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Abstract: The study of human protoporphyrinogen oxidase (hPPO) inhibition can contribute signif-
icantly to a better understanding of some pathogeneses (e.g., porphyria, herbicide exposure) and
the development of anticancer agents. Therefore, we prepared new potential inhibitors with Schiff
base structural motifs (2-hydroxybenzaldehyde-based Schiff bases 9–13 and chromanone derivatives
17–19) as structurally relevant to PPO herbicides. The inhibitory activities (represented by the half
maximal inhibitory concentration (IC50) values) and enzymatic interactions (represented by the
hPPO melting temperatures) of these synthetic compounds and commercial PPO herbicides used
against hPPO were studied by a protoporphyrin IX fluorescence assay. In the case of PPO herbicides,
significant hPPO inhibition and changes in melting temperature were observed for oxyfluorten,
oxadiazon, lactofen, butafenacil, saflufenacil, oxadiargyl, chlornitrofen, and especially fomesafen.
Nevertheless, the prepared compounds did not display significant inhibitory activity or changes
in the hPPO melting temperature. However, a designed model of hPPO inhibitors based on the
determined IC50 values and a docking study (by using AutoDock) found important parts of the
herbicide structural motif for hPPO inhibition. This model could be used to better predict PPO
herbicidal toxicity and improve the design of synthetic inhibitors.

Keywords: protoporphyrinogen oxidase; inhibitors; herbicides

1. Introduction

Porphyrias are very rare diseases associated with abnormal haem production that lead
to the accumulation of porphyrins or their precursors within the liver and other organs [1,2].
Variegate porphyria is caused by mutations to protoporphyrinogen oxidase (PPO, EC
1.3.3.4) and subsequent activity loss. This enzyme catalyzes the oxygen-dependent six-
electron oxidation of protoporphyrinogen IX to protoporphyrin IX [3–5]. During acute
attacks, patients display abnormal skin reactions to sunlight due to reactive singlet oxygen
formation and oxidative stress following photooxidation, mainly in the liver [6,7]. Patients
with variegate porphyria can have a significantly higher risk of liver cancer [6,8].

This phenomenon can also be caused by various toxic agents, such as some herbi-
cides [9,10]. Using herbicides is one of the most commonly used methods to control weeds
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and preserve crop quality and yield. During the last 30 years, numerous structurally diverse
PPO-inhibiting herbicides have been developed and commercialized, such as diphenyl
ethers and thiadiazoles [11]. In contrast to herbicides with other modes of action, the
application of these classes of herbicides displays some important benefits, such as a low
use rate, broad-spectrum herbicidal activity, a quick onset of action, long-lasting effects,
and environmentally friendly side effects. Nevertheless, the display of serious toxic effects
to animals and humans after exposure to these compounds, especially long-term exposure,
cannot be excluded.

At present, some influencing work has implied that these herbicide types also display
serious inhibitory effects on human protoporphyrinogen IX oxidase (hPPO) [12] due to
porphyrin accumulation in hepatocytes [13]. Butafenacil has long been used as an anti-
PPO herbicide. It is expected that some of its toxicity is caused by inhibition of animal
PPOs [14,15]. For example, a published study by Leet et al. stated that exposure of zebrafish
embryos to butafenacil led to porphyria symptoms, such as porphyrin accumulation [14].
After fomesafen application, higher levels of reactive oxygen species (ROS), weaker im-
mune systems, and reduced numbers of white cells were observed [16]. In a mouse model,
a specific dosage caused porphyria syndrome, as evidenced by liver porphyrin accumula-
tion [17,18]. Similarly, oxyfluorfen and oxadiazon treatment have led to higher porphyrin
accumulation in rat hepatocytes and mouse livers. These phenomena were associated with
decreased PPO activity; however, the inhibition activity (represent by its IC50 values) for
these herbicides have not yet been determined.

BaR-2 has displayed significantly higher inhibitory activity against PPO than commer-
cially used herbicides [19]. Nevertheless, its inhibitory activity has not yet been determined
for human or mammalian PPOs. The above strongly implies that detailed quantification of
their inhibitory effects on PPOs (represented by IC50 values) could precisely predict the
toxicity of these compounds in humans and animals.

In addition, obtaining this information could also be useful for the design of new
pharmacophores targeting PPOs for the treatment of oncological diseases. Relevant work
found that PPOs are overexpressed in some cancer types (e.g., colorectal cancer) [20].
Targeting PPO could be a promising way to enhance photodynamic activity based on
the application of 5-aminolevulinic acid [21–23]. However, prospective strategies for the
preparation of anticancer agents could combine additional structural motifs, such as Schiff
bases, for their molecular design.

Schiff bases possess a wide range of biological activities, including the repression of
oncological processes and signaling pathways [24–26]. Schiff bases bearing 2-hydroxyaryl
moieties can bind arginine groups [27] and thereby possibly target Arg-98 or Arg-59, which
are key amino acids that maintain PPO activity [28,29]. Combining this structural motif
with polychlorinated phenyls (for a possible interaction with Met-368 of PPO) [29] could
lead to the design of new types of hPPO inhibitors. These compounds are structurally
relevant to known PPO herbicides. Thus, we prepared two sets of potential inhibitors:
2-hydroxybenzaldehyde-based Schiff bases and chromanone derivatives. Moreover, Schiff
bases bearing 2-hydroxyaryl moieties can bind metal ions and thereby expand their anti-
cancer effects [30–33].

