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Abstract: Due to high demand, monoclonal antibodies (mAbs) production needs to be efficient,
as well as maintaining a high product quality. Quality by design (QbD) via predictive process
modeling greatly facilitates process understanding and can be used to adjust process parameters
to further improve the unit operations. In this work, mechanistic and dynamic kriging models are
developed to capture the protein productivity and glycan fractions under different temperatures
and pH levels. The design of experiments is used to generate input and output data for model
training. The dynamic kriging model shows good performance in capturing the dynamic profiles
of cell cultures and glycosylation using only limited input data. The developed model is further
used for feasibility analysis, and successfully identifies the operating design space, maintaining high
productivity and guaranteed product quality.

Keywords: glycosylation; kinetic modeling; dynamic kriging; feasibility analysis

1. Introduction

Monoclonal antibodies (mAbs) are the most popular biological products used for the
treatment of cancers and micro-bio diseases. On 21 November 2020, the U.S. Food and
Drug Administration (FDA) authorized mAbs for the treatment of COVID-19 [1]. These
proteins are generally produced from Chinese hamster ovary (CHO) cells in bioreactors.
Researchers have been investigating ways to increase the protein production by adjusting
operating conditions and culture media formulation to meet the high drug demands. In
the meantime, product qualities such as antibody-dependent cellular cytotoxicity (ADCC)
and complement-dependent cellular cytotoxicity (CDC) are also critical to maintain. It was
found that the presence of a terminal galactose of the Fc region during the N-linked glyco-
sylation process increases the intensity of the CDC response. The reduction of fucosylation
would improve the effect of ADCC activities [2]. More than 70% of the approved mAbs
belong to the IgG1 isotype [3], and N-linked glycosylation is a critical step in formulating
the final IgG product. Glycan fractions representing the levels of afucosylation, galacto-
sylation, high mannose, and sialylation are product quality attributes that greatly affect
protein folding and binding, and further control product safety, efficacy, and potency [3–6].

In general, protein glycosylation is a post-translational processing step that starts
from the endoplasmic reticulum, where oligosaccharide sugars are formed. The major
glycosylation reactions, where sugar covalently binds to the polypeptide backbone of
a protein, happen in the lumina of the cis-, medial- or trans-Golgi cisternae [5]. In the
bioreactor culture system, the glycosylation process can be affected by both chemical and
physical stimuli for the same cell line [3,7,8]. These stimuli can change the cell metabolism,
such as the glycolytic pathway, purine/pyrimidine metabolism or the TCA cycle, which
influence the synthesis and function of nucleotide donors, glycosyltransferases and gly-
cosidase, and further affect the biocatalytic reactions of glycosylation [9]. The limitation
of glucose, glutamine [10], galactose [11], manganese [12,13], uridine, ManNAc and sialic
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acid [3] in culture media and feed additions results in a reduction in protein productivity,
glycosylation site occupancy, UDP-Gal, UDP-GlcNAc and Neu5Ac synthesis. It should be
mentioned that different cell lines perform differently under the same conditions, leading
to different glycan fractions compositions. To maintain product quality, understanding and
controlling the operating parameters of the glycosylation process is critical.

Quality by design (QbD), proposed by the FDA, defines and ensures the product’s
quality through the manufacturing process. Kinetic modeling has been widely used to
capture the relations between the operating conditions and the dynamic profile of glycan
fractions. In terms of feeding strategies, Radhakrishnan et al. [13] used a kinetic model to
quantify the change in glycan fractions under the dynamic addition of media supplements
(including MnCl2 and EDTA). Kotidis et al. [14] investigated the effects of glycosylation
precursor feeding, including galactose and uridine, on cell growth, protein productivity
and quality. The authors also applied dynamic optimization to maximize the concentration
of galactosylated mAb fractions. Luo et al. [15] modified the kinetic model by adding a
delta function to capture the amino acid and copper effect on the monoclonal antibody
productivity and glycosylation. As for process parameters, Villiger et al. [16] captured
pH, manganese, and ammonia concentration, and predicted their effect on cell culture
and glycosylation process. Sou et al. [17] successfully used their kinetic model to simulate
cell culture, nucleotide, nucleotide sugar metabolic, and N-linked glycosylation under
two different temperatures. These examples show that kinetic models can be used to
assist the media selection and optimize feeding strategies. However, the kinetic models
usually contain a large number of kinetic pathways, which can be a challenge in parameter
estimation. Many of the above models simulate the process under different conditions
separately, for example, to capture the effects of temperature. In addition, the mechanistic
model is usually computationally expensive, which can be prohibitive for the evaluation of
design space.

