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Abstract: Carbon dots have gained tremendous interest attributable to their unique features. Two
approaches are involved in the fabrication of quantum dots (Top-down and Bottom-up). Most of
the synthesis methods are usually multistep, required harsh conditions, and costly carbon sources
that may have a toxic effect, therefore green synthesis is more preferable. Herein, the current review
presents the green synthesis of carbon quantum dots (CQDs) and graphene quantum dots (GQDs)
that having a wide range of potential applications in bio-sensing, cellular imaging, and drug delivery.
However, some drawbacks and limitations are still unclear. Other biomedical and biotechnological
applications are also highlighted.
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1. Introduction

In recent years, carbonaceous and carbon-based nanomaterials have gained great
attention owing to their relevant properties [1–4]. In particular, these substances are charac-
terized by high biocompatibility, less toxicity, significant thermal and mechanical features,
and can functionalize easily [5–8]. Fluorescent carbons are commonly known as carbon
dots because of their unique properties that revealed strong fluorescence [9]. In addition,
carbon dots are distinguished by high stability, reducing toxic activity, water solubility, and
derivatization availability. All of these unique features support their applications in several
disciplines as shown in Figure 1 [10–14]. Carbon dots are relatively new and considered
one of the most promising nanomaterials ever recognized to humanity, mainly composed
of the heteroatoms (functional groups) attached with carbonized core [15]. Carbon dots
including different types of nanomaterials such as polymer dots, carbon nanodots, and
graphene quantum dots (GQDs). It defined as nanoparticles with small size (<10 nm) that
consist of sp2 hybrid conjugated of carbon core-shell between carbon (core) and organic
functional groups (shell) such as N–H,–OH,–C = O, COOH, C−O, and C–N or polymer
aggregates [16]. Several studies have reported that different techniques and carbon sources
are employed in the fabrication of carbon dots with different structures [17].
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Figure 1. Chart of green synthetic methods of quantum dots (carbon quantum dots (CQDs) and 
graphene quantum dots (GQDs)) and their biomedical applications. 

Typically, two techniques are commonly used in the formation of carbon dots; top-
down and bottom-up as described in Figure 2 [18,19]. Usually in the first process “top-
down” carbon dots are fabricated by chemical and physical cutting approaches; laser ab-
lation/passivation [20], chemical oxidation, and electrochemical synthesis [21]. In the sec-
ond method, “bottom-up” carbon dots are converted from appropriate molecular precur-
sors with specific conditions represented by combustion, hydrothermal and thermal [22], 
and ultrasonic irradiation [23] in which the conditions required fewer amount of carbon 
sources. It is noteworthy to mention that bottom-up strategy is more preferable to top-
down because some limitations are related to this technique including the high cost of the 
required materials, long time, and harsh conditions [24]. Further, the fabrication of carbon 
dots via top-down approaches usually needs a separate step for functionalization and 
passivation of the surface but the second method” bottom-up” does not require that [15]. 
In addition, different more approaches have been reported such as plasma treatment [25], 
cage-opening of fullerenes [26], and solution chemistry approaches [27]. The formed car-
bon dots, nevertheless, of its production methods, have different sizes that required com-
plicated separation technique to get a mono-dispersed carbon dot. There are several post-
synthesis separation processes such as chromatography [28], dialysis [29], and gel electro-
phoresis [30]. On the other hand, the characterized composition of carbon dots gave it 
significant points for several applications like bioimaging, label-free detection, photoca-
talysis, and sensing. The current review discussed synthetic approaches for the fabrication 
of carbon dots and the most significant properties. The biotechnological and biomedical 
applications are also highlighted. 
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Figure 1. Chart of green synthetic methods of quantum dots (carbon quantum dots (CQDs) and graphene quantum dots
(GQDs)) and their biomedical applications.

Typically, two techniques are commonly used in the formation of carbon dots; top-
down and bottom-up as described in Figure 2 [18,19]. Usually in the first process “top-
down” carbon dots are fabricated by chemical and physical cutting approaches; laser
ablation/passivation [20], chemical oxidation, and electrochemical synthesis [21]. In the
second method, “bottom-up” carbon dots are converted from appropriate molecular precur-
sors with specific conditions represented by combustion, hydrothermal and thermal [22],
and ultrasonic irradiation [23] in which the conditions required fewer amount of carbon
sources. It is noteworthy to mention that bottom-up strategy is more preferable to top-
down because some limitations are related to this technique including the high cost of the
required materials, long time, and harsh conditions [24]. Further, the fabrication of carbon
dots via top-down approaches usually needs a separate step for functionalization and
passivation of the surface but the second method” bottom-up” does not require that [15].
In addition, different more approaches have been reported such as plasma treatment [25],
cage-opening of fullerenes [26], and solution chemistry approaches [27]. The formed
carbon dots, nevertheless, of its production methods, have different sizes that required
complicated separation technique to get a mono-dispersed carbon dot. There are several
post-synthesis separation processes such as chromatography [28], dialysis [29], and gel
electrophoresis [30]. On the other hand, the characterized composition of carbon dots
gave it significant points for several applications like bioimaging, label-free detection,
photocatalysis, and sensing. The current review discussed synthetic approaches for the
fabrication of carbon dots and the most significant properties. The biotechnological and
biomedical applications are also highlighted.
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2. Unique Features of Quantum Dots (CQDs and GQDs)

