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Abstract: Finite plastic bending attracts researchers’ attention due to its importance for identifying
material properties and frequent occurrence in sheet metal forming processes. The present review
contains theoretical and experimental parts. The theoretical part is restricted to analytic and semi-
analytic solutions for pure bending and bending under tension. The experimental part mainly focuses
on four-point bending, though other bending tests and processes are also outlined.

Keywords: plastic bending; pure bending; bending under tension; semi-analytic solutions; bending
tests

1. Introduction

All sheet metal forming processes incorporate some bending. A brief overview of the
appearance of bending in sheet metal forming processes is provided in [1]. An approach
based on determining the prevailing deformation path in combined bending and stretching
to analyze real deep drawing processes was proposed and used in [2,3]. A similar approach
was also adopted in [4]. The approaches apply to other real sheet metal forming processes
and require a theoretical solution for the bending under tension process. The first part
of the present paper reviews analytic and semi-analytic solutions for the pure bending
and bending under tension processes of wide sheets at large strain. Almost all of these
solutions are under plane strain conditions. Both elastic- and rigid-plastic material models
are considered. No finite element and other numerical solutions are included in this
review. One can use the theoretical solutions included as benchmark problems for verifying
numerical codes, which is a necessary step before using such codes [5,6]. A review of
analytic elastic/plastic solutions at infinitesimal strains is provided in [7]. Monograph
[8] reviewed many theoretical solutions for non-plane strain bending, such as bending of
beams, axisymmetric bending of circular plates, pressing rectangular plates into doubly-
curved dies, and wrinkling of circular plates and flanges.

The second part of the present paper is devoted to an efficient method of finding
analytic and semi-analytic solutions for the plane strain pure bending and bending under
tension processes of sheets made of incompressible materials. Most of the contents of this
part are based on the authors’ research in this area.

The third part of the present paper reviews experimental works in which bending is
used to identify the material properties.

2. Analytic and Semi-Analytic Solutions for Finite Bending of Wide Sheets

A schematic diagram of the bending process is shown in Figure 1, where M is the
bending moment and F is the tensile force. Both are per unit width. Equilibrium demands
that some pressure P is applied over the surface CD. This pressure is the reaction of a
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tool. In the case of pure bending, F = 0 and P = 0. The solutions reviewed in this section
assume that:

(i) AB and CD are circular arcs throughout the process of deformation;
(ii) CB and AD are straight lines throughout the process of deformation;
(iii) End effects near the surfaces CB and AD are neglected;
(iv) Pressure P is uniformly distributed over the surface CD;
(v) Friction at the surface CD is neglected.

These assumptions suggest using a polar coordinate system (r, θ). The origin of
this coordinate system, Op, moves along the x-axis as the deformation proceeds. The
neutral line is determined by the equation r = rn where rn is constant at each instant. The
circumferential strain rate vanishes at r = rn (i.e., the material fiber coinciding with the
neutral line undergoes no change of length in a further infinitesimally small strain).
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Figure 1. Schematic diagram of the bending process.

2.1. Rigid/Plastic Solutions

The first rigorous solution for both pure plane strain bending and plane strain bending
under tension processes was proposed in [9] for isotropic rigid perfectly plastic materials.
The constitutive equations comprise the yield criterion and its associated flow rule. The
analysis starts with the solution for stress, and then, kinematic quantities are determined.
The coordinate curves of the polar coordinate system (Figure 1) coincide with the trajectories
of the principal stress directions. In this case, the yield criterion of any incompressible
isotropic material that complies with the principle of maximum plastic work is expressed
solely in terms of the stress variable σr − σθ where σr is the radial stress and σθ is the
circumferential stress. In particular,

σr − σθ = 2k in the range rCD ≤ r ≤ rn, (1)

σθ − σr = 2k in the range rn ≤ r ≤ rAB.