To deal with this challenge, statistical analysis tools have been used to capture the
influence of multiple independent factors on the system outputs, while reducing the
computational cost. Thus, they have been used in media formulation and building process–
product correlations to characterize the biological system [18]. Sokolov et al. [19] used
sequential multivariate tools with partial least squares regression (PLSR) to predict titer,
aggregation, low molecular weight components, and glycan groups in the product under
different process scales. They illustrate the capability of multivariate analysis in scale-up
and decision-making for biopharmaceutical manufacturing. Zurcher et al. [20] also used
PLSR to capture protein glycosylation profiles using process variables and extracellular
variables (127 variables). The authors compared the performances achieved using just
process variables to that achieved with the addition of extracellular variables, and showed
that using only the process variables leads to higher error in predicting afucosyaltion,
fucosylation, and galactosylation.

In this paper, we incorporated temperature and pH factors into the mechanistic kinetic
model, and captured the dynamic change in the viable cell density, glucose concentration,
mAb concentration, as well as the glycan fractions. Further, we applied dynamic kriging
to capture the dynamic trend of these outputs under different operating conditions. It is
found that dynamic kriging is able to capture the dynamic behavior of output variabilities
following a change in process operating parameters with high accuracy. Furthermore,
a surrogate-based adaptive sampling approach has been used to determine the feasible
operating region (design space) for protein production and glycosylation processes based
on the requirement of commercial product quality attributes.

2. Methods
2.1. Kinetic Model Building

The process model includes the integration of an unstructured cell culture dynamics
model with a structured intracellular glycosylation model using the model developed
by Val et al. [21]. In order to consider the effects of temperature and pH on the kinetic
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model, it is critical to understand the mechanisms behind them. It has been found that
reducing the temperature would reduce GnTII, GalTI, GalTIII and FucT expression levels,
leading to a reduction in the intracellular NSD concentration, the mAb productivity, and
the mature glycoforms in the final product [22]. Thus, the model is developed based on
adding linear regression terms to capture the temperature effect on cell growth kinetics and
intracellular enzyme expression. Controlling pH would affect the osmolality and impact
the cell metabolism. pH shift also usually affects protein productivity [16]. Thus, pH is
only linked to the rate relative to the protein production. The modified kinetic model is
based on Val et al.’s work [21]. For brevity in presentation, the entire model is shown in the
Supplementary Material, and this section concentrates on the modifications.

The growth rate µ is represented by Equation (1):

µ =
(µmax

T
+ a
)( CGlc

KGlc + CGlc
− [Xv]

αx

)
(1)

where µmax is the maximum growth rate, T is temperature, αx is the cellular carrying
capacity, KGlc is the Monod constant for glucose, and a is the regression constant.

Equation (2) represents the death rate µd :

µd =

(
µmax

d
T

+ b
) (Kdµ

T + c
)

(Kdµ

T + c
)
+ µ

(2)

where µmax
d is the maximum death rate, Kdµ is the inverse specific death rate, and b and c

are the regression constants.
Equation (3) shows the glucose consumption rate qGlc:

qGlc = −
1(

YXGlc
T + d

) [CGlc]

[CGlc] + KGlc
(3)

where YXGlc is the yield coefficient of glucose, CGlc is the glucose concentration, and d is
the regression constant.

The mAb production rate can be represented by Equation (4):

qmAb =

(
YmAb

Glc

T
+ e

)
qGlc exp

[
−1

2

( pHshi f t − pHopt

w

)2
]

(4)

where YmAb/Glc is the yield coefficient of mAb production from glucose consumption. e
is the regression constant. pHopt is the optimal culture pH, w is the pH-dependent mAb
productivity constant, and pHshi f t is the pH control during cell culturing.

In terms of the glycosylation process, the Golgi apparatus is used as the plug flow
reactor (PFR), wherein, along the axial direction, different distributions of enzymes exist.
Enzyme concentration is also linearly correlated to temperature. The mass balance is
shown in Equation (5). It assumes that there is no axial dispersion within the compartment
through the PFR, and protein transfer maintains a linear velocity. The Golgi diameters are
constant, and no mass transfer limitation affects the glycosylation reactions.

