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Abstract: This article presents a method based on linear matrix inequalities (LMIs) for designing a
modular feedback control law, whose synthesis guarantees the system stability, while switching to
different network topologies. Such stability is achieved by means of a common Lyapunov function to
all network admissible configurations. Several mechanisms to relieve the computational burden of
this methodology in large-scale systems are also presented. To assess its applicability, the modular
controller is tested on a real case study, namely the Barcelona drinking water network (DWN), and its
performance is compared with that of other control strategies, showing the effectiveness of the
proposed approach.

Keywords: modular control; clustering; coalitional control; distributed control; water systems;
drinking water networks (DWNs)

1. Introduction

In recent years, distributed control architectures have gained relevance due to the mul-
tiple advances in information and communication technologies [1]. In general, distributed
control systems are characterized by independent and interacting subsystems governed
by controllers that exchange information to get additional performance by coordinating
their control actions. This approach is useful in many practical problems that cannot be
addressed from a centralized perspective, e.g., due to the sheer size of the system and/or
limits in the information exchange between controllers [2].

In this context, we are interested in the design of feedback controllers that respect the
constraints imposed by the communication topology. To this end, several methods have
been proposed in the literature. For example, in [3], a gradient method for considering
sparsity constraints in linear quadratic regulators is implemented by a game-theoretic
algorithm. In [4], communication constraints are imposed via sparsity-promoting penalty
functions on the cardinality of the communication links used in the control architecture.
In [5], the notion of quadratic invariance of a set of sparsity or delay constraints on the
feedback controller is introduced as a means to guarantee a convex design problem. Also,
a similar strategy was recently used in [6] for large-scale systems. Linear matrix inequal-
ity (LMI)-based approaches for feedback controllers can also be found in the literature.
For instance, a design method based on LMIs for distributed linear systems is proposed in
the context of coalitional control first in [7] and later in [8]. Under this framework, commu-
nication links remain enabled as long as they provide a significant performance increase,
and otherwise they are disconnected. As a consequence, controllers are grouped dynam-
ically into disjoint cooperating sets, which are called coalitions. In this way, a trade-off
between performance and communication burden is obtained at the cost of a more complex
implementation. In particular, the design method seeks a feedback gain K with as many
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zero entries as possible. Some other works also propose LMI-based methodologies [9–11]
to design sparse feedback matrices. Similarly, H∞ techniques are used in [12] to achieve
a structured feedback control law. It is also remarkable that these design constraints can
also be considered to compute other classical controllers by using a feedback gain, e.g.,
a proportional-integral controller for an irrigation canal is calculated in [13] in this manner.

Here, we apply the modular control foundations presented in [14], which rely on
the principles introduced in [7,8]. The key idea of this methodology is that the feedback
controllers used in the different topologies are created considering a common template com-
posed of pieces associated with the different communication links in the network. Hence, if a
link is disabled the corresponding elements in the controller are merely replaced by zeros
without affecting the rest of the elements. As a consequence, given two different network
topologies, the nonzero elements of the corresponding feedback controllers share the same
values. Therefore, the feedback matrix shall easily change its internal configuration depend-
ing on the topology to be controlled. Furthermore, the modular control law guarantees the
stability by means of a common Lyapunov function to all network topologies.

Undoubtedly, this control strategy can be of interest for the aforementioned frame-
work of coalitional control, where the information structure of the system plays an essential
role [15–19]. Natural application fields for this type of online partitioning approach are, e.g.,
traffic [20], water [21–23], cellular [24,25] and power networks [26], and renewable energy
generation systems [27,28]. In particular, the approach presented here may be suitable to
be combined with the game-theoretic methods in [29–31], which are also based on LMIs,
and with plug-and-play control capabilities [32–34]. Also, controllers designed with the
modular structure mentioned above are interesting for applications where communications
between controllers can fail, e.g., due to packet losses and jamming attacks [35–37]. The
rationale is simple: any missing information from a neighbor can be considered to be a
disabled communication link, which allows applying the results of this article. Likewise,
model predictive control (MPC)-based works could use the proposed controller as stabi-
lizing terminal feedback, especially for coupling-dependant clustering architectures, e.g.,
in [38–40], and also including most of the coalitional works commented before.