Carbon dots are considered one of the recently discovered materials having promising
and unique properties [31]. The chemical composition of carbon dots containing several
function groups on the surface such as amino groups, oxygen, and polymer chains is
highly supported by their remarkable features. These functionals have a significant effect
on photoluminescence activity and also enhanced the energy gap and energy level of
the surface [32]. Such substances have gained great attention because of their significant
tunable optical properties, less toxic, simplicity, and low cost, which support them as
perfect candidates for use in optical sensors [33]. The aptness of emission of light through
carbon dots near the Infra-red area is of particular prominence because the light in this
region has deeper tissue penetration proficiency and biological systems are transparent
to these wavelengths [34]. Typically, CQDs and GQDs exhibit effectiveness in the short-
wavelength area for photon-harvesting that caused by π–π* transition of C = C bonds
and n-π* transitions of the groups; C–N, C = O, and C−S for example. Significant optical
absorption was demonstrated in the ultraviolet region expanded to the visible range. The
region between 230 and 270 nm appeared absorption owing to π–π* transition related to
C = C bonds, while the peak shoulder in the range of 300–390 nm is attributed to n–π*
transition of C = O bonds [35]. The absorbance can be modified by different types of
surface passivation and functionalization methods [36]. For example, multimode emissive
carbon dots with high fluorescent were prepared using D-cysteine and L-cysteine. Two
absorption bands appeared at the same time related to L-carbon dots at 243 and 300 nm
with the low band at 400 nm. The absorbance was displayed due to π-π* transition of
the aromatic sp2 domains (243 nm) and n-π* transition of C = O, C–N, C–S (300 nm).
However, D-cysteine was not showed any band above 240 nm [37]. The results reported
that several function groups (e.g., NH2 and COOH) were found on the surface of L-carbon
dots and hence the band gap increased due to the surface interfacial excitation. In addition,
Lin et al. have recently investigated the synthesis of other carbon dots from poly (vinyl
alcohol) and phenylenediamine. The formed composite exposed two different bands
at 247 and 355 nm, matching to π–π* transition of C = C bonds and n-π* transition of
C–N, C = N, respectively [38]. Commonly, CQDs have been evaluated successfully in
surface passivation as they have the ability for improving brightness because of long
wavelengths and decreasing quantum yield. On the opposite, the quantum yield of
graphene dots was more than carbon quantum dots because their structures appeared as
layers and crystalline phases [32]. The color of the fabricated carbon dots was changed
between red, green, and blue. It was not recommended for multi-color imaging, due
to the differences in chemical composition, size, and increasing heterogeneity of carbon
dots. Most of these particles appeared wide emission spectra originating from difficulty
controlling the synthesis processes. Interestingly, carbon dots have several attractive optical
properties, but photoluminescence is the most significant one, including phosphorescence
and fluorescence. The property of electrochemiluminescence plays an important role in
surface passivation, whereas CQDs that passivated have a strong fluorescence and weak
electrochemiluminescence [39]. For example, methyl parathion sensors were fabricated
by the hydrothermal reaction between tyrosine methyl ester and carbon dots with citric
acid employed as a resource of carbon. These types of sensors revealed high and stable
photoluminescence and the yield of quantum was approximately 3.8%. This could be
successfully developed to determine organophosphorus compound [40].

In addition, most studies revealed that carbon dots have excitation-dependent fluo-
rescence features, although, the excitation-independent emission in S, N-co-doped carbon
dots have been investigated [41]. For instance, excitation-independent carbon dots with
tunable fluorescent colors have been synthesized through a well-controlled wet oxidative
process whereas the results displayed that the photoluminescent properties of carbon dots
were principally detected by surface oxidation degree and their molecular weight [42]. The
fluorescent carbon dots having fluorescence wavelength can be tuned across the visible
spectrum with varying the passivation or functionalization substances, the molar mass
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ratio of the precursors, and the different synthetic factors. The emission of CQDs can be
also influenced by an assortment of adaptable solvents. Subsequently, the performance
of excitation dependent/independent photoluminescence is mostly originating from the
surface states of carbon dots [43]. It is worth mentioning that the emission mechanism
of carbon dots is still unclear. Currently, some expected theoretical explanations may be
acceptable including surface state electron-hole radiation rearrangement, quantum size
effect, and molecular state luminescence emission mechanism [44]. Consequently, the
preparation of monochromatic fluorescent carbon dots and the study of the fluorescence
mechanism is an imperative research area for developing the applicability of carbon dots.

On the other hand, biocompatibility is one of the most important features that showed
a considerable influence on the application of carbon dots particularly in bio-imaging
and cellular imaging [33]. GQDs having an excess of oxygen groups which showed high
biocompatibility, low toxicity and enhanced for use in radiotherapy [45,46]. The cytotoxic
effect of GQDs was caused by reactive oxygen species generated from the function groups.
For example, the in vivo studies of GQDs exhibit low toxicity, no accumulation in the basic
organs, and the kidney can dispose of it quickly. By investigation, it has appeared that the
mice were not affected by injection with GQDs whereas the graphene oxide showed toxic
activity until its death. This happens because graphene oxide can aggregate in the organs.