∂[Gm]

∂t
= −V1

∂[Gm]

∂z
+

Enzyme

∑
n

vm,nrn (5)

where [Gm] represents glycan (m) concentration, V1 represents the linear velocity of glycans
through the Golgi apparatus, z is the length of Golgi, rn is the kinetic rate for enzyme
reaction n, and vm,n is the reaction coefficient of glycan m that is catalyzed by enzyme n.
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It should be mentioned that qp can be obtained from the cell culture model and used
as an input condition to calculate the linear velocity of the protein transferred in the Golgi
apparatus, as shown in the Equation (6):

(V1)
(

VolGolgi

)
[Man9]z=0 =

qp

MWmAb

(2umolGlyc

umolmAb

)
(6)

where VolGolgi = 25 µm3 is the volume of the Golgi apparatus [21,23], [Man9]z=0 = 55 µmol
LGolgi

represents the Man9 concentration at the entrance of the Golgi apparatus. MWmAb is the
average molecular weight, which is 150 kDa. The reactions with the product and substrate-
related inhibitions can be simulated by Michaelis–Menten kinetics, sequential-order Bi–Bi
kinetics, and random-order Bi–Bi kinetics [23]. The mechanistic model is built in MATLAB
R2018b. The systems of the ordinary differential equation are solved in MATLAB (ODE45),
and the partial differential equations from the intracellular structured model are first
discretized along the axial using finite difference methods, and solved by ODE solvers in
MATLAB.

2.2. Design of Experiment

A design of experiment (DoE) based on a two-level full factorial design with varying
temperature and pH has been used to obtain data from the kinetic model, to be used
as a training set for kriging model building. By adding the center point, 5 runs can be
performed. Viable cell, glucose, and mAbs concentrations are obtained from the model.
Glycan fractions, including Man5, G0, G1, G2. G1F, G2F and G2FS1, are predicted. This
assumes that the CHO cells are cultured under 37 ◦C and pH = 7. After day 5, the
temperature and pH shift according to the DoE, since mild hypothermia has a positive effect
on mAb productivity and a down-shifting pH would increase the level of galactosylation
and fucoyslation. The temperature and pH ranges are set as 33.5 ◦C to 36.5 ◦C and 6.8 to 7,
respectively. The initial culture volume is 50 mL, and it is cultured under fed-batch mode.
To maintain the nutrient concentration, the glucose concentration is adjusted to 33 mM on
day 5, 50 mM on day 8 and 40 mM on day 11 in the culture. The whole culture lasts for 14
days. The above settings are used as inputs for our kinetic model simulation, wherein the
operating procedures and designs are based on the cited papers [21,24]. The aim of this
DoE is to generate data for the surrogate model’s training and validation.

2.3. Kriging and Dynamic Kriging Model Building

Kriging or gaussian modeling is an interpolation method that uses the sum of the
spatial weighted distance of the observed function values at nearby sample points to
predict new points [25,26]. It also provides the mean squared error for the prediction [27].
Equation (7) shows the general equation of the kriging model required to predict f̂

(
xi).

f̂
(

xi
)
= β f

(
xi
)
+ ε
(

xi
)

(7)

The first part of the equation represents a known regression model that defines the
global trend of the data f

(
xi), and β is the unknown parameter. In this work, constant and

linear regression models are tested and the one that gives the least mean squared error is
selected. The second part is a residual term, ε

(
xi), which indicates the error at location xi,

which is usually normally distributed with zero mean and variance σ2. The covariance
function between ε

(
xi) and ε

(
xj) is shown in Equation (8).

Cov(ε
(

xi
)

, ε
(

xj
)
= σ2R

(
xi, xj

)
(8)
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where R is the correlation function and exponential, linear and squared exponential models
are commonly used in kriging surrogates [28], shown in Equations (9)–(11).

