techniques Real World
Dataset

Real World
Validation

Location of Dataset
or Company Refs.

2013
An online detection and classification system of

wafer bin map defect patterns during circuit probing
tests

ART1 Neural Network Adaptive Resonance Theory
algorithm Classification Yes Yes Taiwan [91]

2013

Employment of k-means clustering algorithm by
enhancing Support Vector Machines (SVM).

Experiments with the real data of a semiconductor
test process is given

K-means, Support Vector Machines (SVM), Synthetic
Minority Over-sampling Technique (SMOTE) Clustering Yes No - [92]

2013

A framework for semiconductor fault detection and
classification (FDC) to monitor and analyze wafer
fabrication profile data for the CVD Ti/TiN vapor

deposition process

Principal component analysis (PCA), Multi-way PCA
(MPCA), self-organizing map (SOM) neural network Classification Yes Yes Taiwan [93]

2012

An optimization framework for hierarchical
multi-task learning, which partitions all the input

features into two sets based on their characteristics
applied in the process of depositing dielectric

materials as capping film on wafers

HEAR algorithm (MTL with Hierarchical task
Relatedness) based on block coordinate descent Classification Yes No - [14]

2012

A main branch decision tree (MBDT) algorithm that
diagnoses the root causes and provides quick

responses to irregular equipment operation in the
wafer acceptance testing and probing processes with

imbalanced classes

Main branch decision tree (MBDT) algorithm Classification Yes Yes - [94]

2012
A two-phase morphology-based similarity search for
wafer bin maps in semiconductor manufacturing for

wafer acceptance testing
Support Vector Machines (SVM) Classification Yes No - [95]

2011

A technique based on the data mining technology to
automatically generate an accurate model to predict

faults during the wafer fabrication process of the
semiconductor industries

Principal component analysis (PCA), cluster
technique MeanDiff, decision tree, naïve Bayes,

logistic regression, and k-nearest neighbor

Regression
Classification Yes No - [96]

2019 An altered AdaBoost tree-based method for defective
products identification in wafer testing process

AdaBoost Tree-based method
Synthetic Minority Oversampling Technique

(SMOTE) + Edited Nearest Neighbor
(ENN)—SMOTE-ENN algorithm

Classification Yes No - [97]

2006
Wavelet-based data reduction techniques for fault

detection in rapid thermal chemical vapor deposition
processes (RTCVD)

Discrete wavelet transforms, classification and
regression tree (CART)

Classification
Regression Yes No - [15]

1999
Effectiveness of association rules and decision trees
data mining techniques in determining the causes of

failures of a wafer manufacturing process
Association rules and decision trees Association rules

Classification Yes No - [98]
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Table 2. Cont.

Year Overall Proposal Proposed/Used Algorithm DM Techniques Real World
Dataset

Real World
Validation

Location of Dataset
or Company Refs.

2008

A spatial defect diagnosis system at the probing test
which estimates number of clusters in advance and

separates both convex and non-convex defect clusters
at the same time

Decision trees, a method merging entropy fuzzy c
means (EFCM) with Kernel based spectral clustering Classification Yes Yes Taiwan [99,100]

2007

A framework that combines traditional statistical
methods and data mining techniques for fault

diagnosis and low yield product for wafer acceptance
testing and probing

Kruskal–Wallis test, K-means clustering, and the
variance reduction splitting criterion, decision trees

Clustering
Classification Yes Yes Taiwan [13]

2007
A hybrid data mining method that integrates spatial

statistics and adaptive resonance theory neural
networks to extract patterns from WBMs

Adaptive resonance theory (ART), Decision trees,
Classification and regression tree (CART) Classification Yes Yes Taiwan [34]

2007

A Bayesian networks to extract knowledge from data
ant the purpose is to implement a data mining task
for computer integrated manufacturing (CIM). The
end goal is to encounter the cause factors in various
parameters which have an effect during the wafer

cleaning process

Bayesian networks, directed acyclic graph, decision
trees Classification Yes Yes - [101]

2007

Data mining technique by utilizing Gradient
Boosting Trees for predicting class test yield
performance at high volume semiconductor

manufacturing after assembly and final testing

Gradient boosting trees (GBT) ensemble algorithm Regression Yes Yes Intel
(Malaysia) [102,103]

2006
An on-line diagnosis system that relies on denoising
and clustering methods for identifying spatial defect
patterns in semiconductor manufacturing processes

Integrated clustering scheme combining fuzzy C
means (FCM) with hierarchical linkage, decision trees Clustering Yes Yes Taiwan [104]

2006
A data mining technique to predict and classify the

product yields in semiconductor manufacturing
processes in wafer acceptance testing and probing

Genetic programming, Decision trees Classification Yes Yes Taiwan [105]