The main contribution of this paper is a methodology to design a feedback gain
suitable for the control of networked systems by clustering [14], which is applied here
to complex large-scale systems. Certainly, modular controller synthesis for large-scale
schemes is challenging due to the computational complexity. Different ways to tackle
the computational explosion while guaranteeing the system stability are shown in this
article. In particular, an approach based on clustering of agents has been implemented in
the Barcelona drinking water network (DWN) as a case study, where the model deployed
in [41–43] has been partitioned into a network of eight agents following [44]. In fact,
the need for systematic methods to achieve the partitioning objective has gained impor-
tance recently, with partitioning schemes based on graph theory [40,42,44–48], states and
inputs estimation [49], social network algorithms [50], genetic algorithms [51], and PageR-
ank [22,52]. Specific partitioning techniques applied to large-scale water systems as the
proposed case study can be found in [42–44,50,53–55]. Indeed, control applications to
water distribution systems are becoming more common, with recent contributions in the
monitoring and control of valves leakage [56], pumps speed [57], pressure management by
clustering [23], or pump scheduling [58].

The outline of the rest of the paper is organized as follows. Section 2 presents the
problem statement. Section 3 introduces the concept of modular control, providing an
LMI-based design method together with some properties of interest. Section 4 proposes
different techniques to tackle the computational explosion for large-scale systems. Section 5
introduces the application of modular feedback control to the Barcelona DWN case study.
Finally, concluding remarks are given in Section 6.
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2. Problem Formulation

We consider an overall discrete linear time-invariant system, which is composed of a
set N = {1, 2, . . . , N} of subsystems characterized as

xi(k + 1) = Aiixi(k) + Biiui(k) + d̂i(k),

d̂i(k) = ∑j 6=i Aijxj(k) + ∑j 6=i Bijuj(k),
(1)

where xi ∈ Rnxi and ui ∈ Rnui , with i = 1, . . . , n, are the states and inputs of each
subsystem i ∈ N , respectively, with nxi and nui denoting the size of vectors xi and ui.
Matrices Aii ∈ Rnxi×nxi and Bii ∈ Rnxi×nui refer to the state and input-to-state matrices,
and d̂i ∈ Rnxi represents the influence of the neighboring states and inputs in the update
of xi. Finally, matrices Aij ∈ Rnxi×nxj and Bij ∈ Rnxi×nuj map the states and inputs of
subsystem j ∈ N into the states of subsystem i, respectively.

The goal of the subsystems in N is to minimize the following stage cost:

`i(k) = xT
i (k)Qixi(k) + uT

i (k)Riui(k), (2)

where Qi ∈ Rnxi×nxi and Ri ∈ Rnui×nui are positive semi-definite and definite constant
weighting matrices, respectively.

From a global viewpoint, the overall dynamics are simply described by

xN (k + 1) = AN xN (k) + BN uN (k), (3)

where subscriptN emphasizes that all system vectors and matrices come from the aggregation
of local subsystems, i.e., xN = [xi]i∈N , uN = [ui]i∈N , AN = [Aij]i,j∈N , and BN = [Bij]i,j∈N .
For convenience, we will respectively denote by nx and nu the number of states and
controls of the overall system. Please note that in the global model there are no neighbors
disturbances, because mutual interactions are already included in (3). Likewise, the stage
cost of the overall system can be expressed as a function of states and inputs of the
corresponding subsystems, i.e.,

`N (k) = xT
N (k)QN xN (k) + uT

N (k)RN uN (k), (4)

where QN = diag(Qi)i∈N and RN = diag(Ri)i∈N .

2.1. Modular Control Law and Communication Constraints

A linear feedback controller is proposed here to minimize the cost of the system while
steering it towards the origin. Also, it must be designed taking into account constraints in
the information flows due to the communication network that connects the subsystems. In
particular, we assume that the network is described by a directed graph (N , L), whereN is
a set of subsystems and L is a set of unidirectional links given by L ⊆ LN = {{i, j}|{i, j} ⊆
N , i 6= j}. For convenience, we will define link {i, j}, or simply lij, as an arrow that goes
from j to i and vice versa, with i, j ∈ N , to stress that i receives information from j. Likewise,
we assume that links allow only direct communication, i.e., agent i receives information
from j only if they are directly connected by lij, although this assumption can be relaxed if
needed. For representation simplicity, we symbolize two links in opposite directions with
a double arrow. In this work, it is also considered that some communication links might be
disabled to reduce the communication burden, due to, e.g., jamming attacks. To this end, let
us define Λ as the topology given by the set of active links inL. Given that there are L = |L|
links, it is possible to define a set T = {ΛDC, Λ1, Λ2, . . . , Λ2L−2 , ΛL} composed of 2L