Here, k is the shear yield stress, rAB is the radius of the arc AB, and rCD is the radius of
the arc CD. The shear yield stress is constant. Equilibrium demands that the radial stress is
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continuous across the neutral line. Then, it is evident from (1) that the circumferential stress
is discontinuous across this line. The solution [9] is entirely analytic. In the case of pure
bending, its remarkable properties are that the radius of the neutral line is the geometric
mean of rAB and rCD, and the thickness of the sheet and bending moment do not change
throughout the process of deformation. In particular,

M
k

=
H2

2
. (2)

Here, H is the initial thickness of the sheet.
This solution [9] was adopted in [10] for deriving a closed-form expression for strain at

any fiber. This paper concluded that the basic assumptions made in [9], i.e., the assumptions
shown at the beginning of this section, are plausible.

Paper [11] provided a semi-analytic plane strain solution for pure bending of anisotropic
sheets. The corresponding isotropic solution is derived as a special case. The Runge–Kutta
method is adopted for solving an ordinary differential equation. By assumption, the
principal axes of anisotropy coincide with the coordinate curves of the polar coordinate
system (Figure 1) throughout the process of deformation. This assumption becomes a
consequence of the solution if the evolution of anisotropy follows the law proposed in
[12], and the principal axes of anisotropy are parallel and perpendicular to the x-axis at
the initial instant. Hill’s quadratic yield criterion [9] was adopted in [11]. However, this
assumption is superfluous for finding the general solution. The yield criterion of any
incompressible anisotropic material that complies with the principle of maximum plastic
work is expressed solely in terms of the stress variables σr − σθ and the shear stress in the
polar coordinate system [13]. Since the shear stress vanishes, the yield criterion involves
σr − σθ only. However, one needs to choose a specific yield criterion for getting quantitative
results. Paper [11] also attempted to account for isotropic and kinematic hardening. These
hardening laws involve the equivalent plastic strain. However, the equivalent plastic strain,
which is calculated by integrating over the actual strain path, is replaced with the total
strain found using the initial and final configurations. These quantities have the same
numerical value only if there is no strain reversal. Meanwhile, a strain reversal occurs in a
material fiber that momentarily coincides with the neutral line. The solution provided in
[14] is free of this drawback. In this paper, a procedure for calculating the correct value
of the equivalent plastic strain in a region where a strain reversal occurs is developed.
An iterative procedure in conjunction with a numerical method for solving an ordinary
differential equation is required for getting quantitative results. The analysis in [14] was
limited to Swift’s law in the case of isotropic hardening. In addition to homogeneous sheets,
bonded laminated metals are considered. In total, five different sheets are studied in detail.
Those are: (1) a non-strain hardening bi-metal sheet, (2) a non-strain hardening tri-metal
sheet, (3) a strain hardening mono-metal sheet, (4) a strain hardening mono-metal sheet,
accounting for a simplified Bauschinger effect, and (5) a strain hardening bi-metal sheet.

A simplified method to deal with rigid/plastic hardening materials is to adopt an
artificial strain distribution in the region between the current neutral line and the original
center fiber [15].

Analytic and semi-analytic solutions for finite bending of various hydrogel strips
were found in [16–20]. An elastomer-hydrogel bi-layer strip was considered in [16], a
hydrogel-elastomer-hydrogel tri-layer strip in [17], and a functionally graded hydrogel
strip in [18]. The solution given in [19] is for temperature-induced bending of a bi-layer
gel strip. An analytic method was developed and used in [20] for analyzing the swelling-
induced bending process of a bi-layer strip made of a pH-sensitive layer attached to an
inert elastomer layer.

2.2. Elastic/Plastic Solutions

Elastic/plastic analysis is much more complicated than rigid/plastic analysis. One of
the main difficulties is that the plane strain assumption does not imply that both the elastic
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and plastic portions of the corresponding strain vanish unless the material is incompressible.
Another possible case when both portions vanish may occur if the material obeys Tresca’s
yield criterion. Therefore, available analytic and semi-analytic solutions often involve
additional assumptions.