In this work, we decided to study the influence of PPO herbicides and novel PPO in-
hibitors based on the Schiff base structural motif on hPPO activity. Both sets of compounds
could represent new structural motifs for novel anticancer agents. In the case of PPO
herbicides, the obtained results could also be used for better environmental risk prediction.

2. Materials and Methods
2.1. Measurements and Materials

All chemicals and solvents were purchased from commercial suppliers (Sigma-Aldrich,
Santiago Chemicals and TCI Europe) and were used without further purification. Nuclear
magnetic resonance (NMR) spectra were recorded on a 500 MHz instrument at room tem-
perature (~25 ◦C) in dimethyl sulfoxide (DMSO)-d6. The chemical shifts (δ) are presented
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in ppm and coupling constants (J) are presented in Hz. The program MestReNova ver.
14.1 was used to process the NMR spectra. High-resolution mass spectrometry (HRMS)
spectra were obtained using electrospray ionization (ESI) with a triple quadrupole mass
spectrometer (TSQ Quantum Access) and an LTQ Orbitrap spectrometer. 1H and 13C NMR
spectra of prepared compounds are shown in Supplementary Figures S1–S10.

2.2. Preparation of Ethyl 2-(2,4-Dichloro-5-nitrophenoxy)acetate (2)

2,4-Dichloro-5-nitrophenol (1; 1040 mg; 5 mmol) and potassium carbonate (1382 mg;
10 mmol) were mixed in anhydrous dimethylformamide (15 mL). The mixture was stirred
at 25 ◦C for 15 min, and ethyl bromoacetate (0.9 mL; 8 mmol) was added. This reaction
mixture was stirred at 60 ◦C overnight. Then, water (100 mL) was added, and the mixture
was extracted with ethyl acetate (2 × 100 mL). The organic fraction was then washed
with water (2 × 75 mL) and brine (75 mL), dried over sodium sulfate, and evaporated to
dryness. The crude product was purified by column chromatography on silica, eluent:
dichloromethane. Ethyl 2-(2,4-dichloro-5-nitrophenoxy)acetate (2) was obtained with a
yield of 1326 mg (90%) as a white wax.

1H NMR: 1.21 (t, J = 7.0 Hz, 3H); 4.18 (q, J = 7.0 Hz, 2H); 5.06 (s, 2H); 7.96 (s, 1H); 8.03
(s, 1H). 13C NMR: 14.0, 61.0, 66.0, 110.7, 117.1, 126.6, 131.9, 146.6, 152.6, 167.6 ppm. HRMS
(ACPI−) calcd for C10H9Cl2NO5 [M]−: 292.98578, found: 292.98651.

2.3. Preparation of Ethyl 2-(5-Amino-2,4-dichlorophenoxy)acetate (3)

Ethyl 2-(2,4-dichloro-5-nitrophenoxy)acetate (2; 1245 mg; 4.19 mmol) was dissolved in
ethyl acetate (75 mL), and palladium on carbon (10%; 500 mg) was added. The reaction
mixture was stirred under a hydrogen atmosphere (balloon) overnight. Then, the catalyst
was filtered off and washed with ethyl acetate (20 mL). The solution was evaporated
to dryness to give pure ethyl 2-(5-amino-2,4-dichlorophenoxy)acetate (3) with a yield of
1061 mg (96%) as a yellowish wax.

1H NMR: 1.22 (t, J = 7.1 Hz, 3H); 4.18 (q, J = 7.1 Hz, 2H); 4.73 (s, 2H); 5.39 (bs, 2H); 6.41
(s, 1H); 7.24 (s, 1H). 13C NMR: 14.0, 60.8, 65.2, 100.1, 107.8, 109.2, 129.1, 144.6, 152.5, 168.1
ppm. HRMS (ESI+) calcd for C10H12Cl2NO3 [M+H]+: 264.01942, found: 264.01931.

2.4. Preparation of Schiff Base 9

Ethyl-2-(5-amino-2,4-dichlorophenoxy)acetate (3; 53 mg; 0.2 mmol) and 2-hydroxy-3-
methoxybenzaldehyde (4; 30 mg; 0.2 mmol) were dissolved in anhydrous ethanol (10 mL)
and stirred at 75 ◦C overnight. Orange precipitate formed almost immediately. After cooling,
the solid product was filtered off, washed with ethanol (30 mL) and dried under vacuum.
Ethyl-(E)-2-(2,4-dichloro-5-((2-hydroxy-3-methoxybenzylidene)amino)phenoxy)acetate (9)
was obtained with a yield of 63 mg (79%) as an orange solid.

1H NMR: 1.22 (t, J = 7.1 Hz, 3H); 3.83 (s, 3H); 4.19 (q, J = 7.1 Hz, 2H); 5.01 (s, 2H); 6.96
(t, J = 7.9 Hz, 1H); 7.19 (dd, J = 8.1, 1.4 Hz, 1H); 7.24 (dd, J = 7.9, 1.4 Hz, 1H); 7.43 (s, 1H);
7.77 (s, 1H); 9.03 (s, 1H); 12.99 (s, 1H). 13C NMR: 14.0, 55.9, 60.8, 65.6, 105.4, 116.2, 118.9,
120.2, 120.6, 124.0, 130.1, 144.0, 148.0, 150.7, 152.9, 165.3, 167.9 ppm. HRMS (ESI+) calcd for
C18H18Cl2NO5 [M+H]+: 398.05620, found: 398.05652.