R
(
θ, xi, xj

)
= exp

(
−

d

∑
h=1

θh

∣∣∣xi
h − xj

h

∣∣∣θd+1

)
0 < θd+1 < 2 (9)

R
(
θ, xi, xj

)
= exp

(
−

d

∑
h=1

θh

∣∣∣xi
h − xj

h

∣∣∣2) (10)

R
(
θ, xi, xj

)
= max

(
0, 1−

d

∑
h=1

θh

∣∣∣xi
h − xj

h

∣∣∣) (11)

θh is an unknown parameter. The parameters θh, β and σ2 can be predicted by using
maximum likelihood. The detailed derivation of kriging can be found in the papers by
Bhosekar and Ierapetritou [28]. In this work, the kriging models are built using the DACE
toolbox [29], and different correlation functions are tested and selected for model training.

Dynamic kriging is a modification of the kriging model, as shown in Equation (12):

f̂
(

xi
k

)
= β f

(
xi

k, f̂
(

xi
k−1

))
+ ε
(

xi, f̂
(

xi
k−1

))
(12)

The dynamic system is first discretized into different time points, k, and the kriging
model is used as an autoregressive model that collects the predicted results f̂

(
xi

k−1

)
from

the previous time point (k−1), and combines these with the state variables or control input
xi

k to estimate the future time point f̂
(
xi

k
)

[30]. This means that the kriging algorithm is
iteratively called and the database that is used for prediction is dynamically updated. The
method maximizes the amount of information available for the dynamic response of the
prediction [24].

2.4. Feasibility Analysis with Adaptive Sampling

To find the feasible region of bioreactor operation, the process operations need to
satisfy the productivity (product titer) and product quality (different glycan fractions)
constraints, as shown in Equation (13):

gi(x) ≤ 0 j ∈ J (13)

where gi(x) represents different constraints as mentioned above, and x includes the un-
certain variables, including temperature, pH and operating parameters, such as the total
operating time, initial conditions of cell density, glucose and mAb concentrations. In this
study, we assume that the design parameters and control parameters are constant. To
satisfy all the constraints, the feasibility function is defined in Equation (14). If ϕ < 0, x
represents the feasible region. When ϕ = 0, the defined condition is right at the boundary
of the feasible region.

ϕ(x) = max
j∈J

gi(x) (14)

Initial sample points can be generated by space filing, and a feasible region can be
obtained by calculating the feasibility function. To further simplify the model, kriging is
used to determine the feasible region. An adaptive sampling method is used to improve
the accuracy of the feasible boundary. By maximizing the modified EI function, shown in
Equation (15), the new sample points close to the feasible region and unexplored region
are generated to update the kriging model.

EI f eas(x) = ŝ(x)φ
(
− ŷ(x)

ŝ(x)

)
= ŝ(x)

1√
2π

e
−0.5( ŷ(x)2

ŝ(x)2
)

(15)
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The standard error ŝ(x) can be obtained from kriging prediction at location x, and ŷ(x)
is the predicted value. A detailed explanation of the modified EI function can be found in
paper [31]. To test the performance of the feasibility analysis, CF%, CIF% and NC% values
are calculated and represented in Equations (16)–(18):

CF% =
CF

CF + ICIF
× 100 (16)

CIF% =
CIF

CIF + ICF
× 100 (17)

NC% =
ICF

CF + ICF
× 100 (18)

CF% represents the percentage of the feasible region that is successfully explored.
CIF% represents the percentage of the unfeasible region that is successfully explored. NC%
represents the percentage of the feasible region that is overestimated. CF is a feasible region
that is correctly defined by the kriging model. CIF is an unfeasible region that is correctly
defined by the kriging model. ICF is an unfeasible region but is defined as a feasible region
by the kriging model. ICIF is a feasible region but is defined as an unfeasible region by the
kriging model.

3. Results and Discussion
3.1. Prediction of Temperature and pH Effect Using the Kinetic Model

A kinetic model was built to capture the viable cell, glucose, and mAb concentrations
under different temperatures and pH values. It assumes the cells were first cultured at
37 ◦C and pH = 7, and then shifted to a different temperature and pH on day 5. Three
runs were used to test the temperature effect. For each of the runs, the pH was set to 7 and
the temperature was shifted to 33.5 ◦C, 35 ◦C and 36.5 ◦C, respectively. Similarly, three
runs were used to test the pH effect, with pH shifting to 6.8, 6.9 and 7, respectively. The
conditions of the cell culture followed the following assumptions. Glucose was added on
days 5, 8 and 12 during the cell culturing. A feed with nutrients was also provided to the
system on days 2, 5, 8 and 12 to maintain cell growth. Due to a lack of experimental data,
all the fittings were based on the regression of the kinetic rate constants under different
temperatures from the literature [16,21].