Several solutions are based on the assumption, in addition to the assumptions formu-
lated at the beginning of Section 2, that the radial stress in the polar coordinate system
shown in Figure 1 vanishes. An oversimplified solution for the bending under tension
process based on the assumption of the linear through-thickness distribution of strain was
provided in [21]. The material obeys Ludwik’s hardening law. The solution presented
in [22] ignores the existence of the stretching, compressing, and strain reversal areas in
the process of bending under tension. The total strain is found using the initial and final
configurations. Therefore, this approach is similar to that developed in [11] for rigid/plastic
models. The non-quadratic Hill’s yield criterion proposed in [23] was used in [22]. The
equivalent stress follows Swift’s hardening law. Paper [22] emphasized thickness varia-
tion and springback. The approach proposed in [22] was extended to repeating bending,
unbending, and reverse bending in [24]. Cyclic material models were adopted. One can
find numerous solutions based on the assumption that the radial stress vanishes in the
literature, for example [25–30]. Paper [31] introduced a new methodology for springback
prediction and then used it to analyze the cyclic bending process. An advantage of this
methodology is that it is purely analytic for springback prediction. A comparison with the
methodology proposed in [32] was made.

The deformation theory of plasticity was employed in [33] to describe the pure bending
process. The constitutive equations were based on the Hencky strain and the Cauchy stress.
The elastic linear hardening material model was adopted. Analytic solutions were found
in two plastic regions and an elastic region. The plastic regions propagate from the outside
and inside surfaces of the sheet, and the elastic region is located between the plastic
regions. A combination of these solutions provides the solution for the entire sheet. Several
particular solutions for the entire sheet were derived in [33]. Paper [34] provided a solution
for an incompressible isotropic nonlinearly elastic material to investigate the effect of strain
stiffening. The stresses and bending moments were obtained explicitly for several strain-
energy densities suitable for rubber-like materials. Another solution for the deformation
theory of plasticity was found in [35], where the material was supposed to be elastic-plastic,
power-law hardening. The flow theory of plasticity in conjunction with a numerical method
was also employed in this paper.

A unique solution for the pure bending process is found in [36], where elastic com-
pressibility and a constant change of the sheet’s width were taken into account. The
Eulerian rate-type material elastoplastic model accounts for both isotropic and kinematic
hardening. It is based on Tresca’s yield criterion and its associated flow rule.

3. Efficient Method for the Analysis of Bending

Most of the contents of this section are based on the authors’ research devoted to
developing and using an efficient method for the analysis of plane strain bending of
incompressible sheets. The method was proposed in [37] for pure bending and extended
to bending under tension in [38]. Figure 2 illustrates the initial and final configurations
together with several coordinate systems.
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Figure 2. Schematic diagram of the bending process: (a) initial configuration; (b) intermediate and final configurations.

A starting point of the method is the mapping between Eulerian Cartesian coordinates
(x, y) and Lagrangian coordinates (ζ, η) in the form:

x
H

=

√
ζ

a
+

s
a2 cos(2aη)−

√
s

a
and

y
H

=

√
ζ

a
+

s
a2 sin(2aη). (3)

Here, a is a time-like variable such that a = 0 at the initial instant and s is a function of
a. The latter should be found from the solution. The x-axis is an axis of symmetry of the
process. The Cartesian coordinate system’s origin is situated at the intersection of the axis
of symmetry and curve AB. At the initial instant,

x = ζH and y = ηH. (4)

Using l’Hospital’s rule, one can verify that this condition is satisfied if:

s =
1
4

. (5)

at a = 0. As mentioned at the beginning of Section 2, it is convenient to use the polar
coordinate system (r, θ). The origin of this coordinate system is located at x = −H

√
s/a

and y = 0. It follows from (3) that:

r
H

=

√
ζa + s

a
and θ = 2aη. (6)

It is seen from (4) and Figure 2 that ζ = 0 on curve AB and ζ = −1 on curve CD
throughout the process of deformation. The radii of circular arcs AB and CD are determined
from (6) as:

rAB
H

=

√
s

a
and

rCD
H

=

√
s− a
a

, (7)

respectively. Using a standard procedure, one can verify that the Lagrangian coordinate sys-
tem is orthogonal, and the shear strain rate referring to this system vanishes throughout the
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process of deformation. The latter means that the shear stress referring to the Lagrangian
coordinate system vanishes throughout the deformation process if the material model is
coaxial (i.e., the principal directions of the stress and strain rate tensors coincide). In what
follows, it is assumed that this condition is satisfied. The mapping (3) is independent of
the constitutive equations. Using this equation, one can calculate the components of the
total strain and strain rate tensors. In particular, it is possible to verify that the equation of
incompressibility is satisfied. The following equation determines the neutral line:

ζ = ζn = −ds
da

. (8)

The total principal strains are:

εζ = −1
2

ln[4(ζa + s)] and εη =
1
2

ln[4(ζa + s)]. (9)

Those are also the normal strains in the Lagrangian coordinates. The strain rate
components referring to these coordinates are:

ξζ = − (ζ + ds/da)
2(ζa + s)

da
dt

and ξη =
(ζ + ds/da )

2(ζa + s)
da
dt

. (10)

Here, t is time. The equivalent strain rate involved in viscoplastic models is readily
determined from (10).

The stress solution exists if the mapping (3) is compatible with the equilibrium and
constitutive equations. Let σr and σθ be the radial and circumferential stresses in the polar
coordinate system, respectively. The only stress equilibrium equation that is not identically
satisfied in the polar coordinate system is:

∂σr

∂r
+

σr − σθ

r
= 0. (11)

It is evident from (6) that σr = σζ and σθ = ση , where σζ and ση are the normal stresses
in the Lagrangian coordinate system. One can replace differentiation with respect to r with
differentiation with respect to ζ using (6). Then, Equation (11) becomes:

∂σζ

∂ζ
+

a
(
σζ − ση

)
2(ζa + s)

= 0. (12)

One of the constitutive equations is the yield criterion. A wide class of materials obeys
the yield criterion of the form: ∣∣ση − σζ

∣∣ = σ0Λ
(

ε
p
eq, ξ

p
eq

)
. (13)

Here, σ0 is a reference stress, ε
p
eq is the equivalent plastic strain, ξ

p
eq is the equivalent

plastic strain rate, and Λ is a known function of its arguments. Various definitions of the
equivalent strain and the equivalent strain rate are possible. Independent of the specific
definitions, one can express the right-hand side of Equation (13) as a function of a, s, ζ, and
ds/da using the kinematic relations above and Hooke’s law. The latter is not required in
the case of rigid/plastic models. Equations (12) and (13) combine to give:

∂σζ

∂ζ
±

aΛ
(

ε
p
eq, ξ

p
eq

)
2(ζa + s)

= 0. (14)

The upper sign corresponds to the region −1 ≤ ζ ≤ ζn and the lower sign to the
region ζn ≤ ζ ≤ 0. In general, Equation (14) should be solved numerically, and we leave
the general analysis at this point, with the solution clear in principle.

Further simplifications are possible for particular functions Λ
(

ε
p
eq, ξ

p
eq

)
. In the case

of a rigid perfectly plastic material, Λ
(

ε
p
eq, ξ

p
eq

)
is constant. Therefore, Equation (14) can
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be immediately integrated. The solution eventually reduces to the solution given in [9].
The function Λ

(
ε

p
eq, ξ

p
eq

)
is independent of ξ

p
eq for rigid plastic hardening materials. The

corresponding solution for pure bending is found in [37]. The function Λ
(

ε
p
eq, ξ

p
eq

)
is

independent of ε
p
eq for rigid viscoplastic materials. The corresponding solution for pure

bending is also found in [37].
It was shown in [38] that the solution for elastic/plastic strain hardening materials is

facilitated using the equivalent plastic strain as an independent space variable instead of ζ
in plastic regions. In particular, Equation (14) becomes:

∂σζ

σ0∂ε
p
eq

=

(
1 +

σ0Λ′

3G

)
Λ. (15)

Here, G is the shear modulus of elasticity and Λ′ ≡ dΛ/dε
p
eq. It is worth reminding

that Λ is a function only of ε
p
eq for this material model. Therefore, Equation (15) can be im-

mediately integrated. This change of variables is useful for solving a class of elastic/plastic
boundary value problems [39–41]. Paper [38] presented the solution for bending under
tension. The corresponding solution for pure bending was provided in [42].

In addition to the solutions in [37,38,42], the method above has been employed for
finding solutions for several other material models. A model of anisotropic plasticity was
adopted in [43]. Paper [44] dealt with a model that accounts for Bauschinger’s effect. The
bending process of bi-layer sheets was studied in [45]. Each layer is elastic perfectly plastic.