2.5. Preparation of Schiff Base 10

Ethyl-2-(5-amino-2,4-dichlorophenoxy)acetate (3; 53 mg; 0.2 mmol) and 2-hydroxy-4-
methylbenzaldehyde (5; 27 mg; 0.2 mmol) were dissolved in anhydrous ethanol (10 mL) and
stirred at 75 ◦C overnight. A yellowish solid gradually precipitated out of solution. After
cooling, the solid product was filtered off, washed with ethanol (30 mL) and dried under vac-
uum. Ethyl-(E)-2-(2,4-dichloro-5-((2-hydroxy-4-methylbenzylidene)amino)phenoxy)acetate
(10) was obtained with a yield of 57 mg (75%) as a pale-yellow solid.

1H NMR: 1.22 (t, J = 7.1 Hz, 3H); 2.39 (s, 3H); 4.19 (q, J = 7.1 Hz, 2H); 5.02 (s, 2H); 6.85
(s, 1H); 6.85 (d, J = 8.0 Hz, 1H); 7.39 (s, 1H); 7.52 (d, J = 8.0 Hz, 1H); 7.74 (s, 1H); 8.95 (s, 1H);
12.93 (s, 1H). 13C NMR: 14.0, 21.5, 60.8, 65.6, 105.3, 116.7, 117.1, 119.9, 120.5, 120.6, 130.1,
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132.7, 144.2, 145.0, 152.9, 160.6, 164.8, 167.9 ppm. HRMS (ESI+) calcd for C18H18Cl2NO4
[M+H]+: 382.06129, found: 382.06137.

2.6. Preparation of Schiff Base 11

Ethyl-2-(5-amino-2,4-dichlorophenoxy)acetate (3; 53 mg; 0.2 mmol) and 5-chloro-2-
hydroxybenzaldehyde (6; 28 mg; 0.2 mmol) were dissolved in anhydrous ethanol (10 mL)
and stirred at 75 ◦C overnight. A yellowish solid gradually precipitated out of solution. After
cooling, the solid product was filtered off, washed with ethanol (30 mL) and dried under vac-
uum. Ethyl-(E)-2-(2,4-dichloro-5-((5-chloro-2-hydroxybenzylidene)amino)phenoxy)acetate
(11) was obtained with a yield of 65 mg (79%) as a pale-yellow solid.

1H NMR: 1.22 (t, J = 7.1 Hz, 3H); 4.19 (q, J = 7.1 Hz, 2H); 5.01 (s, 2H); 7.04 (d, J = 8.8 Hz,
1H); 7.37 (s, 1H); 7.50 (dd, J = 8.8, 2.7 Hz, 1H); 7.72 (d, J = 2.7 Hz, 1H); 7.76 (s, 1H); 8.95 (s,
1H); 12.78 (s, 1H). 13C NMR: 14.0, 60.9, 65.6, 105.4, 118.9, 120.4, 120.6, 122.7, 130.2, 131.0,
133.5, 144.2, 152.9, 159.0, 163.6, 167.8 ppm. HRMS (ESI+) calcd for C17H15Cl3NO4 [M+H]+:
402.00667, found: 402.00641.

2.7. Preparation of Schiff Base 12

Ethyl-2-(5-amino-2,4-dichlorophenoxy)acetate (3; 53 mg; 0.2 mmol) and 2,5-hydroxy-
benzaldehyde (7; 28 mg; 0.2 mmol) were dissolved in anhydrous ethanol (10 mL) and stirred
at 75 ◦C overnight. After cooling, the dark yellow solution was concentrated under reduced
pressure to approximately half the volume, and water (10 mL) was added. The yellow pre-
cipitate was filtered off, washed with an ethanol-water mixture (1:2 v/v, 30 mL) and dried
under vacuum. Ethyl-(E)-2-(2,4-dichloro-5-((2,5-dihydroxybenzylidene)amino)phenoxy)ac-
etate (12) was obtained with a yield of 63 mg (88%) as a yellow solid.

1H NMR: 1.23 (t, J = 7.1 Hz, 3H); 4.19 (q, J = 7.1 Hz, 2H); 5.02 (s, 2H); 6.83 (d, J =
8.8 Hz, 1H); 6.92 (dd, J = 8.8, 3.0 Hz, 1H); 7.03 (d, J = 3.0 Hz, 1H); 7.42 (s, 1H); 7.77 (s, 1H);
8.87 (s, 1H); 9.40 (s, 1H); 12.23 (s, 1H). 13C NMR: 14.0, 60.8, 65.6, 105.4, 116.8, 117.5, 119.0,
119.9, 120.5, 122.2, 130.1, 144.7, 149.7, 152.9, 153.4, 164.8, 167.9 ppm. HRMS (ESI+) calcd for
C17H16Cl2NO5 [M+H]+: 384.04055, found: 384.04102.

2.8. Preparation of Schiff Base 13

Ethyl-2-(5-amino-2,4-dichlorophenoxy)acetate (3; 53 mg; 0.2 mmol) and 2-hydroxy-1-
naphthaldehyde (8; 35 mg; 0.2 mmol) were dissolved in anhydrous ethanol (10 mL) and
stirred at 75 ◦C overnight. Yellow precipitate formed almost immediately. After cooling, the
solid product was filtered off, washed with ethanol (30 mL) and dried under vacuum. Ethyl-
(E)-2-(2,4-dichloro-5-(((2-hydroxynaphthalen-1-yl)methylene)amino)phenoxy)acetate (13)
was obtained with a yield of 77 mg (92%) as a yellow solid.