The viable cell numbers and glucose concentrations under different temperatures
(constant pH = 7) are shown in Figure 1a,b. Due to the addition of glucose and nutrients,
sharp peaks can be observed. The figures indicate that the viable cell concentration is
reduced with the temperature shifting down, which also causes a reduction in glucose
consumption rate. A similar trend was observed in the studies from Refs. [7,32]. The pH
value’s effect on viable cell and glucose concentration is not considered in this work. It
has been reported in the literature that no significant effects have been observed within
a certain range of pH change. For example, Trummer et al. [33] showed that the specific
cell growth rate was not affected when the pH shifted from 7.10 to 6.9 on day 5. Figure
1c shows that the protein titer increased with the reduction in the temperature. Since the
viable cell concentration was reduced, the specific protein production rate (qp) increased as
the temperature reduced, which is consistent with what is reported in the literature [22,34].
Figure 1d also shows that the reduction in pH reduces the protein titer. This observation
has also been reported in Villiger et al. [35].
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Figure 1. Dynamic change in (a) viable cell density, (b) glucose concentration and (c) mAb concentration under different
temperatures. (d) Dynamic change in mAb concentration under different pH values.

In a previous study, it was shown that the protein specific production rate and glycan
fractions are affected by different temperatures in the CHO cell culture. In general, for
mAbs, the shifting of temperature usually causes an increase in protein production rate,
while decreasing the temperature usually causes a reduction in glycosylation processes,
such that the galactosylation, fucosylation and sialyation are reduced [7,22].

The pH effects on the protein productivity and glycosylation vary from cell line to cell
line. It is shown in Table 1 that increasing and decreasing the pH can both cause a decrease
in protein productivity. Changing the protein productivity has a great effect on protein
glycosylation. Jiang et al. [36] reported that the galactosylation increases as qp decreases,
regardless of the shift in pH. However, inconsistency is still observed in the trend of Man5
and G2FS1, as shown in Table 1.

Table 1. pH effect on titer and glycan fractions’ production from the CHO cell.

Protein pH Range qp Glycan Fraction Ref

mAb ↓ pH 7.15–6.70. ↓ Reduced: G0F, G0, Man5
Increased: G1F, G2F, G2FS1 [16]

mAb ↓ pH 7.2–6.9 - Reduced: G0 [37]

mAb
↓ pH 6.9–6.7 ↓ Increased: G1F+G2F, Man5,

galactosylation
Reduced: Sialylation

[36]
↑ pH 6.9–7.3 ↓
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In general, a higher protein production rate reduces the residence time of the protein
in the Golgi apparatus. Protein has less contact time with the enzymes, which reduces
glycosylation in the final product. Thus, in the model, the production rate is used to connect
the cell culture process and protein glycosylation. By incorporating the temperature and
pH effects on protein productivity, the glycosylation process can be captured. On the
other hand, temperature also affects enzyme expression. The mRNA expressions of the
glycosyltransferase, including GnTII, β-GalT and FucT, are significantly lowered when
the temperature decreases [22]. The parameters for enzyme concentration under different
temperatures are obtained from the literature [17]. We must note that the reduction in
temperature reduces the consumption of glucose, which further reduces nucleotide sugar,
including UDP-Glc, UDP-Gal and UDP-GlcNAc synthesis, thus reducing the processed
glycan structure. Figure 2 shows the change in glycan fractions under different temperature
shifts. Decreasing the temperature reduces galactosylation and fucosylation, which is
consistent with the results in literature [7,22].
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Figure 3 shows the change in glycan fractions under different pH values. Decreasing
the pH reduces the afucosylation but increases galactosylation and fucosylation, which
coheres with the results shown in Table 1.
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All the trends in glycan fractions under different temperatures and pH values are
summarized in Table 2. Comparing the results from Tables 1 and 2, as well as from the
literature that focusses on the effect of temperature shifts, indicates that all the predictions
from the developed mechanistic model are consistent with the results from the literature.
From the prediction, shifting down pH would reduce the titer and increase the fucosylation
and galactosylation, and shifting the temperature down would increase the produced titer
and reduce the galactosylation.