topologies. Please note that we have introduced a slightly different notation for two special
topologies, namely ΛDC and ΛL, which correspond to the decentralized topology (all links
are disabled) and the full communication topology (all links are enabled), respectively.
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Since the feedback controller must be designed taking into account the constraints
in the information flows imposed by topology Λ, a superscript will be added to stress
this fact so that uN = KΛxN , with Λ ∈ T . More specifically, the control law must be
suitable for any Λ ∈ T . Unlike [8], where different feedback gains are calculated for each
possible topology, here we propose a controller composed of blocks associated with the
links of the communication network [14]. To illustrate this idea, Figure 1 shows a system
composed of four agents that communicate using 12 directed links, which are associated
with the nondiagonal elements of the corresponding modular feedback controller for the
full communication topology ΛL, which is described by

KΛL =


K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

. (5)

However, if the topology changes and becomes that of Figure 2, say Λex, with five
links omitted with respect to ΛL, the control law becomes

KΛex =


K11 0 K13 K14
K21 K22 0 0
0 K32 K33 0

K41 K42 K43 K44

, (6)

where all nonzero entries have the same value that they had in KΛL . Hence, modular
feedback controller KΛL provides us with a family of control laws that can be adapted to
different communication topologies by simply making zero the elements that correspond
to disabled links. Please note that this modular structure adds robustness to the feedback
laws designed through the proposed approach even if the system partitioning has been
poorly performed because it rearranges the partitioning online starting from the set of
atomic components in which the system is divided. Hence, an inadequate initial parti-
tioning is not an issue because if two subsystems need to cooperate, the controller will
promote the cooperation as long as the benefits expected are greater than the corresponding
cooperation efforts.

Figure 1. Nondiagonal entries of a modular feedback controller for a control system composed of
four agents connected by 12 unidirectional links.

Figure 2. Example topology Λex where five directed links of ΛL in Figure 1 have been disconnected.
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Finally, some definitions regarding parents-children topologies are introduced below
and illustrated in Figure 3.

Figure 3. Topologies derived from N = 3 agents and L = 3 links. The coloured edges join the
topologies that are related through the parents-children relations.

Definition 1. A set of ascendant topologies coming from a given topology Λi ∈ T , with |Λi| < L,
can be defined as

SΛi = {Λj ∈ T | Λi ⊂ Λj, |Λj| ≥ |Λi|+ 1}. (7)

A topology Λj ∈ SΛi is a parent of topology Λi if |Λj| = |Λi|+ 1 holds.

Definition 2. A set of descendant topologies coming from a given topology Λi ∈ T , with |Λi| > 1
can be defined as

S̄Λi = {Λj ∈ T | Λj ⊂ Λi, |Λj| ≤ |Λi| − 1}. (8)

A topology Λj ∈ S̄Λi is a child of topology Λi if |Λj| = |Λi| − 1 is fulfilled.

2.2. Stability

Before addressing the controller design procedure, it is necessary to give some remarks
regarding stability. Since the network topology might change at any time, there is a need
for guaranteeing the stability of the closed-loop system despite the switchings between
the corresponding control laws KΛ, with Λ ∈ T . To deal with this issue, a common
Lyapunov function f (xN (k)) = xT

N (k)PxN (k) is designed for all feedback controllers KΛ.
In particular, let P ∈ Rnx×nx be a positive definite matrix that will also provide us with a
bound on the cost-to-go of the closed loop system, i.e.,

xT
N (k)PxN (k) ≥

∞

∑
t=k

`N (t). (9)

In [8], it is shown that the Lyapunov function is a bound on the cost-to-go of the closed
loop system if the following inequality holds:

xT
N (k)PxN (k) ≥ `N (k) + xT

N (k + 1)PxN (k + 1). (10)

In particular, (9) can be derived from (10) by telescope summation.
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3. Modular Controller Design

In this section, we provide a theorem and a lemma for the modular controller design
with a stage cost defined by QN and RN following (4). To this end, we consider that the
system is decomposed into a setN of subsystems connected by means of a set L of directed
communication links that give rise to a set T of different topologies.