3. Fundamental Approaches of Carbon Dots Fabrication (Green Synthesis)

Green synthesis is Avery important topic matching with sustainability in our daily
life [47–51]. Relevant studies have reported that small organic precursors can be poly-
merized and carbonized for the synthesis of carbon dots such as ammonium citrate [52],
ethylene glycol [53], citric acid [54], phenylenediamine [55], graphite [56], and carbon
nanotube [57]. To make them potential fluorescent materials with unique surface func-
tionalities, two main approaches are widely investigated for the generation of ultra-small
fluorescent carbon dots. Among these synthetic approaches, the colloidal synthetic method-
ology has received significant interest due to the generation of large quantities with a tightly
controlled size of carbon dots [58]. For example, GQDs were fabricated from small aromatic
molecules by stepwise solution chemistry and characterized by significant size uniformity
and well-defined structures as presented in Figure 3 [59]. The structure controlling could
be enhanced through the covalently bonding between 2′,4′,6′-trialkyl-substituted phenyl
moieties (at the 1′-position) to the edges of graphene. The peripheral phenyl groups twisted
from the plane of the graphene due to the crowding on the edges, and then the alkyl chains
forming a three-dimensional cage around it (Figure 3). This action caused increasing dis-
tance between the conjugated systems in all three dimensions and consequently critically
decreases the intermolecular π–π* attraction. The well-defined colloidal quantum dots
have some unique characteristics that make them excellent model systems for studying
fundamental processes in complex carbon materials.

Green chemistry is one of the fundamental branches of chemistry that provide golden
solves for most problems with significant properties. Green chemistry has several advan-
tages including, safe, environmentally friendly, no need for hazardous materials, and can
occur under normal conditions [60]. Green chemical procedures have been engaged in the
formation of carbon dots from several natural sources counting chicken eggs, animals [61],
different plant species including fruits and vegetables [62], and waste materials like waste
paper and frying oil [63]. There is an exponential increase in the number of research articles
with both carbon quantum dots and green synthesis content. The fabrication processes
can be achieved by different types of methods including hydrothermal/solvothermal,
microwave-assisted polymerization, pyrolysis, and carbonization [64]. These approaches
are widely used in the synthesis of carbon dots and having several advantages as displayed
in Figure 4. In Table 1, conventional CQDs production methods, and maximum emission
wavelength, quantum yield and reported CQDs dimensions of CQDs produced by these
methods were compared.
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Table 1. Recent green quantum dots produced by the bottom-up approach (Hydrothermal, microwave-assisted, and
pyrolysis) and their applications.

Synthetic
Approach Source Quantum

Yield (%)
Size Range

(nm) λem Max Application Ref.

Hydrothermal Banana
peel waste 5 4–6 355–429 Bio imaging [65]

Hydrothermal
Cambuci juice
(Campomanesia

phaea)
21.3 3.7 270, 283 Sensing of Zn2+ [66]

Hydrothermal Biomass waste 4.3–8.2 1.3 and 4.9 445, 435, 43, 435 Detection of Fe3+ [67]

Hydrothermal Biomass waste 14–3.5 6 205, 260 Bio imaging [68]

Hydrothermal Manilkara
zapota fruits 5.7, 7.9, 5.2 1.9 ± 0.3, 2.9 ±

0.7, 4.5 ± 1.25 405, 488, 561 Bio imaging [69]

Hydrothermal Broccoli - 2–6 330–470 Ag+ sensing [70]

Hydrothermal Lemon juice 79 4.5 540 Biosensors [71]

Hydrothermal Cherry
tomatoes 9.7 7 430 Biosensors [72]

Microwave-
assisted ND 26 ~10 ND sensor of Hg2+

detection
[73]

Microwave-
assisted

Cotton
linter waste ND 10.1 420 Bioimaging [74]

Microwave-
assisted Quince fruit 8.6 4.9 450 Bioimaging [75]

Microwave-
assisted

Roasted–
Chickpeas 1.8 4.5–10.3 435 Detection of Fe3+ [76]

Pyrolysis Chia seeds ND 4 ND Sensors [77]

Pyrolysis Finger
millet ragi ND 6 ND Biosensor [78]

Pyrolysis Mango 18.2 6 525 Biosensor [79]

ND: Not defined.

