Supplementary Data

Protoporphyrinogen oxidase inhibitors: from plant to human

Milan Jakubek ^{1,2,3}, Michal Masařík ^{1,2,4,5}, Tomáš Bříza ^{1,2,3}, Robert Kaplánek ^{1,2,3}, Kateřina Veselá ^{1,2,3}, Nikita Abramenko ¹, and Pavel Martásek ^{1*}

¹Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic; pavel.martasek@lf1.cuni.cz ² BIOCEV, First Faculty of Medicine, Charles University, Prague, CZ-252 50 Vestec, Czech Republic ³ Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, CZ-166 28 Prague, Czech

⁴Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic ⁵Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic

Content:

Figure S1. ¹H and ¹³C NMR-spectra of the compound 2

Figure S2. ¹H and ¹³C NMR-spectra of the compound 3

Figure S3. ¹H and ¹³C NMR-spectra of the compound **9**

Figure S4. ¹H and ¹³C NMR-spectra of the compound **10**

Figure S5. 1H and 13C NMR-spectra of the compound 11

Figure S6. ¹H and ¹³C NMR-spectra of the compound **12**

Figure S7. ¹H and ¹³C NMR-spectra of the compound 13

Figure S8. ¹H and ¹³C NMR-spectra of the compound **17**

Figure S9. ¹H and ¹³C NMR-spectra of the compound 18

Figure S10. 1H and 13C NMR-spectra of the compound 19

Table S1. Calculated interaction energy for the human a tobacco PPO.

Table S2. Influence of PPO herbicide on activity of the plant PPOs.

Figure S11. Re-docking of acifluorfen to the binding pocket of hPPO (PDB: 3NKS).

References

Figure S4. ¹H and ¹³C NMR-spectra of the Schiff base **10**

Figure S5. ¹H and ¹³C NMR-spectra of the Schiff base **11**


```
Chromone 17
```


Chromone 19

Figure S10. ¹H and ¹³C NMR-spectra of the Chromone **19**

Table S1. Calculated interaction energy for the human a tobacco PPO.

	Interaction energy		
Compounds	(kcal/mol)		
	hPPO ¹	TnPPO ²	
Schiff base 9	-7.6	-7.3	
Schiff base 10	-8.6	-8.6	
Schiff base 11	-8.0	-9.1	
Schiff base 12	-7.6	-8.8	
Schiff base 13	-8.6	-9.9	
Chromone 17	-8.9	-8.4	
Chromone 18	-8.8	-8.6	
Chromone 19	-8.7	-8.5	

¹hPPO = human PPO, ²TnPPO = PPO from *Nicotiana tabacum*.

Table S2. Influence of PPO herbicide on activity	of the	plant PPOs
--	--------	------------

Name	Source of PPO	IC50 (mmol/l)	Ref.
Oxyfluorten	Amaranth	0.2	
	Arabidopsis	0.238	[1]
	Soybean	0.135	[1]
	Rapeseed	0.157	
Oxadiazon	E. indica PPO1 (0.0247)	0.00247	[2]
Lactofen	Amaranthus tuberculatus	0.06	[3]
	*Amaranth	0.029	
	*Arabidopsis	0.029	[1]
	*Soybean	0.026	
	*Rapeseed	0.04	
butarenacii	Corn	0.0005	
	Black nightshade	0.0013	
	Tall morningglory	0.002	
	Velvetleaf	0.0002	[4]
Saflufenacil	Corn	0.0006	
	Black nightshade	0.0002	
	Tall morningglory	(0.002	
	Velvetleaf	0.0004	
Oxadiargyl		~1	[5]
Fomesafen	*Amaranth	0.11	
	*arabidopsis	0.176	[1]
	*Soybean	(0.93)	
	*Rapeseed	0.102	
BAR-2	Nicotiana tabacum	~ 0.01	[6]

*Recombinant

Re-docking of acifluorfen

Figure S11. Re-docking of acifluorfen to the binding pocket of hPPO (PDB: 3NKS). The result of the docking experiment is shown in yellow, co-crystallized orientation in turquoise, the receptor binding-pocket in light gray.

References

- Park, J.; Ahn, Y.; Nam, J.-W.; Hong, M.-K.; Song, N.; Kim, T.; Yu, G.-H.; Sung, S.-K. Biochemical and physiological mode of action of tiafenacil, a new protoporphyrinogen IX oxidase-inhibiting herbicide. *Pesticide Biochemistry and Physiology* 2018, 152, doi:10.1016/j.pestbp.2018.08.010.
- Bi, B.; Wang, Q.; Coleman, J.J.; Porri, A.; Peppers, J.M.; Patel, J.D.; Betz, M.; Lerchl, J.; McElroy, J.S. A novel mutation A212T in chloroplast Protoporphyrinogen oxidase (PPO1) confers resistance to PPO inhibitor Oxadiazon in Eleusine indica. *Pest management science* 2020, *76*, 1786-1794, doi:10.1002/ps.5703.
- 3. Dayan, F.E.; Daga, P.R.; Duke, S.O.; Lee, R.M.; Tranel, P.J.; Doerksen, R.J. Biochemical and structural consequences of a glycine deletion in the alpha-8 helix of protoporphyrinogen oxidase. *Biochimica et biophysica acta* **2010**, *1804*, 1548-1556, doi:10.1016/j.bbapap.2010.04.004.
- Grossmann, K.; Hutzler, J.; Caspar, G.; Kwiatkowski, J.; Brommer, C. Saflufenacil (Kixor[™]): Biokinetic Properties and Mechanism of Selectivity of a New Protoporphyrinogen IX Oxidase Inhibiting Herbicide. *Weed Science* 2011, 59, 290-298, doi:10.1614/WS-D-10-00179.1.
- Jiang, L.-L.; Tan, Y.; Zhu, X.-L.; Wang, Z.-F.; Zuo, Y.; Chen, Q.; Xi, Z.; Yang, G.-F. Design, Synthesis, and 3D-QSAR Analysis of Novel 1,3,4-Oxadiazol-2(3H)-ones as Protoporphyrinogen Oxidase Inhibitors. *Journal of agricultural and food chemistry* 2009, *58*, 2643-2651, doi:10.1021/jf9026298.
- Wang, D.-W.; Zhang, R.-B.; Yu, S.-Y.; Liang, L.; Ismail, I.; Li, Y.-H.; Xu, H.; Wen, X.; Xi, Z. Discovery of Novel N-Isoxazolinylphenyltriazinones as Promising Protoporphyrinogen IX Oxidase Inhibitors. *Journal of Agricultural and Food Chemistry* 2019, 67, 12382-12392, doi:10.1021/acs.jafc.9b04844.