Theorem 1. Let a system be described by (3) with discrete-time linear dynamics given by AN
and BN . If there exist matrices W = WT = diag(Wi)i∈N , where Wi ∈ Rnxi×nxi , and Y ∈ Rnu×nx

such that the following constraint is satisfied, for all Λ ∈ T :
W WAT

N + YT
ΛBT
N WQ1/2

N YT
ΛR1/2
N

ANW + BNYΛ W 0 0
Q1/2
N W 0 I 0

R1/2
N YΛ 0 0 I

 > 0, (11)

with YΛ,ij = Yij if link lij is activated, i.e., if lij ∈ Λ, and YΛ,ij = 0 otherwise, then there exists a
modular controller that provides a family of feedback control laws KΛ = YΛW−1, which stabilizes
the system for topologies Λ ∈ T . Also, a common Lyapunov function f (xN (k)) = xT

N (k)PxN (k)
that provides a bound on the cost-to-go is generated, with P = W−1.

Proof. The iterative application of the Schur complement [59] in a backwards manner
together with the proposed variable change allows us to transform LMI (11) into (10),
which guarantees that stability for the cost-to-go must decrease at each time step. Then,
a telescope summation of this inequality from t = k to infinity gives (9), which allows us to
use the Lyapunov function to get a bound on the cost-to-go. The constraints imposed on YΛ
and W guarantee that KΛ satisfies the communication restrictions imposed by topology Λ,
which require KΛ,ij = 0, ∀i, j such that lij /∈ Λ. Here, let us recall that KΛ = YΛW−1. Since
YΛ,ij = 0 if lij /∈ Λ, and W has a diagonal block structure that is to be inherited by its inverse
matrix, i.e., W−1

ij = 0 for any i 6= j, then by the properties of matrix multiplication it holds
KΛ,ij = 0 if link lij /∈ Λ. Finally, as YΛ,ij always has the same value for topologies Λ ∈ T
when lij = 1, otherwise being zero, this fact forces block KΛ,ij to be the same for all these
topologies, hence providing the desired modular structure.

Remark 1. Matrix W must be a block sparse/diagonal matrix to preserve the modular features.
for instance, let us assume that block KΛ,34 is associated with link l34, being KΛ,34 the prod-
uct of the 3rd-row of YΛ and the 4th-column of W−1. The only way to assure that KΛ,34 is
non-null for a given YΛ, when link l34 is enabled, is to shape W as a block diagonal matrix,
i.e., W = WT = diag(Wi)i∈N .

Solving the set of LMIs defined by Theorem 1 provides us with a matrix P = W−1

and matrices KΛ = YΛW−1, where KΛ,ij maps the contribution of the state of agent j
to the control action of agent i. Hence, if a link lij ∈ L is activated, block KΛ,ij 6= 0;
otherwise KΛ,ij = 0. It must be noticed that the set of LMIs is solved for matrices W
and Y = YΛL , i.e., there are only two unknown matrices to be found. This fact represents
a major difference with respect to [8], where different WΛ and YΛ were obtained for each
topology Λ. It is also important to remark that all feedback matrices KΛ are associated
with the same Lyapunov matrix P, what means that the closed-loop stability is guaranteed
for any topology Λ ∈ T , so that switchings between the different control laws can be
performed without compromising the stability of the closed-loop system.

A necessary and sufficient condition for Theorem 1 to have a solution are given by the
lemma below.

Lemma 1. If there exists a feasible solution of (11) for topology Λi, then topologies Λj in SΛi ⊆ T ,
i.e., the set of ascendants of Λi (see Definition 1), admit a modular solution.
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Corollary 1. The family of LMIs of Theorem 1 has a feasible solution if and only if W and YΛ
in (11) can be found for ΛDC, i.e., for the decentralized case.

Remark 2. The condition in Corollary 1 is necessary because any solution satisfying Theorem 1
must provide a feedback law for the decentralized topology, i.e., KΛDC . Hence, without a solution
for ΛDC there is no solution for the overall problem. Furthermore, it is a sufficient condition
because W and YΛDC constitute a feasible solution for the rest of topologies, which solve the very
same LMI constraint with additional degrees of freedom due to the additional nonzero elements
in the corresponding YΛ. Hence, the more demanding constraints are those of the decentralized
topology, which requires stable global dynamics although each subsystem uses only local state
information. Consequently, any set of local feedback controllers leading to overall stable dynamics
could generate a modular controller applying Theorem 1.