2000

A combination of self-organizing neural networks
and rule induction employed in the identification of

poor yield factors from collected wafer probing
manufacturing data

Self-organizing neural networks and rule induction Classification
Association Rules Yes Yes USA [106]
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This topic is the most popular one, with 47 publications. By observing Table 2, it
can be seen that several applications are made in distinct subprocesses such as wafer
probing and testing process, etching process, and photolithography, among others. A
high and varied number of algorithms are employed. The majority of articles address
challenges of correctly identifying defective patterns in order to improve production
yield [68]. Yield is a quantitative measure of the quality of a semiconductor process. It
is measured as the number of functioning dies or chips on a wafer and can also be seen
as the fraction of dies on the yielding wafers that are not rejected during the production
process [107]. However, other applications in quality control can also be found, such as a
study addressing a design-of-experiment (DOE) data mining for yield-loss diagnosis for
semiconductor manufacturing by detecting high-order interactions, for subprocesses such
as lithography and etching, among others [85]. These data mining technique are also used
with statistical process control. Cumulative sum control charts, known as CUSUM, are
a special type of statistical process control tool that is used in [89] as part of and unified
outlier detection framework, which takes advantages of data complexity reduction by
employing entropy and sudden change detection through the use of CUSUM charts.

4.2. Data Mining Applications for Maintenance

Only a few articles were published addressing maintenance management and predic-
tion, but are important nonetheless. Only five papers were classified and can be observed in
Table 3. This table is organized as Table 2. As it can be noticed, these studies are sparse and
the majority were published in the last 8 years. However, the most cited article is a study in
this area of application. In this study a multiple classifier machine learning methodology
for predictive maintenance in the ion implantation subprocess is proposed [30] and a
similar study is proposed in [16]. In another study, hidden Markov model-based predictive
maintenance for semiconductor wafer production equipment and documented over one
year was proposed in [108]. A data mining technique that is able to deliver early warning
by identifying tool excursion in real time for advanced equipment control in order to di-
minish atypical yield loss is proposed in [109] and was validated by practical applications
in the field. Finally, the last study addresses spatial pattern recognition in order to improve
the resolution and identification of defective and malfunctioning tools in semiconductor
manufacturing developed and implemented at Advanced Micro Devices, Inc. (AMD) [110].

Table 3. Data mining applications for maintenance prediction and management in semiconductor manufacturing.

Year Study Proposal Proposed/Used
Algorithm

DM
Techniques

Real World
Dataset

Real World
Validation

Location of
Dataset or
Company

Ref.

2017

Hidden Markov model-based
predictive maintenance for

semiconductor wafer
production equipment,
recorded over one year

Preliminary fitting of a
hidden Markov model

(HMM)
Genetic, genetic

algorithm

Yes No - [108]

2016

Predictive Maintenance with
time-series data based on

Machine Learning tools in Ion
implantation

Supervised Aggregative
Feature Extraction

(SAFE)
Yes No - [16]

2015

A multiple classifier machine
learning technique used for

predictive maintenance in Ion
implantation process

Support Vector Machines
k-Nearest Neighbors

Classification
Clustering Yes No - [30]

2012

Data mining technique that is
able to deliver early warning
by identifying tool excursion

in real time for advanced
equipment control in order to
diminish abnormal yield loss

Decision trees,
Chi-Squared Automatic

Interaction Detector,
Rough set theory

Classification Yes Yes Taiwan [109]

2008

Spatial pattern recognition to
improve the identification

and resolution of rogue and
possibly malfunctioning tools

in semiconductor
manufacturing

Spatial pattern
recognition

(+)Feature
selection Yes Yes AMD (USA) [110]
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4.3. Data Mining Applications for Metrology, Measurement, and Instrumentation

The high necessity for always striving to make progress regarding the yield of current
semiconductor production processes and decrease the time-to-market for more advanced,
innovative, and gradually elaborate designs and processes demands for process tools and
wafers to be examined and verified with up-to-date measurement systems and equipment.
Several papers, namely 19, are categorized in this topic, as depicted in Table 4. This table is
organized as Table 2. The topics addressed in this section range from models comprising a
precise semiconductor photolithography process control method through virtual metrology
by employing significant correlations between focus measurement data encountered by
data mining and tool data [111].

In fact, virtual metrology is a recurring topic, and is defined as a set of methods that
allow predicting the properties of a wafer through sensor data and machine parameters in
the manufacturing equipment, thus avoiding the highly expensive physical measurement
of the wafer properties [112–114]. Since machine data is typically sampled much more
often when compared to metrology data, and since machine data becomes immediately
available when compared to the delays that frequently occur with metrology tools, an
accurate virtual metrology is capable of meaningfully developing the process control and
monitoring performance through a constantly supply of real-time forecasted metrology
data. A few feature extraction methods for virtual metrology with multisensor data are
proposed in [17,115,116].