1H NMR: 1.24 (t, J = 7.1 Hz, 3H); 4.22 (q, J = 7.1 Hz, 2H); 5.15 (s, 2H); 7.13 (d, J = 9.1 Hz,
1H); 7.43 (t, J = 7.6 Hz, 1H); 7.63 (t, J = 7.8 Hz, 1H); 7.72 (s, 1H); 7.79 (s, 1H); 7.87 (d, J =
8.0 Hz, 1H); 8.03 (d, J = 9.1 Hz, 1H); 8.54 (d, J = 8.4 Hz, 1H); 9.72 (s, 1H); 15.50 (s, 1H). 13C
NMR: 14.0, 60.8, 65.8, 105.2, 109.2, 119.5, 119.8, 120.7, 120.8, 123.9, 127.1, 128.2, 129.1, 130.1,
132.7, 137.0, 141.9, 153.0, 158.4, 167.3, 167.9 ppm. HRMS (ESI+) calcd for C21H18Cl2NO4
[M+H]+: 418.06129, found: 418.06126.

2.9. Preparation of Chromanone 17

Ethyl-2-(5-amino-2,4-dichlorophenoxy)acetate (3; 53 mg; 0.2 mmol) and 3-formylchro-
mone (14; 35 mg; 0.2 mmol) were dissolved in anhydrous isopropanol (8 mL) and stirred at
75 ◦C overnight. Then, the reaction mixture was evaporated to dryness, and diethyl ether
(10 mL) was added followed by hexane (10 mL). The solid product was filtered off, washed
with a diethyl ether-hexane mixture (1:1 v/v, 20 mL) and dried under vacuum. Ethyl-(Z)-2-
(2,4-dichloro-5-(((2-isopropoxy-4-oxochroman-3-ylidene)methyl)amino)phenoxy)acetate (17)
was obtained with a yield of 63 mg (66%) as a pale-yellow solid.

1H NMR: 1.04 (d, J = 6.2 Hz, 3H); 1.20 (d, J = 6.1 Hz, 3H); 1.23 (t, J = 7.1 Hz, 3H); 4.12
(hept, J = 6.1 Hz, 1H); 4.20 (q, J = 7.1 Hz, 2H); 5.02 (s, 2H); 6.01 (s, 1H); 7.08 (d, J = 8.1 Hz,
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1H), 7.14 (t, J = 7.5 Hz, 1H); 7.38 (s, 1H); 7.56 (m, 1H); 7.74 (s, 1H); 7.87 (m, 1H); 8.16 (d, J =
11.9 Hz, 1H); 12.21 (d, J = 11.9 Hz, 1H). 13C NMR: 14.0, 22.1, 23.2, 60.8, 65.8, 70.0, 98.6, 101.2,
105.9, 113.3, 116.3, 118.1, 122.0, 122.2, 125.9, 130.2, 135.0, 136.1, 143.2, 153.1, 155.8, 167.7,
181.1 ppm. HRMS (ACPI−) calcd for C23H22Cl2NO6 [M-H]−: 478.08242, found: 478.08345.

2.10. Preparation of Chromanone 18

Ethyl-2-(5-amino-2,4-dichlorophenoxy)acetate (3; 53 mg; 0.2 mmol) and 6-fluoro-3-
formylchromone (15; 38 mg; 0.2 mmol) were dissolved in anhydrous isopropanol (8 mL)
and stirred at 75 ◦C overnight. A yellow solid gradually precipitated out of the solution.
After cooling, the solid product was filtered off, washed with isopropanol (20 mL) and
dried under vacuum. Ethyl-(Z)-2-(2,4-dichloro-5-(((6-fluoro-2-isopropoxy-4-oxochroman-3-
ylidene)methyl)amino)phenoxy)acetate (18) was obtained with a yield of 69 mg (69%) as a
yellow solid.

1H NMR: 1.04 (d, J = 6.2 Hz, 3H); 1.20 (d, J = 6.1 Hz, 3H); 1.23 (t, J = 7.1 Hz, 3H); 4.11
(hept, J = 6.1 Hz, 1H); 4.20 (q, J = 7.1 Hz, 2H); 5.02 (s, 2H); 6.02 (s, 1H); 7.15 (dd, J = 8.9,
4.2 Hz, 1H); 7.39 (s, 1H); 7.44 (td, J = 8.7, 3.1 Hz, 1H); 7.57 (dd, J = 8.5, 3.1 Hz, 1H); 7.75
(s, 1H); 8.21 (d, J = 11.9 Hz, 1H); 12.20 (d, J = 12.0 Hz, 1H). 13C NMR: 14.0, 22.1, 23.1, 60.8,
65.8, 70.1, 98.6, 101.4, 105.5, 111.1 (d, J = 24.0 Hz), 113.4, 116.6, 120.1 (d, J = 7.8 Hz), 122.1 (d,
J = 24 Hz), 123.0 (d, J = 6.6 Hz), 130.3, 135.9, 143.9, 151.9 (d, J = 1.5 Hz), 153.1, 157.0 (d, J =
239.2 Hz), 167.7, 180.1 ppm. HRMS (ACPI−) calcd for C23H21Cl2FNO6 [M-H]−: 496.07300,
found: 496.07404.