Design Method

To design the controller, we solve
max
W,YΛ

tr(W), (12)

subject to (11) for all Λ ∈ T . Then, it is enough to take KΛ = YΛW−1. Please note that
the maximization of the trace of W is an indirect manner of minimizing that of P = W−1,
hence minimizing the cost-to-go of the closed-loop system.

Once the modular controller is designed, it is straightforward to find new bounds
on the cost-to-go tailored to each topology, i.e., PΛ, if needed, e.g., for a rapid topology
selection in a coalitional control system. The fact that a common Lyapunov function exists
guarantees that switchings can be performed without endangering the system stability.

4. Dealing with Computational Burden

LMI (11) is solved simultaneously for all network topologies Λ ∈ T . Notice that there
exists a YΛ declared for every network topology, where each block YΛ,ij corresponds to an
enabled link lij. Therefore, the number of decision variables is defined by

∑
i∈N

nxi × (nxi + 1)
2

+ nu × nx, (13)

being independent of the number of topologies considered. Nevertheless, the compu-
tational burden of solving LMIs does not scale linearly with the number of topology
constraints [60], which might render the problem unfeasible for practical use. For example,
in our experiments, we have been able to apply this method to systems with thousands of
topologies, which in the most conservative case corresponds to a modest number of links,
e.g., in the range 10–20. To overcome this issue, we provide some plausible strategies:

1. Exploiting Convexity: Since constraint (11) is convex, any convex combination of solu-
tions is also a solution. Given that W is common for all topologies, new solutions are
generated by simply combining the results for matrices YΛ corresponding to different
topologies. Likewise, it is straightforward to check that the same holds for KΛ.
With this idea in mind, the problem can be simplified by solving only a subset of
topologies that can be used to generate the rest of the topologies. For instance, it
is possible to solve the decentralized topology, and then topologies with only one
active link, i.e., instead solving 2L LMIs the problem is reduced to the resolution
of L + 1 LMIs, thus avoiding the combinatorial explosion. Interestingly, the resulting
feedback solution will preserve the values for the common elements in the feedback
gains combined. Also, the values of the noncommon elements are easy to calculate
due to the block structure of the modular controller (recall that blocks corresponding
to a link become zero when the link is disabled).
This strategy can be very convenient for hierarchical control, where an upper control
layer can compute a convex combination of KΛ to generate a feedback gain for the
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desired topology, e.g., by searching for the combination that maximizes the trace of W
(or minimizes the trace of P).

2. Ascendants replaced by descendants: Any topology provides a feasible solution for all
its ascendants (see Definition 1). Thus, it is possible to remove topologies from set T
and simply use one of its descendants (Definition 2) instead to reduce the number of
constraints of the problem.

3. Branch-and-bound-like approaches: Those topologies that degrade the most the perfor-
mance of the controller are removed, e.g., those that decrease the most the trace of W.
Please note that given a topology, its trace of W, i.e., when the LMI is solved for this
specific topology, is a lower bound for all its descendants. This fact is used to compute
a modular controller only for those topologies that provide the best performance
according to the aforementioned criterion.

4. Topology clustering: For large-scale systems, clustering the different agents/subsystems
in super agents can be an interesting approach to handle the computational burden.
For instance, the agents clustering could be achieved by different algorithms in the
line of those described in [28,40,42,44], where the partitioning is performed by pre-
selecting those sets of agents that are not highly interrelated with other agents and may
separately work well offline prior to proceed with the control law implementation.

5. Case Study: Barcelona DWN

In this article, we analyze the Barcelona drinking water network (DWN), which is a
complex large-scale system managed by the public entity Aguas de Barcelona (AGBAR),
S.A. This system supplies water to the metropolitan area of Barcelona and it is fed by
the Ter and Llobregat rivers using regulated dams with an overall capacity of 600 hm3.
Besides the rivers, some additional underground wells also contribute to an overall inflow
of around 7 m3/s, which becomes potable by four drinking water treatment plants.

The Barcelona DWN can be broken down in two layers. The first (upper) layer consists
of a transport network, which connects the water treatment plants with reservoirs distributed
across the metropolitan area. The second (lower) layer is the distribution network, which in
turn is subdivided in subnetworks that guarantee the water supply from the reservoirs to
the consumers.

We have selected this case study to prove that the proposed approach can be ap-
plied to a real large-scale problem. In particular, we focus here on the transport network.
Hence, the subnetworks within the distribution network are considered as demand sec-
tors that will be characterized by a scheduled pattern and taken as disturbances by the
control system.