3.1. Hydrothermal/Solvothermal Process

Hydrothermal or solvothermal carbonization strategy is an environmentally friendly,
cheap, and nontoxic approach involved in the fabrication of a novel variety of carbon-based
substances from different starting materials [65]. Hydrothermal carbonization process has
been reported for the synthesis of self-passivated fluorescent CQD in one step consuming
several reagents such as acids (ascorbic, citric, and gelatin), animal products (cow milk,
bovine serum albumin, and egg albumin), grass, chitosan, food caramels, coffee seeds,
orange juice, banana, honey, soy milk, watermelon peels, cellulose, starch, pomelo peel,
and paper ash as carbon source. Ideally, a solution of the organic precursor is reacted
and sealed in a hydrothermal reactor using a high temperature and the groups attached
with CQDs reflect the importance of characteristic fluorescence [80–82]. On the other
hand, solvothermal carbonization followed by organic solvent extraction is a well-known
technique to fabricate CQDs whereas, carbon-yielding compounds were heated in a high
boiling point organic solvents, this is then followed by extraction and concentration pro-
cedure [83]. Different natural sources including plants are used in the green synthesis
of water-soluble fluorescent carbon dots through hydrothermal/solvothermal treatment
in a single step. For example: GQDs (~2.25 to 3.50 nm) have been synthesized using
starch by green and one-pot hydrothermal process. The reaction was initiated by hydroxy-
lation then ring-closure condensation and produced hydrophilic GQDs with significant
photoluminescence emission and low toxicity. A previous study has been prepared a
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high yield of GQDs (44.3%) through the facile hydrothermal method from glucose. The
product showed green photoluminescence and excitation-independent photoluminescence
emission features [84]. A one-step hydrothermal treatment of natural wastes from Ananas
comosus and Citrofortunella microcarpa was also involved in the green synthesis of CQD [85].
Citrus lemon juice was used as well in the preparation of fluorescent CQDs (~2 to 10 nm)
via hydrothermal strategy [86]. It exposed great photoluminescence of 10.2% quantum
yield; the photoluminescence intensity was PH-dependent when the maximum intensity
appeared at six and effectively applied in the cell. A similar study has been used orange
waste peels in the fabrication of amorphous fluorescent CQDs through the hydrothermal
carbonization method at mild conditions (180 ◦C) [87]. It is composed of ZnO and em-
ployed in photocatalytic performance using naphthol blue-black azo dye and the superior
photocatalytic degradation was distinguished. Other biocompatible and photostable CQDs
(~2.0 to 6.0 nm) were produced from by-products in one-pot of hydrothermal action of
the biorefinery process (Figure 5) [88]. The significant components of by-products were
the degradation products (auto hydrolyzate) of biomass pretreated by autohydrolysis.
The quantum yield of blue-green CQDs was about 13% that showed good stability of
fluorescence performance, high resistance to photobleaching, and temperature change.
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On the other hand, cyanobacteria were employed in the fabrication of cost-effective
and water-soluble CQDs via a simple hydrothermal approach (Figure 6) [89]. The possible
mechanism was suggested in Figure 7. Cyanobacteria are reached by proteins and peptido-
glycan and it is reasonable to deduce that the cyanobacteria first suffered from hydrolysis
under thermal conditions and produced large amounts of amino acid, N-acetylglucosamine
acid, and N-acetylmuramic acid. Polymerization occurred during the synthetic process,
and the formed soluble polymers were subjected to carbonization, thus facilitating the
formation and growth of carbon cores. Further, since complex compounds took part in the
synthetic reaction, the surfaces of the CQDs were more likely to attach multiple functions
(Figures 6 and 7) [89]. It was mono-dispersed about 2.48 nm with a quantum yield of 9.24%
and characterized by excitation-dependent emission behavior. The cyanobacteria that
applied in CQDs did not expose photobleaching under long-time ultraviolet irradiation
however displayed great photostability under pH and salinity.
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Additionally, coffee grounds were involved in the fabrication of remarkably fluores-
cent GQDs through an approach that requested hydrazine hydrate-assisted hydrothermal
cutting then functionalization by polyethyleneimine. The polyethyleneimine- functional-
ized GQDs enriched the band-edge photoluminescence with single exponential decay [90].
Further, novel CQDs were recently fabricated via hydrothermal carbonization from renew-
able chitosan and biocompatible amino acids to produce N-doped chitosan-based CQDs
(Figure 8) [91]. The biocompatibility of producing quantum dots was documented, which
revealed luminescence in the visible region. It was observed that the quantum yield was
influenced by modifications with chemical reagents; glutamic acid and lysine (7.4%, 11.5%),
respectively; however, amino acid functionalization did not show a remarkable effect on
fluorescence properties. In addition, chitosan was applied in the synthesis of spherical
CQDs with two-dimensional structures which demonstrated inhibition corrosion of BIS
2062 carbon steel and also rich in C–O and C = O groups [92].
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3.2. Microwave-Assisted Heating

Microwave-assisted is an economical and quick procedure that can be used to obtain
CQDs, especially when compared to electrochemical and hydrothermal methods. This
technology is considered one of the hot areas of research that rapidly developing and
utilized microwave rather than direct heating [93]. Carbon-based materials can inter-
act with microwaves significantly. This feature enhanced the technique for producing
effectual and localized heating, so the carbonization procedures become favorable and
simplify the emergence of distinct morphology of the nanostructures. Several studies have
investigated the green synthesis of quantum dots by this technique. For example, an effi-
cient and controlled synthetic approach of carbon dots has been reported using branched
polyethyleneimine and citric acid which are employed to change the internal structure [94].
Such a system supports the versatility of carbon dots that could be developed easily by
facile fabrication methods between catalytic properties and photoluminescent. More re-
cently, spherical GQDs have been papered through a green approach using cow’s milk via
a one-pot microwave-assisted heating method. It was observed that the photoluminescence
properties were affected by ionic strength and healing time [95]. Therefore, GQDs were
biocompatible with the L929 cell line; however, the complex exhibited important cytotoxic
activity against several cancer cells. Moreover, a safe synthetic method was investigated
for the fabrication of green luminescent graphitic carbon nitride quantum dots coating
with sulfur and oxygen and treatment of citric acid and thiourea in the microwave. The
luminescence performance was pH-dependent, and the wavelength was excited in the
visible region. The result appeared to high quantum yield (31.67%), suitable biocompati-
bility, and prevent interference in the medium of high ionic strength [96]. Additionally, a
recent study investigated the green preparation of CQDs from Vaccinium Meridionale Swartz
extract through microwave-assisted carbonization. The method was very distinguished in
obtaining large amounts of CQDs with concentrations higher than a mass fraction of 80%
in only 5 min. The TGA analysis induced that the producing quantum dots (size 30 nm in
diameter) showed high thermal resistance even in an atmosphere consisting of air until
300 ◦C [97].