However, other measurement and instrumentation were also proposed and classified.
For instance, in [117] a real-time data mining solution with the segmentation, detection,
and cluster-extraction (SDC) algorithm that can automatically and accurately extract defect
clusters from raw wafer probe test production data is proposed. Additionally, a data
mining that employs machine learning methods with the purpose of modeling unknown
functional interrelations and to predict the thickness of dielectric layers deposited onto a
metallization layer of the manufactured wafers is proposed in [118]. Finally, at IBM, a data
mining technique with the purpose of automatically identifying and exploring correlations
between inline measurements and final test outcomes in analog and/or radio frequency
(RF) devices and by integrating domain expert feedback into the algorithm in order to
identify and remove bogus autocorrelations [119]. Practical application and validation of
this technique is made.
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Table 4. Measurement, metrology, and instrumentation data mining applications.

Year Study Proposal Proposed/Used
Algorithm DM Techniques Real World Dataset Real World Validation Location of Dataset or

Company Ref.

2019 Automatic method for extraction of signatures from
the raw data generated by non-rotating equipment

Virtual metrology
Genetic Algorithms (+)Feature selection Yes No - [120]

2019

A Deep Learning method for Virtual Metrology that
employs semi-supervised feature extraction reliant

on Convolutional Autoencoders for a 2-dimensional
Optical Emission Spectrometry data

Convolutional Neural Networks
Deep Learning Virtual metrology (+)Feature selection Yes No - [115]

2019

A feature extraction technique for virtual metrology
with multisensor data in semiconductor

manufacturing that relies on deep autoencoder which
also offers a clipping fusion regularization on the
signals reconstructed by deep autoencoder in the
case of an etching process for wafer fabrication

Principal component analysis (PCA)
Virtual metrology, unsupervised deep

autoencoder (AE)
(+)Feature selection Yes No - [17]

2016

A Euclidean distance- and standard deviation-based
characteristic selection and over-sampling used in a

fault detection prediction model and applied to
measure performance

Principal component analysis (PCA),
SVM (Support Vector Machine), C5.0

(Decision Tree), KNN (K-nearest
neighbor), Artificial neural network

(ANN)

(+)Feature selection
Classification Yes No - [121]

2017

OpenMV—a low-power smart camera with wireless
sensor networks and machine vision applications, it
is scripted in Python 3 and comes with an extensive

machine vision library

Support vector machine-like
(SVM-like) algorithm Classification No No - [122]

2014

A precise semiconductor photolithography process
control method using virtual metrology using

significant correlations between focus measurement
data found by data mining and tool data

Virtual metrology
Correlation coefficient mining

algorithm
(+)Feature selection Yes Yes - [111]

2014

A Feature Selection wrapper method aiming to find
the most important process parameters for smart
virtual metrology for High Density Plasma (HDP)

Chemical Vapor Deposition

Virtual metrology, Evolutionary
Recursive Backward Elimination

(ERBE) algorithm, Genetic Algorithms,
Support Vector Regression (SVR)

Regression Yes Yes - [116]

2014

A framework in which the structural information
from etching is interpreted as a set of constraints on

the cluster membership, an auxiliary probability
distribution is then introduced, and the design of an
iterative algorithm is prosed for assigning each time

series to a certain cluster on every dimension

K-Means algorithm, C-Struts
framework, complex-valued linear

dynamical systems (CLDS)
Clustering Yes No - [123]

2013

Data Mining utilizing machine learning techniques
for modeling unknown functional interrelations in
the high-density plasma chemical vapor deposition

process. It predicts the layer thickness through
Support Vector Regression

Support Vector Machine (SVM),
Support Vector Regression (SVR) Classification Yes No - [124]
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Table 4. Cont.

Year Study Proposal Proposed/Used
Algorithm DM Techniques Real World Dataset Real World Validation Location of Dataset or

Company Ref.

2013

Data Mining using Machine learning methods to
model to model unknown functional interrelations

and to predict the thickness of dielectric layers
deposited onto a metallization layer of the

manufactured wafers.