5.1. Barcelona DWN Description

The Barcelona DWN model [41,43] is depicted in Figure 4 and consists of nx = 63
tanks, nu = 114 actuators (75 pumps and 39 valves), nn = 17 junction nodes and nd = 88
sectors of water demand, which are considered as known disturbances. The system can be
modeled using flow-based differential-algebraic equations, which interrelate water levels x
at tanks, controlled pipe flows u, and demands d. In particular, we have:

1. Water tanks differences equations

xi(k + 1) = xi(k) + ∆t

(
∑

i
qin,i(k)−∑

j
qout,j(k)

)
, (14)

where xi is the water level in tank i, and qin,i and qout,j are respectively the i-th and
j-th inflows and outflows in m3/s. The aggregation of all differences equations allows
us to reformulate the problem as

xN (k + 1) = AN xN (k) + BN uN (k) + BpdN (k), (15)
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with dN ∈ Rnd being the disturbances vector, Bp ∈ Rnx×nd , and where the rest of
variables are defined as introduced in Section 2.

2. Mass-balance constraints imposed by the nodes

∑
i

qin,i(k) = ∑
j

qout,j(k), (16)

with qin,i and qout,j defined as before. Equation (16) can be rewritten in matrix form
and considering the known disturbances as

EuuN (k) + EddN (k) = 0, (17)

where Eu ∈ Rnn×nu and Ed ∈ Rnn×nd respectively deal with the flows associated with
the control variables and those corresponding to the water demands.

3. Bounds on inputs, i.e.,
umin ≤ uN (k) ≤ umax, (18)

where the values umin and umax are the upper and lower limits of the different
actuators at the DWN, respectively.

4. Bounds on states at tanks, i.e.,

xmin ≤ xN (k) ≤ xmax, (19)

being xmin and xmax respectively the minimum and maximum levels at the water tanks.

5.2. Control Variables Parameterization

Equation (17) relates the control variables with the measured disturbances in the system
nodes. Based on [61], let us assume that rank(Eu) = rank(Ed) = nn, with nn ≤ nd ≤ nu,
i.e., some components of uN (k) are not longer independent and can be parameterized as a
function of the known disturbances. To this end, let us recast (17), as

[
Eu Ed

][uN (k)
dN (k)

]
= 0. (20)

At this point, we consider a linear transformation P̂ ∈ Rnu×nu that allows us to
perform the Gauss-Jordan elimination, i.e.,

Eu P̂ =
[
Inn M1

]
, M1 ∈ Rnn×nu−nn , (21)

which yields

[
Eu Ed

]
P =

[
Inn M1 M2

]
, M2 ∈ Rnn×nd , with P =

[
P̂ 0
0 Inn

]
. (22)

Now, it is possible to utilize P to reformulate (20), obtaining

[
Eu Ed

]
P PT

[
uN (k)
dN (k)

]
= 0 =⇒

[
Eu P̂ Ed

][P̂TuN (k)
dN (k)

]
= 0. (23)

Then, in order to separate the effects of the dependent and independent control inputs,
we define

vN (k) = P̂TuN (k) =
[

ūN (k)
ûN (k)

]
, (24)

reaching the following expression equivalent to (20):

[
Inn M1 M2

]ūN (k)
ûN (k)
dN (k)

 = 0 =⇒ ūN (k) = −M1ûN (k)−M2dN (k). (25)
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Next, using the definition of vN (k)

vN (k) =
[

ūN (k)
ûN (k)

]
=

[
−M1ûN (k)−M2dN (k)

ûN (k)

]
=

[
−M1
Inu−nn

]
︸ ︷︷ ︸

M̃1

ûN (k) +
[
−M2
0nd

]
︸ ︷︷ ︸

M̃2

dN (k). (26)

Equation (26) enables the parameterization of uN (k)

uN (k) = P̂vN (k) = P̂M̃1ûN (k) + P̂M̃2dN (k). (27)

Substituting (27) into (15) yields

xN (k + 1) = AN xN (k) + BN uN (k) + BpdN (k)

= AN xN (k) + BN
(

P̂M̃1ûN (k) + P̂M̃2dN (k)
)
+ BpdN (k).

(28)

Finally, reorganizing terms, we have

xN (k + 1) = AN xN (k) + (BN P̂M̃1)︸ ︷︷ ︸
B̃N

ûN (k) + (Bp + BN P̂M̃2︸ ︷︷ ︸
B̃p

)dN (k)

= AN xN (k) + B̃N ûN (k) + B̃pdN (k).