2.11. Preparation of Chromanone 19

Ethyl-2-(5-amino-2,4-dichlorophenoxy)acetate (3; 53 mg; 0.2 mmol) and 6-nitro-3-
formylchromone (16; 44 mg; 0.2 mmol) were dissolved in anhydrous isopropanol (8 mL)
and stirred at 75 ◦C overnight. A yellow solid gradually precipitated out of solution.
After cooling, the solid product was filtered off, washed with isopropanol (20 mL) and
dried under vacuum. Ethyl-(Z)-2-(2,4-dichloro-5-(((2-isopropoxy-6-nitro-4-oxochroman-3-
ylidene)methyl)amino)phenoxy)acetate (19) was obtained with a yield of 98 mg (93%) as a
yellow solid.

1H NMR: 1.07 (d, J = 6.2 Hz, 3H); 1.20 (d, J = 6.4 Hz, 3H); 1.24 (t, J = 7.1 Hz, 3H); 4.19
(m, 3H); 5.03 (s, 2H); 6.19 (s, 1H); 7.36 (d, J = 9.0 Hz, 1H); 7.42 (s, 1H); 7.82 (s, 1H); 8.31 (d,
J = 12.0 Hz, 1H); 8.40 (dd, J = 9.0, 2.8 Hz, 1H); 8.63 (d, J = 2.8 Hz, 1H); 12.26 (d, J = 12.2 Hz,
1H). 13C NMR: 14.0, 22.1, 23.1, 60.9, 65.8, 70.9, 99.7, 101.6, 104.8, 113.7, 117.1, 119.7, 121.6,
122.0, 129.4, 130.3, 135.6, 142.1, 144.9, 153.1, 160.3, 167.6, 178.8 ppm. HRMS (ACPI−) calcd
for C23H21Cl2N2O8 [M-H]−: 523.06750, found: 523.06861.

2.12. Preparation of BAR-2

Bar-2 was made according to Wang et al. [19].

2.13. PPO Expression and Purification

A plasmid for bacterial expression of human PPO (hPPO) was kindly provided by
Dr. Harry A. Dailey (University of Georgia, Athens, GA, USA) [34]. For heterologous
expression, E. coli JM109 cells were grown at 30 ◦C as reported previously [12,34]. Circle
growth media was supplemented with riboflavin to a final concentration of 0.75 µg/mL
for 2 h prior to harvesting. Cells were collected by centrifugation (10,000× g, 10 min),
resuspended in breaking buffer (50 mM Tris pH 8, 100 mM NaCl, 10% glycerol, 0.5% Tween
20 (v/v)) containing EDTA-free protease inhibitor cocktail (Roche Diagnostics GmbH,
Mannheim, Germany), sonicated on ice and centrifuged at 40,000× g for 30 min. The
supernatant was applied onto a Ni-NTA column (Ni-NTA Superflow, IBA, Germany),
washed with 20 column volumes of equilibration buffer (50 mM Tris-HCl, 100 mM NaCl,
30 mM imidazole, 10% glycerol, 0.02% Tween 20, pH 8) and eluted with equilibration buffer
supplemented with 300 mM imidazole. The eluded fractions were pooled and concentrated.
The final purification step encompassed size-exclusion chromatography on a Superdex
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200 16/60 column (GE Healthcare Life Sciences, Uppsala, Sweden) using 50 mM Tris-HCl,
100 mM NaCl, 5% glycerol, and 0.02% Tween 80, pH 8.0, as the mobile phase.

2.14. Inhibition Assay

IC50 values were determined using a fluorescence-based assay quantifying an increase
in fluorescence signal upon conversion of the non-fluorescent protoporphyrinogen IX to flu-
orescent protoporphyrin IX [12]. Briefly, PPO (final concentration 4 nM) was preincubated
with a dilution series of tested inhibitors (concentration range 0.2–100 µM) in a 384-well
plate in a total volume of 14 µL for 10 min at 37 ◦C in reaction buffer comprising 100 mM
KH2HPO4, 0.3% (w/v) Tween 80, 5 mM DTT, and 1 mM EDTA, pH 7.2. Reactions were
initiated by the addition of 7 µL of 10 µM protoporphyrinogen IX into the PPO/inhibitor
mixture. The fluorescence signal of protoporphyrin IX was monitored with a CLARIOstar
fluorimeter (BMG Labtech GmbH, Ortenberg, Germany) at λEX/λEM = 410/632 nm using
continuous readout mode at 37 ◦C for 1 h. The reaction velocity was calculated from the
linear portion of the measured signal against a standard calibration curve of defined proto-
porphyrin IX concentrations. Non-linear regression analysis was employed to calculate the
IC50 values using GraphPad Prism software [35]. Reactions without enzyme or inhibitor
were used to define 0% and 100% PPO activity, respectively.

2.15. Calculation of the Binding Energy of the PPO Complex with Schiff Bases

Three-dimensional (3D) structural models for human protoporphyrinogen IX oxidase
(hPPO) and for the orthologue from Nicotiana tabacum (ntPPO) were downloaded from
the Protein Data Bank. 3D structural models of compounds 9 to 19 were drawn using
MolView (https://molview.org, accessed on 19 May 2020), and the corresponding mol
files containing 3D coordinates were generated. These files were converted to PDB format
using NCI’s online SMILES translator and structure file generator (https://cactus.nci.
nih.gov/translate/, accessed on 19 May 2020). For docking calculations, software from
the AutoDock Vina suite was used [36]. The protein molecules were first placed in an
orthorhombic box of suitable size for their total enclosure for the first round of docking
calculations. Since the docking poses were found in the vicinity of the flavin adenine
dinucleotide (FAD) isoalloxazine ring system, a second round of docking was performed
using an orthorhombic box of size 20 × 18 × 22 Å3 centered at a location on the accessible
side of the isoalloxazine ring.