Decision Trees (DT)
Neural Networks (NN)

Support Vector Regression (SVR)
Classification

Regression Yes No - [118]

2011

A qualitative clustering method is given, and a
comparison is made between a Virtual Metrology
(VM) system running on groups of data with the
same targets and one obtained by considering the
three chambers of the Chemical Vapor Deposition

equipment as separated machines

Back Propagation Neural Networks
(BPNN)

Partial Least Square (PLS) Regression

Clustering
Classification Yes No - [125]

2011

A real-time data mining model by using a
Segmentation, Detection, and Cluster-Extraction

algorithm that is able to accurately and automatically
extract defect clusters from raw wafer probe test

production data

Segmentation, Detection, and
Cluster-Extraction (SDC) algorithm Clustering Yes Yes Malaysia [117]

2011
A multivariate feature selection able of handling

mixed and complex typed data sets as an initial step
in yield analysis to reduce the number of variables

Ensemble-Based Feature Selection
algorithm, gradient boosted tree (GBT) Regression Yes No - [126]

2011

Development of virtual metrology (VM) prediction
models using several data mining technique and a
VM embedded R2R control system by employing
exponentially weighted moving average (EWMA)

based on data from a photolithography production
equipment

Decision trees, GA with linear
regression, GA with support vector

regression (SVR), Principal component
analysis (PCA), and kernel PCA,

multi-layer perceptron (MLP),
k-nearest neighbor regression (k-NN)

Regression Yes Yes South Korea [127]

2011

A data mining method for automatically identifying
and exploring correlations between inline

measurements and final test outcomes in analog/RF
devices and incorporate domain expert feedback into
the algorithm for identifying and removing spurious

autocorrelations

Multi-objective genetic algorithm
(NSGA-II), Genetic algorithms (GA),

Multivariate Adaptive Regression
Splines (MARS)

Regression Yes Yes IBM (USA) [119]

2009
A virtual metrology (VM) system for an etching

process in semiconductor manufacturing based on
various data mining techniques

Genetic algorithm with support vector
regression (GASVR), Principal

component analysis (PCA), and kernel
PCA, Stepwise linear regression

Regression Yes Yes South Korea [128]

2006

A 2nd Generation Data Mining system in cooperation
with Advanced Process Control (APC) system and

that aim to stabilize machine fluctuation in
Photolithography Process

Regression tree analysis, proposed 2nd
Generation Data Mining algorithm Regression Yes Yes Fujitsu (Japan) [129]
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Table 4. Cont.

Year Study Proposal Proposed/Used
Algorithm DM Techniques Real World Dataset Real World Validation Location of Dataset or

Company Ref.

2006

A pre-processing procedure used for numerous sets
of complex functional data for reducing data size for

the support of appropriate decision analysis. This
vertical-energy-thresholding (VET) procedure

balances the reconstruction error with data-reduction
efficiency

Vertical-energy-thresholding (VET),
wavelet-based procedure

(+)Dimensionality
reduction Yes Yes Nortel (USA) [130]

2005

An automatic classification of the electrical wafer test
maps in order for identifying the classes of failure
present in the production lots, especially due to a

lithographic process

Commonality analysis (CA),
Kohonen’s self-organizing feature

maps algorithm
Classification Yes Yes STMicroelectronics(Italy) [131]
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4.4. Decision Support Systems

Another trend in semiconductor manufacturing is the use of decision support systems
(DSS). A DSS is a system designed to support in solving unstructured and semistructured
managerial problems, throughout all the decision process’ stages [132]. The DSS use in this
area is not novel. Earliest publications in this area date to the 1990s (e.g., [133,134]). DSSs
are used to support decision-making in activities like production scheduling, simulation,
prediction, material selection, fault detection, quality, etc. DSSs may, sometimes, have a
knowledge base, which requires artificial intelligence to provide knowledge to support
the decision process. However, the earliest uses of DSS required knowledge modeling by
knowledge engineers from documented and expert knowledge. Knowledge extraction
from unprocessed data allowed one to discover hidden knowledge in large amounts of
data. The use of data mining techniques to uncover knowledge to be modeled in DSS is a
trend also present in semiconductor literature. Researchers apply data mining techniques
to find patterns and hidden relations that may help in semiconductor decision making.
Usually, the goal is to determine links between control parameters and product quality,
essentially in the form of decision rules [135].

In Table 5 the literature where data mining is used to support the decision-making pro-
cess in semiconductors’ manufacturing is presented. Analyzing this table, one can see that
most contributions address yield management and failure detection issues (see [135–145]).
The authors from [146] aim at the same problem, but focus on the development of a com-
puter integrated manufacturing (CIM) system to improve product yield. Other articles
provide isolated contributions. In [147], the authors propose the application of data min-
ing techniques to support decision-making in HR management of high-tech companies.
In [148], the authors suggest the integration of data mining in semiconductor manufactur-
ing execution systems (MES). Last, in [32] provides a multi-purpose data mining application
for predictions in semiconductor manufacturing.



Processes 2021, 9, 305 23 of 38

Table 5. Data mining applications for decision support systems.

Year Study Proposal Proposed/Used Algorithm DM Techniques Real World Dataset Real World Validation Location of Dataset or
Company Ref.