3.3. Pyrolysis

Thermal decomposition has been known as the preferred method for the production
of carbon dots which is conducted by pyrolysis or carbonizing the carbon precursors at
the increased temperatures [18]. Advantages of the above procedure include simplified
operations, solvent-free approaches, wider precursor tolerance, shorter reaction duration,
inexpensiveness, and scalable generation. Further, optical features of carbon dots are
optimized through alterations in main factors like the reaction temperatures, duration,
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and reaction mix pH [98]. A high fluoresce CQDs (~6 nm) were green synthesized via
the pyrolysis of Eleusine coracana where Cu2+ strongly quenched the fluorescent capacity
of CQDs comparing with other metal ions. The metal ions of Cu2+ preferred to adsorb
on the surface of CQDs through π-bond of aromatic CC, while other divalent metals
desired σ-bond with CQDs [78]. In addition, mono-dispersed CQDs were prepared by
a one-step thermal decomposition strategy from fennel seeds of Foeniculum vulgare as
displayed in Figure 9 [99]. The product displayed significant photostability, colloidal,
stability against pH changes, and no need for additional surface passivation step to develop
fluorescence. These particles revealed significant excitation- independent emission and
photoluminescence activity as well. Some factors are affecting the pyrolysis process such
as time of reaction and temperature that improve our vision about the formation of CQDs.
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On the other hand, silver nanoparticles supported by GQDs and silica are engineered
and formulated via a greener photochemical strategy and electrostatic deposition technol-
ogy affording highly active surface-enhanced for the Raman scattering layer. The prepared
aqueous solution of GQDs that was prepared during the reaction was employed as a
solvent and a reducing agent to cause in-situ silver-GQDs composite under UV irradiation
conditions. Silicon dioxide was used to collect the composite by electrophoresis deposition
system (Figure 10) [100]. GQDs could use as important sites to illuminate the signals of
Raman scattering, due to the suitable size (~1 to 4 nm) and the good distribution between
gaps and Ag nanoparticles. Because of the improving adsorption of Rhodamine 6G parti-
cles via π-π stacking, magnified specific surface area through SiO2 pattern and electrostatic
interactions from GQDs, the as-prepared substance revealed significant surface-enhanced
Raman scattering signal with significant reproducibility, the detection limit of Rhodamine
6G was increased up tar pitch, has a special structure containing an aromatic nucleus with
numerous side chains that bond on this graphene-like nucleus, that similar to the structure
of GQDs.
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4. Biomedical and Biotechnological Applications

Since the last decades, carbon dots are the new fellow of the carbon family with size
less than 10 nm that gained much interest of researchers due to their exclusive properties,
such as facile and inexpensive synthetic ways, low toxicity, availability of surface modifi-
cation, outstanding photoluminescence, and excellent water solubility [24]. Due to these
unique features, carbon dots have been widely applied in several types of scientific fields.
Phosphorescence and fluorescence are the most imperative phenomena found in carbon
dots which enhance their uses for in vivo and in vitro biosensing and bioimaging. It could
also be used in drug delivery, photocatalytic reactions, photodynamic, and photothermal
therapies. However, some problems are related to employing carbon dots with metal ions
that are usually toxic and environmentally hazardous whereas traditional carbon dots are
non-toxic and much safer, affording their good biological and environmental compatibil-
ity [101,102]. Sensor and bioimaging applications of CQDs produced by green chemistry
methods are classified and analyzed according to the synthesis methods of CQDs and
summarized in Table 1.

4.1. Cancer Therapy and Drug Delivery

CQDs have a strong ability to act as drug and gene carriers due to their biocompat-
ibility, photoluminescence, and non-toxicity, while the very small size and large surface
area permit fast cellular uptake with little effect on the activity of the drug [103,104].
For instance, the antitumor drug (doxorubicin) was successfully loaded on the surface of
the composite (arginine-glycine-aspartic acid-GQDs) which was applied in drug delivery
and targeted imaging. The significant fluorescent-GQDs able to analyze the cellular uptake
at a definite time then the doxorubicin drug was released. The drug release was found to be
influenced by pH and the interaction between doxorubicin and GQDs through hydrogen
bonds. Doxorubicin conjugated with GQDs displayed potent cytotoxic activity against
U251 glioma cells comparing to free doxorubicin. By investigation of the cellular uptake, it
was found that some of GQDs and the tumor drug doxorubicin were penetrated until reach-
ing the cell nucleus after incubation (~16 h). This behavior increase capability of cytotoxicity
of doxorubicin [105]. An excellent smart stimuli-response drug delivery system has been
studied that consist of CQDs coated with alginate beads and garlic crude [106]. By compar-
ing the presence of garlic extract loaded on the surface of alginate beads in coated carbon
dots and uncoated alginate beads was found the amount 60% higher. The system was
found to be pH-dependent controlled drug release and caused therapeutic effectiveness,
stimulatingly, based on the amount of pathogen that existed in the target. Additionally, folic
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acid attached with GQDs was also examined that used in doxorubicin loading, detection of
real-time of cellular uptake consequently drug release. This precisely fabricated nanostruc-
tured was immediately assimilated by HeLa cells through receptor-mediated endocytosis,
while release and accumulation of doxorubicin continued. The in vitro studies confirmed
the effective and significant cytotoxicity of the synthesized nano assembly targeted HeLa
cells, but the effect decreased for the non-target cells. Liu et al. [107], also described the
vector of insoluble aromatic drug SN38 via a PEGylated nanographene oxide that having a
size between 5 and 50 nm. The delivered cancer-killing drug was found to be 1000-fold
more potent than the approved drug by the FDA used in the treatment of colon cancer.
Furthermore, CQDs coupled with Au nanoparticles for an assembly, then conjugated with
PEI–pDNA for delivering DNA to cells. Fluorescence of CQDs could be quenched by Au
nanoparticles; thus, pDNA release could be probed by the recovery of the fluorescence
signals. The experimental results showed that the assembly entered into the cells with
the CQDs located in the cell cytoplasm and the pDNA released entered the cell nuclei,
achieving critical transfection efficiency (Figure 11) [108].
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The pancreatic cancers (MiaPaCa-2 cells) were also investigated by applied GQDs
with biodegradable charged polyester vectors [109]. The producing substance was utilized
as nanocarriers for loading of doxorubicin and quite interfering ribonucleic acids. It also
exhibits remarkable physiological stability, excellent K-ras down-regulation effect, and
operative bioactivity inhibitions. Furthermore, the cells could be destructed using laser light
that generates heating for the nano complexes; consequently, the photothermal caused cell
death. The laser caused the firing of payloads from the formed nanostructured composites,
and this active firing function greatly enhanced their anticancer activity. From the relevant
studies, these composites could be used as remarkable tools as a drug carrier for in vivo
examinations. In addition, gene delivery has been proved significantly with positively
charged carbon dots that may be attached with plasmid DNA and therapeutic plasmid
was professionally transferred into the cells and low toxicity [110]. It was found that
polyethyleneimine and hyaluronate–functionalized CQDs were internalized readily into
the cytoplasm of cancer via hyaluronate-receptor-mediated endocytosis. They displayed
outstanding gene condensation compatibility through electrostatic attraction and protective
capability by avoiding nuclease degradation [22].
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4.2. Imaging and Bioimaging