2.16. Acifluorfen and Fomesafen Docking

This docking simulation was performed with AutoDock Vina software [36] using the
X-ray crystal structure of hPPO (3NKS, [37]). Ligand PDB files were prepared with the
AceDRG stereochemical description generator [38]. The docking site was defined as a
30 × 30 × 30 Å3 cube centered on the original co-crystallized ligand acifluorfen. Prior to
the docking experiment, the docking workflow was validated by re-docking acifluorfen
and comparing the calculated pose to the conformation of acifluorfen from the crystal
structure. The re-docking results are shown in Supplementary Figure S11. The results of
the docking experiment of acifluorfen and fomesafen were visualized and analyzed by
PyMOL 2.4.1. [39].

2.17. Viability Assay

RPMI-8226 lymphoblasts were used to assess the cytotoxicity of the tested herbicides.
Cells were diluted in 90 µL of RPMI-1640 medium supplemented with 10% fetal bovine
serum (FBS) to 2.5 × 105 cells/mL in a 96-well plate. Herbicides (50 mM stock solutions
in dimethylsulfoxide (DMSO)) were diluted in PBS to 10× the desired concentration,
and 10 µL was added to the cells followed by incubation for 2 days at 37 ◦C. Following
incubation, 10 µL of (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT
reagent) (5 mg/mL in PBS, Sigma-Aldrich) was added followed by incubation for 120 min
at 37 ◦C. The metabolized formazan crystals were dissolved by the addition of 100 µL of

https://molview.org
https://cactus.nci.nih.gov/translate/
https://cactus.nci.nih.gov/translate/
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solubilization solution (40% dimethyl formamide (DMF), 2% acetic acid, 16% SDS, pH 4.7).
Then, the absorbance at 570 nm was measured using a CLARIOstar plate reader (BMG
Labtech), and data were plotted using GraphPad Prism software.

2.18. hPPO Stability Determined by the ThermoFAD Assay

The ThermoFAD stability assay according to Forneris et al. [40] was used to determine
the melting temperature (TM) of the PPO complexes with the herbicides and Schiff bases.
hPPO solution (0.5 mg/mL final concentration) in 50 mM Tris, 100 mM NaCl, 5% glycerol,
and 0.2% Tween 20, pH 8, was incubated with/without 50 µM herbicide in a total volume
of 100 µL for 15 min at room temperature. Samples were denatured using a RT-PCR cycler
(CFX96-Touch, Bio-Rad, Hercules, CA, USA) with temperature ramping of 0.5 ◦C per step
for 30 s from 20 to 95 ◦C. The fluorescence of the FAD cofactor was monitored using a
450–490 excitation filter and a 515–530 nm emission filter typically used for SYBR Green-
based RT-PCR. The maximum of the first derivative of the observed flavin fluorescence
was taken as the apparent TM.

3. Results
3.1. Preparation and Characterization of Schiff Bases

Two sets of target compounds were prepared by a three-step synthesis. In the first
step, 2,4-dichloro-5-nitrophenol (1) was reacted with ethyl bromoacetate in the presence of
K2CO3 in DMF at 60 ◦C. Ethyl 2-(2,4-dichloro-5-nitrophenoxy)acetate (2) was obtained in a
yield of 90%. In the next step, the nitro group of 2 was reduced with hydrogen with a palla-
dium catalyst in ethyl acetate and the corresponding amine 3 was obtained in 96% yield.
In the last step, amine 3 was reacted with different substituted 2-hydroxybenzaldehydes
(4–8) in ethanol at 75 ◦C. These reactions gave corresponding Schiff bases 9–13 in yields
of 75–92% (Scheme 1). The E-isomer was exclusively formed because it is stabilized by
intramolecular hydrogen bonds (Figure 1). Thus, the 1H NMR spectra showed only one
singlet from the -CH=N- hydrogen.
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Amine 3 was also reacted with substituted 3-formylchromones 14–16. The reaction of
3-formylchromones with primary aromatic amines gives both Schiff base derivatives and
4-chromanone derivatives, depending on the solvent used [41–43]. In our case, we used
isopropanol as the solvent; thus, we exclusively obtained the corresponding 4-chromanones
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17–19 in yields of 66–93% (Scheme 2). The Z-isomer was exclusively formed because it
is stabilized by intramolecular hydrogen bonds (Figure 1). Thus, the 1H NMR spectra
showed only one doublet from the =CH-N- hydrogen.
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3.2. Determination of the Inhibitory Activities

The IC50 values of the commercial herbicides (Figure 3) and prepared Schiff bases
was determined by a fluorescence protoporphyrin IX assay. The results are shown in
Table 1. Some of these compounds, such as oxyfluorten, lactofen, saflufenacil, fomesafen
and chlornitrofen, displayed IC50 values in the submicromolar range. Nevertheless, for
oxyfluorten, this value is comparable to published activities for plant PPOs [44]. In addition,
the determined inhibitory concentrations of saflufenacil, lactofen and oxadiazon were
significantly higher than the values published for plant PPOs [45–47], and their values
are shown in Supplementary Table S1. For example, saflufenacil displayed nanomolar
inhibitory activity against various plant PPOs [46]. Published values for lactofen (IC50 =
25 nM) [45] and oxadiazon (IC50 = 60 nM) [47] are in the tens of nanomolar range; however,
their inhibition activity against hPPO was significantly lower. Only fomesafen displayed
an IC50 value against hPPO that was comparable to those of plant PPOs [44]. However, the
value of fomesafen against hPPO (110 nM) strongly implies that fomesafen is a very potent
inhibitor of mammalian PPOs. For example, the concentration of acifluorfen that elicits
50% of the total change in activity is 1.12 µM. Similarly, a value of 1.48 µM was published
by Shepherd et al. [12].