Papers [46,47] extended the method above to sheets with continuously varying
through-thickness properties. The material model adopted in [46] is isotropic. Paper
[47] generalized this solution to anisotropic materials. The solution in [46] is for elas-
tic/plastic materials. Both elastic/plastic and rigid/plastic models were considered in
[47].

The evolution of damage in the pure bending process was investigated in [48] using a
rigid/plastic model. The damage evolution equation adopted in this paper has the form:

dD
dt

= Ω
(

σ

σeq
, εeq, D

)
ξeq. (16)

Here, d/dt denotes the convected derivative, σ is the hydrostatic stress, σeq is the
equivalent stress, and D is the damage parameter. Damage evolution equations of this
type in conjunction with rigid plasticity are widely used in damage mechanics [49–52].
An advantage of the method above is that the convected derivative involved in (16) is
identical to the local time derivative in the (ζ, η)-coordinate system. However, the direct
use of the method is impossible because it is necessary to add the damage parameter to the
arguments of the function Λ involved in (13) and (14). One should solve Equations (14)
and (16) simultaneously. This system is hyperbolic, and a simple finite difference method
solves it efficiently.

Ideal flows in plasticity were discovered in [53]. Non-steady ideal membrane flows
have broadly been used as the basis of an inverse method for designing sheet forming
processes, for example [54,55]. The theory of non-steady planar bulk ideal plastic flows
was developed in [56]. Another advantage of using the (ζ, η)-coordinate system is that one
can efficiently design bending, considered as a bulk process, using the ideal flow theory.
The condition for the bending under tension process to be an ideal flow process is that
the neutral line is fixed in the material. Therefore, ζn should be independent of a. Then, it
follows from (5) and (8) that:

s = −aζn +
1
4

. (17)

This ideal flow solution was discussed in detail in [57]. It is the only non-trivial
non-steady bulk ideal flow solution to the best of the authors’ knowledge.
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4. Comparison of Elastic/Plastic and Rigid/Plastic Solutions

In general, rigid plasticity is suitable for obtaining solutions at large strains in domains
where the elastic strain rate components are much smaller than the plastic strain rate
components. However, there are two issues in the case of bending. Firstly, an elastic region
inevitably occurs in the pure bending process. Such a region also occurs in the bending
under tension process if the tensile force is small enough. The plastic strain rate components
vanish in this region, and the condition above is not satisfied. On the other hand, it is
reasonable to expect that the thickness of the elastic region is very small as compared to
the thickness of the sheet after a certain amount of deformation. Therefore, the effect of
this region on the distribution of stress may be negligible. Secondly, the prediction of
springback is critical in analyzing the bending process, which assumes using elastic/plastic
solutions. This issue can be resolved using the approach proposed in [58]. According to
this approach, the distribution of stresses found from a rigid/plastic solution at the end of
the loading stage is used as the initial distribution for the stage of unloading, which allows
one to calculate the distribution of residual stresses and strains. Paper [47] explored the
accuracy of the approach proposed in [58] for the analysis of bending.

The method described in the previous section was used in [47] for obtaining elas-
tic/plastic and rigid/plastic solutions for the pure bending of anisotropic sheets with a
non-uniform through-thickness distribution of material properties. The quantitative results
below are for the distribution of properties given in [59]. Figure 3 shows the variation
of the locations of the elastic/plastic boundaries and the neutral line with H/rCD at the
beginning of the process.

Ζ1

Ζ2

Ζ
n

0.01 0.02 0.03 0.04

H

rCD

-0.60

-0.55

-0.50

-0.45

-0.40

Ζ1,Ζ2,Ζn

Figure 3. Variation of the locations of the elastic/plastic boundaries and the neutral line with H/rCD

at the beginning of the process.