Live cell bioimaging is becoming an increasingly popular tool for elucidation of
biological mechanisms and is instrumental in unraveling the dynamics and functions of
many cellular processes. Bioimaging is a method for imaging and direct visualization
of biological processes in real-time which is often used to gain information on the 3D
structure of the observed specimen from the outside, i.e., without physical interference [111].
The optical features of quantum dots with carbon basis are key factors of the practical
application of these compounds because they release heavy fluorescence and have lower
cytotoxicity and high biocompatibility that could be used in bioimaging [112]. CQDs and
GQDs are widely used in bioimaging applications that are involved in cell imaging as
displayed in Table 2.

Table 2. Recent bioimaging application of CQDs and GQDs.

Cell Line Imaging Position Quantum Dots Conc. Color Ref.

L929 fibroblasts Membrane, cytoplasm 0.30 mg/mL ND [68]

HeLa Membrane, cytoplasm 10 µg/mL Blue, green, yellow [69]

Nematodes ND 100 µg/mL Blue, green, red [65]

H2452, HUVEC ND 50 µL/mL, 100 µL/mL Blue [74]

HT-129 ND ND Blue [75]

HEK-293 cells Cell membrane 40 µg/mL Multi-color [113]

A549 MCF-7 Cell cytoplasm 25 µg/mL Yellow [114]

HeLa Cell nucleus 0.01 mg/mL Green [115]

MCF-7 Cell membrane,
cytoplasm, nucleus 100 µg/mL Green [116]

MDA-MB231 Cell 0.1 mg/mL Red [117]

MC3T3 Cell cytoplasm 2.5 mg/mL Bright green or blue [118]

Therefore, it has become suitable for clinical and biological imaging and related di-
agnostic and therapeutic areas, such as phototherapies and diagnostic cancer imaging.
For example, 200 µL of CQDs conjugated with wheat straw (0.2 µg mL−1) was injected
through the tail vein of the mouse and the optical imaging was investigated [88]. The uti-
lization of CQDs as fluorescent labels in imaging different cells has been investigated [119].
CQDs are successfully applied in the field of bioimaging due to their remarkable prop-
erties including, low toxicity, eco-friendly and fewer side effects, have strong ability to
soluble in water, and visible-to-near infrared (NIR) emission properties [120]. Different
cell lines have been imaged by CQDs such as Ehrlich ascites carcinoma cells, HepG2 cells,
Escherichia coli (E. coli), HeLa cells, human lung cancer (A549), and NIH-3T3 fibroblast
cells [120–124]. Nescafe instant coffee was involved in yielding CQDs (quantum yield
~5.5%) with a size of 4.4 nm [125]. Coffee-derived CQDs have been used to image carcinoma
cell lines and small guppy fish without functionalization. Human breast cancer MCF-7
can be detected and imaging through carbon dots passivated with PPEI-EI for two-photon
luminescence microscopy [80]. Bright photoluminescence was induced in the cytoplasm
and cell membrane at 37 ◦C after 2 h incubation whereas the cellular uptake of carbon dots
was temperature-dependent with no internationalization perceived at 4 ◦C. Two photons as
turn-on fluorescent probes were applied in bioimaging for the H2S in tissues and cells [126].
It is worthy to mention that CQDs were modified with Cu(II) complex that quenched quan-
tum dots fluorescence and then, competitive copper sulfide formation caused fluorescence
dequenching. A previous study prepared a large quantum yield of bright green-GQDs
(11.4%) that are highly soluble in H2O and several organic solvents without any change and
excellent photoluminescence [127]. Furthermore, yellow-green-photoluminescent GQDs
(almost 10 nm) were fabricated by strong oxidation of graphite; the formed substance
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displayed low toxicity, excellent photostability, and good solubility. The fluorescence
quantum yields were estimated by 7% and have been applied in cell bioimaging [128]. The
bioimaging applications still faced some problems that required further investigations.
Several reports have previously investigated the fabrication of GQDs with various emission
wavelengths between ultraviolet to near-infrared, but the producing quantum yield was
found to be lower than conventional semiconductor quantum dots. Hence the develop-
ment of quantum yield became an urgent request. GQDs with strong red-near infrared
emission could be used as appropriate nano-probes in bioimaging [83,129]. Nano-probes
with several functions could be an answer for industrial and environmental challenges
in the field of imaging and bioimaging. GQDs can be applied in the field of therapy and
imaging for the same purposes due to their optical and radioactive properties. Different
challenges must be considered in the fabrication of GQDs-based nano-probes which are
used in optical imaging concurrently with magnetic resonance imaging, and evaluation of
computed tomography. Very few reports have rarely investigated the imaging of in-vivo
targeted tumors through GQDs. Cancer diagnosis in young animals involves great accumu-
lations in the tumor tissues. The role of antibodies/or peptides-GQDs in imaging of cancer
target needs further investigation. Several issues related to GQDs are still faced drawbacks
and problems that need to be solved and put under deep studies for example; excitation
of multi-photons, therapy of brain gene, applications and innovation in neurobehavior,
and penetration of brain barrier in blood vessels [130–132]. Additional studies are still
requested to evaluate the cytotoxic effect of GQDs with some factors including different
morphologies, sizes, and surface coating [116]. Cost-effective and eco-friendly methods
have been used to prepare GQDs improved with polyethyleneimine or (3-carboxyl) phenyl
bromide phosphine that produced on a large scale, whereas GQDs-polyethyleneimine was
synthesized by a simple hydrothermal process. In addition, GQDs-polyethyleneimine
was conjugated with (3-carboxyl) phenyl bromide phosphine that attached by an amide
linkage. The average sizes of the formed two composites were estimated by 3.75 and
3.25 nm, respectively. Both fabricated substances displayed low cytotoxicity, important
optical feature, and showed selectivity to image mitochondria or cell nucleus. This is
reflecting the vital role of GQDs in bioimaging particularly cell nucleus and mitochondria
imaging in vitro and in vivo for diagnosis and therapy [133].