2019

The results for yield improvement of our silicon
carbide technology using advanced data analytics by
outlining how the data was collected, preprocessed

and managed in order to turn it much more
appropriate for further analysis

Unspecified (+)Generic Yes Yes Northrop Grumman
(USA) [149]

2018
A new balanced production method for holistic
optimization of operation strategies applied to

semiconductor manufacturing

DBSCAN clustering algorithm
Genetic optimization algorithm Clustering Yes Yes - [150]

2015

Development an analytic framework of design for
semiconductor manufacturing and validated through

a case study in semiconductor manufacturing
concerning the layout design of chip size

Model tree (M5), Regression tree
(CART)

Neural Network (BPNN)

Regression
Classification Yes Yes - [151]

2013

A framework in which the packaging yield is
classified using the parametric test data of the

previous step of the packaging test in the
post-fabrication process for semiconductor

manufacturing

Random forests algorithm, support
vector machine (SVM) Classification Yes Yes

SK Hynix
Semiconductor
(South Korea)

[152]

2012
A procedure for the optimization processes named:
values-Patient Rule Induction Method (m-PRIM) by

addressing the missing-values systematically

Missing Values Patient Rule Induction
Method (PRIM) Association rules Yes No South Korea [153]

2001

An integrated relational database method for
modeling and collecting semiconductor

manufacturing data from multiple database systems
and transforming it into useful reports

Integrated Relational Manufacturing
Database Yes Yes Motorola (USA) [154]

2012
Knowledge discovery in databases model that relies
on decision correlation rules and contingency vectors

to enhance semiconductors manufacturing yield

Association and correlation rules,
LHS-CHI2 algorithm Association rules Yes Yes STMicroelectronics,

ATMEL [135]

2011 Rare class prediction for fault case detection in the
wafer fabrication process of semiconductor industries

Decision tree induction, naïve Bayes,
logistic regression, k-nearest neighbors

Association rules
Classification

Clustering
Yes No SECOM [136]

2011

Application of rough set theory, support vector
machines and decision trees for improving the
quality of decisions of class prediction and rule

generation encompassed in human resource
management.

Rough sets theory, support vector
machines, decision trees Classification Yes Yes UCI data bank [147]

2011 Development of a rare case prediction for fault case
detection in the wafer fabrication process

Decision tree induction, naïve Bayes,
logistic regression, k-nearest neighbors

Association rules
Classification

Clustering
Yes No SECOM [137]
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Table 5. Cont.

Year Study Proposal Proposed/Used Algorithm DM Techniques Real World Dataset Real World Validation Location of Dataset or
Company Ref.

2010

Propose a system do improve yield, power
consumption and speed characteristics using

regression rule learning to analyze data collected
during wafer production

Regression rule learning, association
rules Association rules Yes No - [138]

2008
A system to evaluate measurements from a

semiconductor production process using feature
selection to identify rules

Neural networks, feature selection,
simplified fuzzy ARTMAP Classification Yes No - [139]

2007
Proposes ensemble classifiers to support

decision-making to enhance yield in semiconductor
production

Ensemble classification Regression Yes No . [140]

2006 Integration of Data Mining techniques in a MES for
semiconductor manufacturing Decision tree Classification Yes No - [148]

2006
Combines forward regression and regression tree
methods to discover yield loss causes during the

yield ramp-up stage

Decision trees, multiple linear
regression Regression No No - [141]

2005
Uses data mining techniques to design intelligent

CIM applied to improve product yield of
semiconductor packaging factories.

Decision tree Classification No No - [146]

2005
Proposes a model based on decision trees to

recognize and classify failure pattern using a fail bit
map

Decision tree Classification No No - [142]

2004
Proposes a fault detection scheme using a

hierarchical fuzzy ruled based classifier to identify
defects in wafers

Hierarchical fuzzy rule-based classifier Classification Yes Yes - [143]

2003

Proposes a conceptual e-Commerce decision support
system that integrates intelligent agents and data

mining to help in the sampling process of
semiconductor quality

None (+)Generic No No - [144]

2001
Proposes the use of neural networks to design in-line

measurement sampling methods to monitor and
control semiconductor manufacturing

Neural networks Classification Yes No - [145]

2001
Proposes a rule-structuring algorithm based on

rough set theory to make predictions for
semiconductor industry

Rough set theory Association rules No No - [32]
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4.5. Data Mining Applications for Production and Production Scheduling

Traditional methods for production planning often require complex calculations and
do not always allow a prompt reaction to changes or short-term adjustments that may
arise. Given the size of the semiconductor production lines in a factory, sensors within
production equipment are capable of delivering enormous amounts of data. This data can
be, in turn, used not only for machine control, but also for production analysis purposes,
especially real-time production planning. This has the potential to bring great advantages,
especially in those industrial units in which the production is affected by frequent dynamic
changes in the orders to be processed or technical specifications. Additionally, machine
learning processes are able to recognize patterns and automatically learn and operationalize
practical forecast models from a wide variety of data sources and large amounts of data.
Therefore, in the context of semiconductor manufacturing with its complex and numerous
subprocesses, numerous data mining applications are proposed for the production and
production planning environment.