In this figure, ζ1 and ζ2 are the ζ-coordinates of two elastic/plastic boundaries found
from the elastic/plastic solution, and ζn is the ζ-coordinate of the neutral line found from
the rigid/plastic solution. Therefore, the elastic region in the elastic/plastic solution is
ζ2 ≤ ζ ≤ ζ1. It is seen from Figure 3 that the thickness of this region becomes small at
the very beginning of the process. The through-thickness distribution of the radial and
circumferential stresses is depicted in Figures 4 and 5, respectively.
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Figure 4. Distribution of the stress σr at H/rCD = 0.04 found using the elastic/plastic and
rigid/plastic solutions.

Elastic and rigid 

plastic solutions

-0.8 -0.6 -0.4 -0.2 0.0
X

-0.6

-0.4

-0.2

0.2

0.4

0.6

ΣΘ

Σ0

Figure 5. Distribution of the stress σθ at H/rCD = 0.04 found using the elastic/plastic and
rigid/plastic solutions.

In both figures,

X =
r− rCD

H
. (18)

The curves in Figures 4 and 5 correspond to H/rCD = 0.04. It is seen from Figure 4
that the difference between the elastic/plastic and rigid/plastic solutions for the radial
stress is very small and is visible only near the neutral line. The difference between
the elastic/plastic and rigid/plastic solutions for the circumferential stress is invisible in
Figure 5. Since the circumferential stress completely controls the bending moment, it is
evident that the effect of the replacement of the elastic/plastic model with the rigid plastic
one on its predicted magnitude is negligible. It is also clear from Figures 4 and 5 that the
approach proposed in [58] is undoubtedly accurate for determining the distribution of
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residual stresses in the process of bending, followed by unloading, if H/rCD ≥ 0.04 (i.e.,
the inside radius is 25 times larger than the initial thickness of the sheet).

5. Bending Test

A great deal of information is available in the literature regarding various bending
tests. The review in this section is by no means comprehensive. It focuses on the mechanics
of processes rather than on the materials science aspects.

In the pure bending process, the absolute value of the radial stress in the polar
coordinate system (Figure 1) is much smaller than the absolute value of the circumferential
stress. The state of stress is regarded as compressive in the region between the neutral line
and the inside surface and as tensile in the region between the neutral line and the outside
surface. Given these two regions’ existence in one process, it is natural that the four-point
bending test has attracted the attention of researchers for determining the stress-strain
curves in tension and compression using a single test. According to [60], Herbert developed
a corresponding method in 1910. Herbert published his paper in German, and it is not
easy to access. However, paper [60] reproduced Herbert’s method in detail. Moreover,
this paper presented experimental data for three materials: beryllium, cast iron, and
copper. A four-point bend apparatus was used. The tensile and compression stress-strain
curves do not coincide. Comparing the stress-strain curves obtained from the bending
test, conventional uniaxial tension test, and conventional uniaxial compression shows
no significant difference. Of course, tension-compression asymmetry and other material
properties can be studied using a three-point bending test, for example [61,62]. However,
in this case, using numerical simulation for finding accurate solutions is unavoidable. The
stress-strain curve for annealed copper was found in [63] using the method described
in [60]. The limitations of the method were discussed in detail. In [64], the method was
successfully used for obtaining the stress-strain curve of cement-based composites. Paper
[65] modified the theoretical analysis described in [60] by replacing the original equations
in incremental form with several ordinary differential equations, which simplifies using
the method in practice. The stress-strain curves were determined for pure magnesium and
S45C steel. The paper concluded that the calculation is sensitive to small changes of the
bending curves’ slope, which may lead to difficulty with solving the inverse problem. In
[66], the method [65] was further developed and used to quantify Bauschinger’s effect. The
theoretical part of this modified method is based on finite element analysis. Paper [67]
validated the strength differential effect of DP 980 steel from uniaxial tension-compression
tests using the pure bending test carried out on a novel test apparatus.

The four-point bending test was adopted in [68] for investigating tension-compression
flow stress asymmetry in NiTi shape memory alloy strips of less than 0.8 mm in thickness.
The theoretical part of this research is based on the crystallographic theory of martensite.
Though not the four-point bending test, the bending test is also useful for studying the
material properties of foils. In [69], pure aluminum foil with thickness ranging from 25 µm
to 500 µm were tested for investigating the springback behavior. The theoretical part of
this research is based on a strain gradient theory of plasticity.