4.3. Anti-Microbial Activity

CQDs can interact successfully with different viruses and retard infection [134].
For example, CQDs attached with amino groups or boronic acid could affect the entry of
the herpes simplex virus type 1. Hydrothermal carbonization strategy was employed in the
fabrication of CQDs by using 4-aminophenyl boronic acid hydrochloride; the product was
found to be effective against herpes simplex virus type 1. Other material was fabricated
from phenylboronic acid but did not show any activity at the applied concentration. These
CQDs can be used against one of the most relevant pathogenic human infections today
(coronavirus). Mechanistically, it may be due to the human coronavirus-229E entrance
inhibition, caused by the interaction of the boronic acid functions of CQDs with the HCoV-
229E S protein through pseudo-lectin-based interactions. The results support scientists
to replace the current applied antiviral substances (e.g., interferons and ribavirin). These
agents displayed many side effects, such as losing memory in the short-term, inhibition
in the function of decision-making, confusion, and extrapyramidal effects. More effort is
highly recommended to examine deeply the clinical trials for such materials as suggested
candidate for therapy and considered one way to challenge the difficult and life-threatening
diseases [135]. CQDs have been used as an antimicrobial against different types of bacte-
ria including, Pseudomonas aeruginosa, E. coli, and Staphylococcus aureus, also used in the
imaging of these microbes. CQDs work to identify the gram type of bacteria, evaluation
of microbial viability, and image biofilm [136,137]. It worth mentioning that the layers of
CQDs play a significant role in killing bacteria because it is used basically as a carrier for
conventional disinfection agents, while the label of fluorescence is involved for analyzing



Processes 2021, 9, 388 15 of 24

the dead bacterial cells. The quantum dots choose to interact with Gram-negative then ad-
sorbed on the surface after then the fluorescence emission increased clearly. The mechanism
of interaction occurs by verifying the balance of surface charge and CQDs inserted to the
surface from long alkyl chains, hence this action caused destructive cell wall and bacterial
inactivation. This differentiation strategy is distinguished by simplicity, fast, and occurs
easily [131]. The preparation process of carbon dots and their application for selectively
imaging and killing Gram-positive bacteria is represented in Figure 12. Glycerol was used
in fabrication process as a cheap source of carbon source and can afford hydroxyl groups for
the final product of carbon dots to enhance its good water dispersibility. The organosilane
molecule Si-QAC, containing a quaternary ammonium group and a long hydrocarbon
chain, was used as the carbon source and surface passivation agent. The quaternary am-
monium group and the long hydrocarbon chain of Si-QAC are crucial for endowing the
final carbon dots product with excellent antibacterial activity since these two moieties can
interact with the bacterial surface with electrostatic and hydrophobic interactions.
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4.4. Sensors and Biosensors

In literature, a lot of papers are designed for water treatment [138–140], and there
are several types of sensors fabricated from CQDs which have been involved in the iden-
tification of specific targets such as glucose [141], DNA [142], heavy metals [143], phos-
phate [144], proteins [145], H2O2 [146], and nitrite [147]. For instance, an electrochemical
carbonization strategy of urea and sodium citrate was used in the preparation of CQDs that
revealed high selectivity and sensitivity towards Hg2+ and photoluminescence emission
whereas the detection limits were 3.3 nM and 0.5 nM, respectively [148,149]. Several other
heavy metals were successfully detected as well including; Sn2+, Cr6+, Fe3+, Mn2+, Pb2+,
and Cu2+ as tabulated in Table 3 [150–152].
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Table 3. Different examples of biosensor application of CQDs and GQDs.

Analyte LOD Range λem Max Quantum Yield (%) Size Range (nm) Ref.