Table 6 depicts the articles addressing data mining applications for production in
semiconductor manufacturing. A total of 16 papers were found in this category. This table
is structured as Table 2. It can be noticed that from 2009 until 2015 is when the bulk of these
studies were published, then a four-year hiatus was observed. From 2019 can be noticed
some interest in the topic.

Many of the studies concerning production planning are focused on reducing cycle
time. In [155], a new approach that is capable of integrating data mining that intends to
forecast arrival rates and determining the allocation of interchangeable tool sets in order
to reduce the work in process (WIP) bubbles for cycle time reduction is proposed. While
in another study [64], a cycle time forecasting model is developed by employing knowl-
edge discovery in databases by following cross industry standards for data mining. A
data-mining approach for estimating the interval cycle time of each job in a semiconductor
manufacturing system is proposed in [156] and a data mining methodology, which identi-
fies key factors of the cycle time in a semiconductor manufacturing plant, which intends to
predict its value is addressed in [157].

Scheduling is another concern in semiconductor manufacturing due to its vast number
of steps and jobs [158–160], confirmed by the majority of the identified studies in Table 6.
Efficient order scheduling structures are required for balancing the production load and
capacity throughout all the production stages [161]. A data mining dynamic scheduling
strategy selection model that is able to respond to a constantly altering system status
for a semiconductor manufacturing system is proposed in [18]. In [162] a data-driven
scheduling knowledge life-cycle management for an intelligent shop floor is proposed
and validated through a simulation model of the semiconductor production line. As early
as in 2004 scheduling challenges were a concern, evidenced by a study proposing an
hierarchical clustering method in [163] that is able to discriminate groups according to
the similarity of the objects and used to schedule semiconductor manufacturing processes.
In [164] a dynamic scheduling model, which is able to optimize the production features
subset is proposed, and this model is capable of creating a SVM-based dynamic scheduling
strategy classification model for semiconductor manufacturing. A data-based scheduling
framework and adaptive dispatching rule for semiconductor manufacturing is addressed
in [165] by employing backward propagation neuronetworks (BPNNs). Finally, a shop
floor control system in semiconductor production by self-organizing map-based smart
multicontroller is given in [166]. This study, as all the scheduling studies, showed a better
system performance than the typical fixed decision scheduling rules.
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Table 6. Data mining applications for production in semiconductor manufacturing.

Year Study Proposal Proposed/Used Algorithm DM
Techniques Real World Dataset Real World Validation Location of Dataset or

Company Refs.

2004

A decision tree algorithm and classification model
are proposed. Intelligent computer integrated

manufacturing (CIM) system is applied to
semiconductor packaging factories. The

manufacturing cycle time, the product yield, and the
frequency of holding lot were improved

Decision trees Classification Yes Yes - [167]

2020

A new approach that is able to integrate data mining
that intends to forecast arrival rates and determine

the allocation of interchangeable tool sets in order to
decrease the work in process (WIP) bubbles for cycle

time reduction

Back-propagation neural network
(BPNN) Classification Yes Yes Taiwan [155]

2019

A data-driven scheduling knowledge life-cycle
management for an intelligent shop floor and
validated through a simulated model of the

semiconductor production line

Extreme learning machine (ELM),
Online sequential extreme learning

machine (OS-ELM)
Classification No No - [162]

2015

A data mining based dynamic scheduling strategy
selection model which is able to respond to altering

system status in semiconductor manufacturing
processes

genetic algorithm
K-nearest neighbor algorithm Clustering Yes Yes - [18]

2015

A variation reduction of Turn Around Time (TAT) in
a semiconductor manufacturing through a data
mining-based technique for identifying the root

cause of TAT variation

Partial Least Squares Regression
(PLSR) Regression No No - [168]

2014

A data mining framework that is capable of
integrating fault detection and classification and

manufacturing execution system data for improving
the overall usage effectiveness (OUE) for cost

reduction in a Chemical Mechanical Planarization
(CMP) process

CHAID (Chi-Squared Automatic
Interaction

Detection) Decision Trees
Classification Yes Yes Taiwan [169]

2014

A dynamic scheduling model which optimizes
production features subset, and creates an
SVM-based dynamic scheduling strategy

classification model for semiconductor
manufacturing

Particle swarm optimization algorithm
(BPSO), support vector machine (SVM) Classification Yes Yes China [164]

2013
A noted cycle time forecasting model is developed by

employing knowledge discovery in databases by
following cross industry standards for data mining

Decision trees, Neural networks Classification Yes No - [64]

2013 A Data-based scheduling framework and adaptive
dispatching rule for semiconductor manufacturing

Backward propagation neuro-network
(BPNN), adaptive dispatching rule

(ADR)
Classification Yes No - [165]
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Table 6. Cont.