Table 2. Model-predicted glycan fractions under different temperatures and pH values.

Conditions Titer G0 G0F G1/G2 G1F/G2F G2F1S

pH shifted down ↓ ↓ ↓ ↓ ↑ ↑
Temperature shifted down ↑ ↑ ↑ ↓ ↓ ↓

3.2. Kriging and Dynamic Kriging
3.2.1. Regular Kriging vs. Dynamic Kriging

The kinetic model’s results are used as training sets to build the regular kriging
and dynamic kriging models. Using the design of experiments, five conditions with
temperature and pH shifts are used, as follows: (1) T = 33.5 ◦C, pH = 7; (2) T = 33.5 ◦C,
pH = 6.8; (3) T = 35 ◦C, pH = 6.9; (4) T = 36.5 ◦C, pH = 6.8; (5) T = 36.5 ◦C, pH = 7. The
kriging model reduces the computational complexity, provides an easier means of model
fitting, and has capabilities in process optimization. The purpose of this section is to test
the capabilities of dynamic kriging in the prediction of product concentration and quality
with a small amount of data.

For regular kriging, to predict viable cell concentration, glucose and protein titer,
input parameters including time, temperature, pH and glucose addition at different time
points are used. For dynamic kriging, the input parameters start with the same input
parameters as for regular kriging, and the input datasets are dynamically updated based
on the predictions from the previous time points. A random culture condition (T = 34.5 ◦C,
pH = 6.85) is selected to test the fitting performance. Figure 4a,b,c show the good prediction
of dynamic kriging results for viable cell, glucose and mAbs. In general, dynamic kriging
provides higher prediction accuracy than regular kriging, especially in the prediction of
glucose concentration, which has a more complicated trend, as shown in Figure 4b,d. This
is mainly because dynamic kriging considers more sample points and correlations during
the model prediction. By considering the output from previous time points, the prediction
of the next time point is very sensitive to system change.
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Figure 4. Prediction of viable cell (a), glucose (b), and mAbs (c) from dynamic kriging. Prediction of glucose concentration
(d) from regular kriging.

To predict the glycan fractions, the operating parameters, cell culture data and glycan
fractions (at t − 1 time points) are used as the input datasets that train the dynamic kriging
model. During the prediction, the input parameters together with viable cell concentration,
protein titers and Man5 glycan fractions at (t − 1) time points are used as the input to
predict the Man5 glycan fractions at t time point by dynamic kriging. The same idea is
applied to other glycan fractions.

Theoretically, the prediction can start from day 1, since the mechanistic model provides
the glycan fractions at an early stage. Thus, data from day 1 from the mechanistic model
can be used as training datasets for data-driven model training, as shown in Figure 5. In the
experimental work, however, the glycan fractions’ data for the first 4 days are hard to obtain.
This is mainly due to the low product concentration in the solution, which results in a low
intensity during the glycan fraction measurements. The predictions from day 1 and day 5
are all tested in this study, and the mean relative squared errors (MRSE) [38] are compared in
Table 3. Figures S5 and S6, which illustrate the fitting for all the glycans, can be found in the
supplementary information. This shows that dynamic kriging is able to predict the glycan
fractions with high accuracy (all the MRSE <10%). As shown in Figure 5, dynamic kriging
provides good prediction in the early stage, and the error becomes large at the end of the
cell culture. It is found that the higher errors occur in the prediction of G1F, G2F and G2FS1,
which could be due to the limited training dataset used in this case study.
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Figure 5. Prediction of different glycan fractions from dynamic kriging: (a) Man5, (b) G0F, (c) G2F, (d) G2FS1.

Table 3. Mean relative squared error (MRSE) of dynamic kriging prediction.

Glycan Fractions Man5 G0 G1 G1F G2F G2FS1

Day 5 0.029 0.004 0.027 0.088 0.073 0.088

Day 1 0.018 0.004 0.017 0.072 0.044 0.0510

3.2.2. Prediction of Temperature Effect from Dynamic Kriging Model

Different operating conditions are also used to further test the prediction of dynamic
kriging. Since 33.5, 35 and 36.5 ◦C are used as training data sets, different temperatures T
= 34, 34.5 and 36 ◦C are tested at pH 7. With the temperature increasing, G0 and G0F are
reduced, while G1, G1F, G2F and G2FS1 are increased. From Figure 6, all the results are
matched to those obtained by the mechanistic model.
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Figure 6. The prediction of glycan fractions under different temperatures from dynamic kriging: (a) G0, (b) G0F, (c) G1, (d)
G1F, (e) G2F, (f) G2FS1.