The four-point bending test can also be used to quantify the effect of the difference
between the tension and compression stress-strain curves on the accuracy of finite element
simulations [70]. Twin-roll cast, rolled, and annealed AZ31 sheets of different thickness
were tested at different temperatures to determine the tension and compression stress-
strain curves. The approach consists of comparing the solutions based on (a) the flow curve
obtained from tensile tests, (b) the flow curve obtained from compression tests, (c) the flow
curve obtained from tensile tests in the tensile region, and (d) the flow curve obtained
from compression tests in the compressive region. The paper concluded that only the latter
assumption allows predicting the maximum bending force with a deviation of less than 7%
for all experiments.

The bending/unbending test allows investigating a larger spectrum of material prop-
erties than the bending test. Large uniaxial Bauschinger effects were quantified in [71] using
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the pure bending/unbending test and interferometer techniques. Three materials were
tested: DP 590 steel, DP 780 steel, and AA 6022 aluminum alloy. The bending-unbending
test is also used for studying the evolution of microstructure, for example [72]. In this
work, pure titanium sheets were tested. An inverse technique was proposed in [73] for
identifying a nonlinear kinematic hardening law for anisotropic metals. Mild steel and
two aluminum alloys were used in the experiment. Springback and its accurate theoretical
prediction are crucial issues for processes that involve bending [74]. Paper [75] employed
a multiple bending-unbending process for understanding the springback phenomenon.
The process of continuous plastic bending under tension (CBT) is a multiple bending-
unbending process. The CBT process was proposed in [76] for preventing neck formation
in the tension testing of sheet materials. The test was carried out on various ferrous and
nonferrous sheet specimens, and the total elongation increased from 30 to 1000%. The CBT
process was further developed in [77–80]. A CBT machine for evaluating the formability of
automotive aluminum alloy and advanced high strength steel sheets was designed and
fabricated in [78]. The machine was used to test AA 6022-T4 in [78,80]. The evolution
of microstructure in the same alloy was studied in [79]. Paper [77] proposed a method
for identifying post-necking strain hardening behavior using the CBT process and finite
element simulation. The method was successfully applied to AA 6022-T4 alloy, DP 980
steel, and DP 1180 steel.

From the theoretical perspective, the four-point bending test is an optimal bending
test for determining the stress-strain curve. However, it is difficult to carry out this test
when large displacements and rotations are required [81]. Therefore, many researchers
have attempted to design devices that allow one to bend sheets under nearly pure bending
conditions to sufficiently large strains. Several successful designs can be found in [82–85].

Contact friction and pre-strain affect the interpretation of experimental data. Friction
unavoidably occurs in some bending tests. It is usually undesirable, and it is challenging
to take it into account in the analysis of experimental data. Paper [86] developed a bending
under tension test with direct friction measurement. The effect of lubrication on friction
in the bending under tension test was studied in [87]. Pre-strain is a positive factor. One
can induce a controllable amount of pre-strain before the bending test. This method allows
obtaining additional data using the bending test. For example, Bauschinger’s effect in hot
rolled and aged steel was investigated in [88] and in interstitial free steel in [89] using the
method above. The four-point bending test was used in [89]. The state of stress in the test
conducted in [88] is also close to that in the pure bending process.

6. Conclusions

The present paper reviews research related to plastic bending. Its theoretical part con-
cerns analytic and semi-analytic solutions for wide sheets. The material models considered
are coaxial. All the solutions included in the review can be divided into two groups: (1)
pure bending and (2) bending under tension. End effects are neglected. The pure bending
process should closely reproduce the state of stress and strain in the four-point bending test.
Therefore, this test is advantageous for identifying material properties. The experimental
part of the present paper demonstrates several applications of the four-point bending test.
Other bending tests and processes are also outlined in this part.

The considered material models fall into two categories: (1) rigid/plastic models and
(2) elastic/plastic models. It is shown that the difference between the corresponding elas-
tic/plastic and rigid/plastic solutions is negligible except at the very beginning of the process.
Since the rigid/plastic solutions are much simpler, it is recommended to use them for bending
at large strains. It is possible even if the distribution of residual stresses is required.
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