Year Study Proposal Proposed/Used Algorithm DM
Techniques Real World Dataset Real World Validation Location of Dataset or

Company Refs.

2011
A cycle-time key factor identification and prediction
in semiconductor manufacturing by employing data

mining and machine learning

Selective naive Bayesian classifier
(SNBC) Conditional mutual

information maximization (CMIM)
Classification No No - [170]

2012

A shop floor control system in semiconductor
production by self-organizing map-based smart
multi-controller showing an improved system

performance than fixed decision scheduling rules

Self-organizing map (SOM) neural
network Classification No No - [166]

2010

Gaussian Processes used for decentralized
scheduling with dispatching rule selection in

production scheduling for semiconductor
manufacturing

Gaussian processes, neural networks Classification No No - [171]

2010

A machine learning algorithm capable of
implementing an adaptive sequential (A-S) process

and accuracy guard band model for improved recipe
generation process development in the assembly

semiconductor manufacturing processes

Polynomial-based RSM Response
Surface Methodology (RSM),

Adaptive-sequential (A-S) algorithm
Regression Yes Yes Intel

(Malaysia) [172]

2009
A data-mining approach for estimating the interval

cycle time of each job in a semiconductor
manufacturing system

Look-ahead self-organization map
fuzzy-back-propagation network

(SOM-FBPN)
Classification No No - [156,173]

2009

A data mining methodology which identifies key
factors of the cycle time in a semiconductor

manufacturing plant which intends to predict its
value

Naïve Bayesian classifier (NBC),
CRISP-DM (Cross-Industry Standard

Process for Data Mining)
Classification No No - [157]

2004

A hierarchical clustering method that is able to
discriminate groups according to the similarity of the

objects and used to schedule semiconductor
manufacturing processes

Agglomerative hierarchical cluster
algorithm Clustering No No - [163]



Processes 2021, 9, 305 28 of 38

5. Discussion

After analyzing all the studies collected in the sample, a few trends begin to be noticed.
First, that studies regarding data mining applications in subprocesses such as ICs and mask
design are very scarce. The same occurs with studies addressing wafer cutting, cleaning
drying, and polishing, while edge rounding and lapping subprocess has no dedicated study.
This is better illustrated by Figure 10 in which a representation of several studies depicting
data mining applications in several subprocesses of semiconductor manufacturing can be
seen. It is noticeable that the majority of studies are concentrated in 5–6 major steps. A few
studies do not specify in which subprocess data mining techniques are applied, and these
are not represented in Figure 10.
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Another trend visible in the analyzed literature is the diverse use of data mining
techniques. The application of data mining in semiconductor manufacturing has a different
focus depending on the subject areas concerning the manufacturing processes. However,
most articles address mainly the issues of quality control, maintenance, and production.
Predictive techniques, using algorithms as regression or decision trees, are often used in
semiconductor literature to estimate wafer quality [81], fault detection [121,136], or cycle-
time [170]. Classification techniques in quality control arise as a way to classify defects [83],
failures in bin maps [91], or production lots [131]. The exploration of yield loss causes [84]
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or failure diagnostics [98] is performed using techniques as rule induction, decision trees,
and association rules.

Many opportunities and improvements can still be made. For example, the semicon-
ductor companies could employ the internet of things and sensors to empower industrial
units with the capability of interpreting data and transmitting analytics, in real time, to
an application that could provide insights and alerts to whom it may concern [174]. This
will allow these players to gather a high amount of data. However, even though internet
of things and data mining applications represent a key opportunity for semiconductor
manufacturing companies—one that they should start to pursue as soon as possible, while
the use of data mining in the sector is still developing under the current upgrading envi-
ronment. Nevertheless, the effectiveness and scale of the internet of things implementation,
and with it a comprehensive use of data mining techniques, could depend on how fast
industry players can overcome some challenges [175]. In order to persevere and being
able to accompany the change speed and challenges, semiconductor companies are re-
quired to adapt rapidly. Taking into account this dynamic, industrial units should embrace
digitalization in an agile manner as well [176].

Limitations and Challenges

Even though employing data mining techniques has been very beneficial for this
industry, as shown by all the studies used in this review, several disadvantages of data
mining still exist and are as follows:

• Data mining systems can violate privacy. Absence of safety and security can be very
detrimental to its users and it can create miscommunication between employees, thus
leading to genuine privacy concerns [177].

• Security is an important factor related to every data-oriented technology, and semicon-
ductor manufacturing is not an exception. Data that is very critical might be a target
of malicious attacks [178].