3.3. Feasibility Analysis and Design Space

As mentioned in the previous section, the glycan fractions are critical quality attributes
used to evaluate the biological product’s performance and for the testing of biosimilars. For
this case study, three quality attributes (high mannose, afucosyaltion and galactosylation of
Herceptin (trastuzumab)) are tested. According to the FDA Briefing Document Oncologic
Drugs Advisory Committee Meeting, the requirements for the glycan profile of a product
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biosimilar to Herceptin are obtained [39]. To satisfy the quality attributes, the total afucosy-
lation needs to be maintained within the range of 2% to 14.5%, galactosylation needs to
stay within 20% to 70%, and high mannose needs to be below 8%. Within the operating
range, the end points of high mannose, afucosyaltion and galactosylation prediction at day
14, under different temperatures and pH values, are shown in Figure 7. This shows that
afucosylation ranges from 2.5% to 6%, that is, within the requirement for the afucosyaltion
ratio. However, the galacosylation changes from 5% to 47%, which means that in this
range of conditions there is a risk of being lower than the required range of values. Thus, a
constraint needs to be considered to ensure that GI can reach at least 20% in the feasibility
analysis. Similarly, high mannose reaches up to 9%, which also needs to be considered as a
constraint in the feasibility analysis.
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represents glycan fractions.

From Figure 1c,d, we see that temperature and pH have effects on the protein titer.
Thus, in order to maintain high productivity, the protein concentration is set as more
than 1 g/L. This section aims to maintain the afucosyaltion and galactosylation within the
required range, and these components can be predicted by dynamic kriging. One approach
is to develop the dynamic kriging that predicts the glycan index directly based on the
culture conditions, viable cell, and mAb concentrations. The predictions of the glycan index
are shown in Figure 8. Table 4 shows the MRSE values. The results show that dynamic
kriging provides a good prediction of all the glycan indices (MRSE < 2%). The second
approach used has a good prediction performance. It should be noticed that although
only the end point glycan fractions are important for quality assurance, understanding the
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dynamic profile of different glycan fractions is important in order to enable better quality
control during production.
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Figure 8. Glycosylation index predicted by dynamic kriging: (a) high mannose, (b) afucosylation, (c) GI, (d) FI.

Table 4. Means relative squared error (MRSE) of dynamic kriging prediction.

Glycan Index Afucoyslation ManX GI FI

MRSE 0.0121 0.0186 0.0025 0.0026

In total, 25 initial sample points were obtained from the kriging model and used to
obtain the initial feasible region. Adaptive sampling is used to improve the accuracy of
the feasible region. Figure 9 demonstrates the results of the feasibility analysis. The dark
blue line shows the predicted feasible region’s boundary (feasibility function = 0), which
indicates the operating region that satisfies all the constraint requirements. The circle points
are infill points, which are added to improve the accuracy of the feasible region. Finally,
the three performance measures’ distributions are CF = 0.997, CIF = 0.999 and NC = 0.001,
which indicates that the feasible region has been accurately determined.
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4. Conclusions

In this work, we developed a kinetic model to successfully capture the effects of
temperature and pH on protein production and the mAb’s product quality attributes. By
using mechanistic relations, the kinetic model improves the understanding of the effects of
physical stimuli on the intracellular reactions. The mechanistic model is further simplified
using dynamic kriging, which is able to provide dynamic predictions with high accuracy.
This step reduces the computational costs and improves the efficiency and accuracy of
model fitting. Surrogate-based feasibility analysis is used to determine the design space for
bioreactor modeling. The adaptive sampling method is used to determine the design space
for process operations efficiently. The developed methods can be used to predict titer and
protein qualities under different conditions. They handle multiple constraints and provide
the design space boundaries for efficient bioreactor operation. Additional work is needed
to implement the proposed framework, using more experimental data for CHO bioreactor
operations. In the experimental cell culture system, variabilities and noises may exist. Data
cleaning and preprocessing are needed to improve prediction accuracy.
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