Zn2+ 5.4 µM 0–125 µM,
125–200 µM 270, 283 21.3 3.7 [66]

Fe3+ 0.073 µM 0.1–0.9 µM 445, 435, 43, 435 4.3–8.2 1.3 and 4.9 [67]

Ag+ 0.5µM 0–600 µM 330–470 - 2–6 [70]

V5+ 3.2 ppm 0–100 ppm 540 79 4.5 [71]

Trifluralin 0.5 nM 0.050–200 µM 430 9.7 7 [72]

Hg2+ 1.78 µM 5–50 µM ND 26 ~10 [73]

As3+ 0.02 µg/mL 0.1–2 µg/mL 450 8.6 4.9 [75]

Fe3+ 2.8, 8.2 µM 11.3, 37.5 µM 435 1.8 4.5–10.3 [76]

Hydrazine 39.7 µM 125–1125 µM ND ND 4 [77]

Cu2+ 10 nM 0–100 µM ND ND 6 [78]

Fe2+ 0.62 ppm ND 525 18.2 6 [79]

Fe3+ 0.21 µM 0–300 µM 450 22 6 [153]

Hg2+ 2.3 nM 5–100 µM 428 6.4 2.8 [154]

Hg2+ 2.6 µM 10–100 µM 420 9.6 8 [155]

Fe3+ 0.56 µM 50–350 µM 493 11.2 3 [156]

Fe3+ 0.5 µM 0–1.7 mM 450 8 2.8 [157]

It was found that the produced CQDs were influenced by excitation behavior and the
quantum yield was significant (~46.6%). The excellent sensitivity supports their utilization
in turn-off Hg2+ detection with a minimum limit of detection as low as 6 nM in the
dynamic range from 0 to 0.1 µM. It is also used as a turn-on sensor to detect glutathione
with high selectivity [158]. Carbon dots modified by boronic acid have been investigated
to determine non-enzymatic blood glucose. The glucose level has appeared in the range
between 9 and 900 µM and the detection limit was 1.5 µM. The results of this method
were consistent with the values determined by a commercial blood glucose monitor [159].
CQDs based fluorescence turn-on sensors were instructed to monitor H2O2 in an aqueous
medium. This is occurred by the mechanism of photo-induced electron transfer whereas
the sensor displayed proper sensitivity and selectivity with a detection limit of 84 nM [160].
In addition, CQDs doped with N and S have been prepared by thermal reaction between
ethylenediamine, ammonium persulfate, and glucose. The producing material revealed
bright blue emission with a strong fluorescent quantum yield of 21.6%. The product showed
significant characteristics comparing with carbon dots only such as high stability, easily
soluble in water, and uniform morphology. The fluorescence of the produced carbon nano-
dots could be remarkably quenched by methotrexate. This may be occurred by fluorescence
resonance energy transfer between methotrexate and carbon nano-dots. The significant
selectivity supports the effective recognition of methotrexate (more than 50.0 µM) with
a low detection limit of 0.33 nM. It also could be used for hands-on identification of
methotrexate in human serum [161].

On the other hand, it is worth mentioning that A few numbers of research spot the
light on the utilization of CQDs and GQDs in biosensing so further and deep investigations
are highly appreciated. Shi et al., [162] have been applied GQDs with Au nanoparticles
to enhance the fluorescence resonance energy transfer biosensors and utilized in specific
detection of a particular gene sequence in Staphylococcus aureus. Whereas Zhang et al. [163],
modified GQDs and employed them in biosensors fabrications that aimed at the detection
of microRNA. The study reported that changes in fluorescent intensity caused a signal
detecting microRNA with appropriate discrimination capabilities in the range from 0.1
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to 200 nM. CQDs functionalized with amino groups were also applied in biosensors and
for selective identification of hyaluronidase [164]. In addition, CQDs and GQDs could be
used in the manufacture of immuno-sensor. These types of sensors can be fabricated from
8-hydroxy-22′-deoxyguanosine while CQDs doped with Au/SiO2coreshell nanoparticles
were immobilized on the surface of the platinum electrode [19].

5. Limitations and Future Prospective

In recent decades, carbon dots have gone through a great revolution and have become
one of the key areas for humans. However, certain gaps and points remain secret. The
origin of fluorescence emission is widely discussed and further research is needed [165].
The scientists have not defined yet the role and effect of carbon dots structures on their
properties; but this limitation did not prevent researchers from deep investigation for
synthesis and applications particularly in the biological sciences [166,167]. Despite the
several applications of CQDs in the field of biomedical, their effect on the bloodstream
is still unclear and further investigations are highly recommended. Although quantum
dots have been investigated in bioimaging, serious health problems and environmental
concerns limit their bio-applications in this area owing to the presence of heavy metals [98].
Further, the area of biosensing applications still an enigma as few numbers of studies
spot the light on the utilization of CQDs and GQDs in this field so, more examinations
may reply to many questions and revealed new applications [168]. CQDs can be easily
synthesized from several natural carbon sources but these substances lack the homogeneity
and the actual purity for producing homogenous CQDs [169,170]. The carbonaceous
aggregation considered another problem arising from the carbonization of CQDs during
different synthetic methods, e.g., pyrolysis, and electrochemical. As well, surface features
that are critical for solubility and specific applications, may be altered during synthetic
methods or post-treatment [171]. Moreover, the traditional green methods employed in
the fabrication of GQDs still faced many problems. It usually required strong acids or
other organic solvents and may be complicated post-processes [172]. So, there is an urgent
demand to develop eco-friendly techniques that depend on natural renewable sources and
easy separation.

6. Conclusions

In the last years, carbon dots received tremendous attention and interest as an excel-
lent candidate comparing with the common semiconductor quantum dots because of their
incomparable and distinctive characteristics. The current review covers information about
the current synthetic strategies of carbon dots with emphasis on the green synthetic ap-
proach which becomes more attractive and matching with the rule of eco-friendly chemistry.
Despite several advantages and the unique properties of quantum dots, some drawbacks
and limitations remain. This review focuses on the advantages of carbon dots in several
applications, particularly in biomedical aspects.
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