(29)

Summing up, this procedure allows us to reduce the size of the system, while forcing
the fulfillment of the node equations in (17) into the aggregated state-space equation.
More specifically, the number of control actions is reduced from nu = 114 to nu − nd = 97,
which in turn reduces the size of matrices YΛ in LMI (11). Finally, note that terms I and 0
have been used along this procedure to symbolize, respectively, the identity and null
matrices of the corresponding dimensions.

5.3. Modular Controller for the Barcelona DWN

The states, control actions and disturbances of the Barcelona DWN are divided accord-
ing to the eight agent partitioning proposed in [44], which in turn is based on that of [42].
Please note that this partitioning was made assuring that node equations are implicitly
satisfied. From the agents viewpoint, the system considered is depicted in Figure 5, where
agents are represented by blue circles, connections by green lines, and they are symbolized
by Arabic and Roman numerals, respectively.

Since the purpose of this large-scale example is to illustrate the applicability of the pro-
posed method, the modular controller synthesis has been performed considering coalitions
of agents, i.e., network topology constraints have not been taken into account. In this way,
it is assumed that each pair of agents can communicate, which leads to the simultaneous
resolution of 28 cooperation scenarios. Nevertheless, the resulting solution satisfies any
situation of communication that can stem from the links depicted in Figure 5, and it is less
demanding from a computational viewpoint, because less LMI constraints are imposed on
the problem.

Again, since this case study is considered for illustration purposes, we have used the
flow-based model of the Barcelona DWN depicted in Figure 4 with a sampling time of 1 h.
In this way, each tank becomes an integrator and control actions and disturbances represent
how many cubic meters of water are transferred through the corresponding pipe at each
time step. Likewise, stage cost `N (k) introduced in (4) is defined using unit matrices of the
corresponding size for simplicity, i.e., QN = I63 and RN = I97. This cost has been extended
to account for coordination costs by simply adding a penalty consisting on the number
of nonzero elements in the feedback gain employed times a weight γc = 10−5 tuned by a
trial-and-error procedure. Hence, the modular controller must find a trade-off between
cooperation burden and performance. Finally, note that mass-balance constraints have not
explicitly been taken into account in the controller design, although the parameterization of



Processes 2021, 9, 389 12 of 18

the control variables presented in Section 5.2 allows us to guarantee that they hold. As for
bounds on tanks and flows, there are tools within the LMI framework to impose them if
necessary, e.g., see [62].

Figure 5. Barcelona DWN agent partitioning based on [42,44].

Taking into account the aforementioned parameters values, the simulations have been
implemented using the Matlab® toolbox, in a 3.6 GHz Intel® Octa CoreTM/32 GB RAM
computer. The LMI problem executed to obtain the modular controller has around 6000 vari-
ables and 28 = 256 constraints and it is solved in a few hours by the computer. This time is
expected to increase nonlinearly as more constraints and variables are added, which means
that larger problems might need to resort on additional relaxations as those proposed in
Section 4. Nevertheless, since the problem can be solved offline, it can be admissible to
have computation times in the order of days.

The controllers considered for assessing the performance of the proposed control
method are:

1. Modular controller (MOD), obtained using the procedure described in Section 3. Here,
the topologies are assessed every three time steps, so that the feedback controller
providing the minimum expected cost before the next topology change instant is
selected. Please note that system stability is guaranteed despite topology changes due
to the existence of a common Lyapunov function.

2. Linear-quadratic regulator (LQR), designed for the centralized system.
3. Decentralized controller (DEC), which has been obtained following the coalitional

approach of [8] for the decentralized communication topology.

The second and third controllers are provided as a means to illustrate the maximum
performance that can be expected of a centralized and a decentralized feedback, respectively.
Please note that the coordination costs are constant for both LQR and DEC because they
cannot change their structure.