Table 1. IC50 values against hPPO for the tested inhibitors and meting temperatures for the hPPO
inhibitor complexes.

Compound IC50 (µM) TM (◦C) 1

No inhibitor 48.5
Acifluorfen 1.12 ± 0.14 58.5

Chlortoluron >100 48.5
Oxyfluorten 0.13 ± 0.06 60.5
Oxadiazon 1.92 ± 0.39 57.5

Lactofen 0.33 ± 0.18 60.0
Butafenacil 0.15 ± 0.05 62.5
Saflufenacil 0.25 ± 0.02 60.5
Oxadiargyl 0.85 ± 0.14 58.0
Fomesafen 0.11 ± 0.01 61.5

Chlornitrofen 0.420 ± 0.001 58.0
Atrazine >100 48.5

Schiff base 9 >100 48.5
Schiff base 10 >100 48.5
Schiff base 11 >100 48.5
Schiff base 12 >100 48.5
Schiff base 13 >100 48.5
Chromone 17 >100 48.5
Chromone 18 >100 48.5
Chromone 19 >100 48.5

Bar-2 3.86 ± 0.01 57.5
1 Melting temperature of hPPO with and without tested inhibitors.

Against expectations, no significant activity was observed from the prepared Schiff
bases against hPPO. Published works have implied that these compounds could display
high affinity for and inhibitory activity against PPOs. Compounds with dihalogenated
phenyl cores (e.g., a dichloro-substitution) display inhibitory activity against PPOs and
are thus usually used as herbicides. Although the binding docking studies showed that
these compounds had a high affinity (absolute value of interaction energy was 7 kcal/mol
or higher (Supplementary Table S2)) for hPPO, incorporation of the Schiff base into the
herbicide design led to a loss in inhibitory activity. In this case of BaR-2, the determined
value was several times weaker than the published activity against plant mitochondrial
PPO2 from N. tabacum. [19].

In vitro inhibition data were further corroborated by a biophysical assay that deter-
mined the TM of hPPO and hPPO/herbicide complexes (Figure 4, Table 1). Here, upon
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hPPO binding, the herbicide stabilizes the three-dimensional structure of the protein, re-
sulting in a substantial increase in the TM of the complex. However, compounds that do
not inhibit hPPO (e.g., the prepared Schiff bases and chromones, chlortoluron and atrazine)
and thus likely do not interact with the enzyme do not show any effect on the TM of hPPO.
As the ThermoFAD assay is better suited for high-throughput sample processing, it can
be used to prescreen putative hPPO inhibitors before engaging in demanding inhibitory
testing that requires more resources.
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3.3. Herbicide Toxicity in Human Cells

As the tested herbicides inhibit hPPO in the high nanomolar to low micromolar range,
we wondered about their toxicity to human cells. To this end, we assayed the viability of
human RPMI-8226 lymphoblasts after 2 days of treatment with the herbicides using an
MTT assay. Overall, their toxicity to human cells was limited, with half maximal effective
concentration (EC50) values in the mid-micromolar range (Figure 5). It is interesting to
note that cellular toxicity does not strictly correlate with inhibitor affinity for hPPO as
determined in vitro. This observation can result from differences in cell permeability and
cellular metabolism of the individual compounds and/or possible off-target effects.

3.4. Homology Modeling

Our data revealed that the tested herbicides are more potent against Plantae PPOs
than the human enzyme. To rationalize these findings, we performed structural alignment
of the crystal structures of hPPO (PDB: 3NKS) and ntPPO (PDB: 1SEZ) together with an
Arabidopsis thaliana PPO (atPPO) homology model prepared using the SWISS-MODEL
server (Figure 6). The most intriguing difference between the inhibitor binding pockets
of these orthologues is the substitution of Met-368 (human numbering) in hPPO by Tyr
and Phe in atPPO and ntPPO, respectively (Figure 6). The trifluoromethoxy group of
acifluorfen, the herbicide co-crystallized with hPPO, is in van der Waals distance from Met-
368. Substitution at this position with an aromatic amino acid (present in both atPPO and
ntPPO) by Met-368 in the human enzyme leads to the disruption of the original π-π stacking
interactions, which likely results in lower inhibitor potency for the human orthologue.
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As there were no crystal structures of hPPO with herbicides used in this study, we were
interested in whether the tested compounds share the same binding mode as acifluorfen and
would therefore act on human and plant PPOs in a similar manner. To this end, we selected
fomesafen a representative compound, which displayed the most potent hPPO inhibition,
and docked it into hPPO. The docking experiment result, as depicted in Figure 6B, points
towards a similar binding orientation of both herbicides. We thus hypothesize that all
herbicides of this chemotype act similarly and that the Met-368 substitution is responsible
for their lower potency against hPPO.
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4. Discussion

Based on the obtained results, the combination of nitrophenyl and trifluoromethylben-
zyl represents the structural motif of a potent inhibitor of hPPO. Docking and crystallo-
graphic studies of PPO from Myxococcus xanthus showed an acifluorfen water-mediated
interaction with the carbonyl oxygen of Val-164 via its carboxylate groups [29]. Based on
these results, we can expect that loss of a negative charge will lead to repression or loss of
interaction. Nevertheless, lactofen and oxyfluorten displayed opposite behaviors.