• Too much and redundant information collection can be disadvantageous as irrelevant
collected information is a challenge [179,180].

• There is a possibility of information misuse through the mining process. Data mining
system have to evolve in order to diminish the misuse of the information ratio [181].

• Accuracy of data mining techniques is another limitation [182]. Accuracy is an evalua-
tion system of measurement on how well a data mining model can perform. Many
common accuracy and error scores for regression and classification can occur. There-
fore, improving accuracy becomes paramount.

• Several challenges of data integration and interoperability in data mining can occur.
Data interoperability and data integration affect the performance of an organization.
A comprehensive approach has to be made in order to address the challenges in
interoperability and integration [183,184].

• Missing and imbalanced data is a challenge in this industry. In cases in which data
is imbalanced, the majority of classification algorithms have as a consequence a
weak performance. Since wafer yield enhancement is a crucial performance index in
semiconductor wafer manufacturing, key process steps must be cautiously selected
and managed [9].

• Data processing time is another limitation that has a significant impact on the available
time since data preprocessing very often involves more than 50% of time and effort of
the entire data analysis process [185].

This evolution of semiconductor manufacturing relies heavily on the big data ex-
plosion in order to cope with the abovementioned data limitations and challenges of the
semiconductor industry. Especially, supporting greater volumes and lengthier archives
of data has allowed many solutions to correctly portray system dynamics, significantly
simplify intricate multivariate interactions of parameters, eliminate disturbances, and clean
and overcome data quality challenges. Data mining algorithms in such types of solutions
must be rewritten in order to benefit from the parallel computation allowed by the high
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processing capacity and storage power with the purpose of processing data without con-
suming too much time. However, an enormous amount of data and a wide range of data
mining techniques does not mean necessarily more predictive capability and insights [186].
Researchers and practitioners have to adapt data mining techniques in a manner so that
these will be customized to specific applications in terms of data quality available data and
objective, among others.

Overall, through this review, some light was shed over the possible applications of
data mining techniques in semiconductor manufacturing. Yet, given the sheer number of
steps that this production process has, and due to its complexity, the number of studies
already made is still scarce. Big data and data mining allowed for original and innovative
insights through the analysis of large amounts of data and presenting correlations and
opportunities that were not previously noticed. However, decision makers must decide and
which data should be collected and employed and which questions must be answered [149].
This signifies that the potential to apply these techniques in other subprocesses is enormous
and is still left largely unexplored. Finally, by suffering constant and quick evolution, the
need to adapt these techniques to the newer processes in semiconductor manufacturing is
another opportunity to explore.

6. Conclusions

The production of semiconductors is a highly complex process, which entails several
subprocesses that employ a diverse array of equipment. The size of the semiconductors
signifies a high number of units can be produced, which require huge amounts of data
in order to be able to control and improve the semiconductor manufacturing process.
Therefore, in this paper a structured review was made through a sample of 137 papers
of the published articles in the scientific community regarding data mining applications
in semiconductor manufacturing. A detailed bibliometric analysis was made. All data
mining applications were classified in function of the application area. Five distinct areas
were identified: quality control, maintenance, production, decision support systems, and
finally, categorized as a whole, measurement, metrology, and instrumentation. Results
showed that quality was the most popular one, with 47 publications, making 34.3% of all
publications. Maintenance was an area in which only a few studies were made, highlighting
the gap and the opportunity for more studies to be made in this area.

The work performed in this study concerning data mining applications in semi-
conductor manufacturing can have theoretical implications. The characterization and
categorization of several useful and successful cases can positively contribute to future re-
search efforts of employing such a wide range of techniques with the purpose of increasing
the application and diffusion of data mining applications in semiconductor manufacturing.
Knowledge of different models and algorithms could have positive implications for the
development of theory, for understanding all the possible applications in different areas of
semiconductor production, but also for the development of practice, since many of these
were implemented and validated on the shop floor. However, as the literature review has
shown, many applications can still be made since several studies address only a specific
step of semiconductor manufacturing and documentation of real-life application are scarce.
Additionally, recent data mining techniques and models have a great opportunity to be
used since only a few studies exist. Finally, since the semiconductor manufacturing process
is always evolving, the need to adapt these techniques to the newer process is another
challenge and opportunity to explore.

Overall, as seen from all the comprised studies from distinct steps of semiconductor
production, the scope and functions of data mining techniques can be enhanced and
disseminated throughout the entire semiconductor manufacturing process in order to
provide, in real time, a proactive adjustment and advanced control decisions for the whole
process and the smart facilities. Therefore, more research should be made to employ and
facilitate smart production for Industry 4.0 in several industries for digital transformation
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and for upgrading existing manufacturing units. This will allow for an improving capability
for optimizing interrelated decisions and improving decision flexibility.
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