The performance of the previously mentioned controllers will be compared using
accumulated stage costs, with and without disturbances. In particular, the simulation starts
from a random state and the system goes undisturbed during 50 time steps to assess the
controllers from a pure regulation viewpoint. After that, the system is fed with disturbances
representing the water demands in the different DWN sectors for 450 time instants. Since
the dynamics is linear, note that the origin of the linear system can be interpreted as the
operation point of the real system.
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Accumulated costs are presented in Figure 6, where we can quickly examine the
regulation capability of each controller by looking at the costs during the first 50 instants.
As expected, the best performance is that of LQR and the worst one is that of DEC, with the
performance of the modular controller lying in between. Please note that during this short
interval, coordination costs are small and do not affect significantly the sheer control costs
of each method. Once demands come into play, the setup is different from the classical
regulation problem. As a consequence, the performance of the controllers change, with
LQR being the worst one in this part of the simulation. As counterintuitive as this fact can
be, LQR is only optimal in very specific conditions that do not hold during this period.
Also, coordination efforts penalize LQR, which at around 300 instants is outperformed by
MOD. As observed by the end of the simulation, also DEC eventually outperforms LQR
due to its lower coordination costs. Nevertheless, its performance never increases enough
to improve the results of MOD.

The evolution of some of the system water levels around a fixed operation point is
shown in Figure 7. Notice that the oscillating behavior observed is caused by the periodicity
of the water demands of the network, which implies the water volumes into the tanks
should follow the corresponding oscillatory profile towards reaching the control objective.

Figure 6. Accumulated costs.

Finally, Figure 8 shows the evolution of the topology used by the modular controller
and the corresponding coordination efforts. Please note that the blue line indicates the
topology being used at each time step (left y-axis). In particular, the topology ranges
between 0 and 255 and when converted into binary digits provides us with the agents
that are cooperating, i.e., if the i-th binary digit is ‘1’, then the i-th agent is communicating
so as to coordinate its actions with other agents. Likewise, the discontinuous red line
indicates the evolution of coordination costs (right y-axis) and clearly shows how the
control architecture reacts to the disturbances the overall system receives. As can be seen,
MOD can adjust its structure and achieves a better trade-off between performance and
coordination efforts, which is key to understand its superior efficiency. Notice that the
initial random state is farther away than the net effect of the disturbances on the state.
Hence, higher coordination costs are incurred to steer the system towards the origin at the
very beginning. As the system reaches the origin, coordination costs reach the minimum
(that of a decentralized control architecture). After that, coordination efforts are regularly
adjusted as a response to the pattern of the demand.
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Figure 7. Water tanks volume evolution with MOD, LQR and DEC control strategies.

As the obtained results show, the implementation of the proposed control strategy not
only provides with an approach able to reach the control objectives while satisfying the
physical and operational constraints of the network, but also takes into account two key
factors that make it suitable to be implemented in these large-scale water systems:

• The former is related to the reliable modularity the control strategy confers since
the overall system gains certain upper-level of robustness against fault events that
might occur. Notice that the coordination and noncentralized features of the proposed
approach make that, once a problem takes place, the system keeps working by isolating
the affected part while the rest is self-adjusted to provide water to demand sectors.

• On the other hand, the latter factor, also operationally related to the former, relies on
the fact that the approach acts as a fast decision-maker given its offline design and low
online computational burden. This feature allows the system operator to promptly
react facing possible problems (caused by a fault event), avoiding scenarios of water
supply lacking.
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Figure 8. Network topology evolution of the modular controller.

6. Conclusions

A modular feedback design method has been presented to generate a family of feedback
controllers suitable for different topologies in a networked control system. The proposed
method leverages linear matrix inequalities (LMIs) to attain the modular structure adding a
certain upper-level of robustness against fault events, while guaranteeing stability despite
topology switchings. In particular, the method starts from a linear model of the system and
requires to solve an optimization problem subject to as many LMI constraints as possible
cooperation scenarios can be defined using the available communication resources. Even
when computational burden does not increase linearly with the number of topologies
considered, it is possible to apply the method in large-scale systems as the one chosen
as case study: the Barcelona drinking water network (DWN), where in a scenario with
disturbances and communication costs the modular control manages to stabilize the system
outperforming other approaches in terms of accumulated costs.

Moreover, the resulting controller has significant advantages that can be useful in
networking control applications where packet losses might occur, for these events can be in-
terpreted as topology switchings. Also, plug-and-play and coalitional control strategies can
benefit from this method because of the much simpler implementation of the modular con-
troller. In any case, the results of the proposed scheme are sensitive to the tuning parameters
employed, and, particularly, to the penalty for cooperation efforts. The controller might
tend to either decentralized or centralized configurations if this penalty is not properly
adjusted, thus deteriorating its performance, especially when compared with specifically
designed feedback gains for every topology. Finally, future work should include the
development of distributed synthesis techniques for this family of feedback controllers.
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