Lactofen, whose carboxy group is a substituted ethyl ester of lactic acid, sometimes
displayed a lower IC50 value (0.33 µM) than acifluorfen (IC50 = 1.48 µM). Oxyfluorten
and fomesafen are potent hPPO inhibitors (IC50 = 0.13 and 0.11 µM, respectively), which
implies that stabilization of the hPPO-inhibitor complex could also be supported by this
methyl group. In this case of lactofen, its effect is probably limited by steric factors due
to substituent residue. Nevertheless, the docking study implied that the combination
of nitrogen and thionyl groups can be a prospective structural motif for this interaction.
Lactofen has two carbonyl groups, which can also participate in interactions with the valine
carbonyl group. However, the oxyfluorten ethoxy group, on the other hand, can be an
attractive binding partner for hydrophobic amino acids such as VAL.

In accordance with this proposed model, chlornitrofen lost inhibition activity against
hPPO. This implies that the contribution of only the nitrogen group can be enough for
binding to the valine carbonyl group. Therefore, we hypothesized that hPPO resistance
against chlornitrofen is mainly due to the loss of the carboxy group. Nevertheless, the
mechanism of the acifluorfen interaction with PPO is intercalation of the 2-chloro-4-
trifluoromethylphenoxy into Met-365 and Gly-167. However, in the case of hPPO, Tyr and
Phe are instead in proximity (Figure 6). The difference most probably leads to a decrease in
the inhibitory activity of the tested herbicides.

On the other hand, targeting of these Tyr and Phe residues could be a promising idea
in the design of hPPO inhibitors. Suitable structural motifs should have more aromatic
characteristics (stronger binding to the aromatic parts of Tyr and Phe via π-π interactions)
and the ability to form hydrogen bonds to support interactions with the phenol group of
Tyr. This could be solved by incorporating the 2-hydroxyaryl moiety of the Schiff bases
into inhibitor design [48,49]. In addition, their structural motifs enable binding to Arg
groups [27], thereby potentially supporting the inhibition of its activity [29]. The basic
design of the prepared hPPO inhibitors is shown in Figure 7.
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However, none of the synthetic inhibitors displayed any significant inhibitory activity.
This fact could be explained by the loss of the nitro substitution. However, butafenacil,
saflufenacil, oxadiargyl, oxadiazon and Bar-2 did not have this functional group and are
potent hPPO inhibitors. Due to the variability of the aliphatic substitution of herbicides
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with inhibition activity for hPPO, aliphatic parts of synthetic compounds could be enabled
to bind to hPPO. Most likely, in our opinion, the corresponding part of the enzyme active
site is narrow and rigid for intercalation of the hydroxyaryl moiety of synthetic inhibitors.

Based on the determined IC50 values, fomesafen should be the most toxic of the tested
inhibitors. However, the toxicity of the tested herbicides to lymphoblasts did not correlate
with their inhibitory activity against hPPO. It is possible that a significant part of their
toxic effects in vitro cannot be associated with hPPO inhibition, such as coproporphyrin
accumulation [13]. Krijit et al. reported that after herbicide dosage, liver, fecal and bile
porphyrin IX accumulation increased in the following order: fomesafen, oxyfluorfen and
oxadiazon [50]. However, based on our results, we would expect the opposite trend.

This result implies that other phenomena, such as cellular uptake and herbicide trans-
port in the blood, can play a role in the physiological effects of these compounds. For
example, Dong et al. observed that fomesafen can form a complex with serum albumin [51].
Serum albumin is a long-circulating and highly abundant protein (40 mg/mL) [52]. Trans-
ported agents have a longer half-life than their free form in the blood and thereby lower
cellular uptake. On the other hand, serum albumin has been intensively studied as a carrier
for the targeted transport of anticancer agents, and PPO inhibition can significantly increase
the effects of photodynamic therapy.

Although we did not design new synthetic inhibitors of hPPO, based on the structural
motifs of the tested herbicides (mainly fomesafen), we found prospective structural mo-
tifs as starting points for redesign. Based on docking studies, we found that commercial
herbicides interact with the carbonyl group of valine and their close surroundings (e.g.,
carboxy, ester and ether groups) and Met-365 (e.g., halogenated, mostly fluorinated aro-
matic groups of herbicides). The obtained information could also be used to design new
synthetic inhibitors to better predict the toxicity of commercial PPO herbicides.

5. Conclusions

Compounds with Schiff base structural motifs (9–13 and 17–19) were prepared and
characterized by 1H NMR, 13C NMR and mass spectroscopy (MS). The inhibition activity
of these compounds and of PPO herbicides and the influence of these compounds on the
hPPO TM were determined by a protoporphyrin IX fluorescence assay and the ThermoFAD
assay, respectively. Some commercial herbicides, such as fomesafen, displayed strong
inhibition of hPPO activity. In the case of Schiff bases 9–13 and chromones 17–19, no
significant inhibitory activity was observed. However, we discovered the hPPO binding
model with inhibitors based on a docking study (by using AutoDock Vina software) and
determined the IC50 values for their redesign and participation in the accurate prediction
of the toxicity of PPO herbicides.
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7/9/2/383/s1, Figures S1–S10: 1H and 13C NMR spectra of compounds 2 and 3, Schiff bases 9–13
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3NKS). Table S1: Calculated interaction energy for hPPO and tobacco PPO. Table S2: Influence of
PPO herbicides on the activity of plant PPOs.
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