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Abstract: The operability approach has been traditionally applied to measure the ability of a continu-
ous process to achieve desired specifications, given physical or design restrictions and considering
expected disturbances at steady state. This paper introduces a novel dynamic operability analysis
for batch processes based on classical operability concepts. In this analysis, all sets and statistical
region delimitations are quantified using mathematical operations involving polytopes at every
time step. A statistical operability analysis centered on multivariate correlations is employed for the
first time to evaluate desired output sets during transition that serve as references to be followed
to achieve the final process specifications. A dynamic design space for a batch process is, thus,
generated through this analysis process and can be used in practice to guide process operation. A
probabilistic expected disturbance set is also introduced, whereby the disturbances are described by
pseudorandom variables and disturbance scenarios other than worst-case scenarios are considered,
as is done in traditional operability methods. A case study corresponding to a pilot batch unit is used
to illustrate the developed methods and to build a process digital twin to generate large datasets by
running an automated digital experimentation strategy. As the primary data source of the analysis
is built in a time-series database, the developed framework can be fully integrated into a plant
information management system (PIMS) and an Industry 4.0 infrastructure.

Keywords: dynamic operability; dynamic design space; statistics; digital twin; automated experi-
mentation; batch reactor

1. Introduction

The concepts of process operability defined by Vinson and Georgakis [1] have been
widely studied and applied to several linear and non-linear systems. In essence, process
operability allows the analysis of the achievable output set (AOS) that a process can reach,
considering an available input set (AIS) and an expected disturbance set (EDS), for a given
process model. This analysis can also verify if the desired output set (DOS) can be achieved
and quantify how much of the AOS covers the DOS specifications by defining an operability
index (OI) [2]. The inputs for the analysis correspond to the process design and operational
limitations, environmental constraints, as well as a group of external disturbances. The
outputs cover production targets, quality specifications, business benchmarks, and safety-
critical conditions [3].

Past operability studies have also considered the application of operability to control
strategies [4,5], process intensification [6,7], and design optimization [8,9]. The operability
framework has been extensively studied from a steady-state point of view [10], in which the
graphical regions used consisted of mainly stable points of operation [11,12]. Other studies
have investigated the dynamic operability concerning the minimum time to achieve differ-
ent steady states [13,14]. Additionally, these previously reported studies have considered
only deterministic sets, without statistical or probabilistic concepts being involved.
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In this work, a dynamic operability study is conducted based on classical operability
concepts [11,15]. The operability analysis previously developed for steady-state conditions
is performed for each time step as the process evolves, and thus the sets and OI values
are indexed by timestamp. In classical operability studies, the EDS is defined by the
disturbance values representing worst-case scenarios [16]. However, for a process where the
disturbances follow a statistical distribution, these scenarios have only a small probability of
occurring. In this proposed method, the EDS is considered from a probabilistic standpoint,
whereby Gaussian (±3σ) distributions are defined for a disturbance and the disturbance
values are generated from random selections. Statistical concepts are also used to build
the DOS sets by taking the correlations between variables into account. This idea has been
previously employed for multivariate statistical quality control (SQC) using the variance–
covariance matrix [17] as a reference to draw the joint reliability region [18,19]. As only data
are needed to build these sets, intermediate DOS probabilistic regions can be generated
along with the process dynamic operation instead of only a deterministic DOS, as in the
classical operability approach.

The case study chosen to apply the proposed dynamic operability approach is a batch
reactor due to the associated challenges with this mode of operation—a batch process
is intrinsically dynamic, i.e., the operating conditions are time-varying [20]. According
to industrial practice, there are always ranges for product specifications, and once the
product lies within the desired range, the batch is considered finished and the product is
acceptable [21]. However, these requirements are only specified at the end of the batch. As
a major contribution of this work, a space trajectory is provided to serve as a path to be
followed to reach these final specifications.

For the batch application system, a design of experiments (DoE) approach is performed
to guide the operations of a pilot plant unit, as well as the development and simulation
of a digital twin for the plant. The term digital twin has earned popularity during the
so-called “fourth industrial revolution”, indicating in this context a high-fidelity model
that can represent a real process, and thus can be extrapolated or interpolated to different
process conditions. This process digital twin is created in Aspen Batch Modeler (ABM
from AspenTech) and can be automatically called by a VBA code via Aspen Simulation
Workbook in order to connect with the operability algorithms developed in MATLAB.
The developed framework is, thus, ready for incorporation into so-called “Industry 4.0”
infrastructure, where massive amounts of data can be generated and updated in real time
by systems such as a plant information management system (PIMS).

Therefore, this work aims to contribute to the following aspects of process operability:
(i) tackles operability w.r.t. a dynamic point of view by evaluating classical operability
concepts over time and their applicability to batch processes; (ii) incorporates statistical
concepts into the expected disturbance and desired output set definitions.

This paper is structured as follows. First, the classical process operability concepts are
reviewed in Section 2 and the definitions of the proposed approach (dynamic and statistical
operability) are introduced in Section 3. Then, the case study is presented along with the
dynamic operability application in Section 4. Additionally, in Section 4 the automated
digital experimentation technique is detailed, while in Section 5 the main algorithm is
described. The results from the digital twin validation process and the proposed method
are discussed in Section 6, with conclusions given in Section 7.

2. Classical Process Operability Concepts

Operability concepts enable the understanding of how a process can reach desired
specifications when subjected to input conditions and limited by design constraints, while
considering expected disturbances. In the process operability framework, a generic process
model is defined as shown in Figure 1, in which inputs, u ∈ Rm, are manipulated inside
their available limits, and along with disturbances, d ∈ Rq, stimulate the model (M) to
generate the outputs, y ∈ Rn [3,15].
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Figure 1. Representation of a generic process model for operability with inputs, disturbances,
and outputs.

The process model (M) can be defined by the first principles or process simulators
(e.g., in Aspen Plus, DYNSIM, AVEVA Process Simulation, etc.) to reproduce a real unit
and obtain the relationships between input and output spaces [3]. The following sets are
essential for the operability analysis:

a. Available input set (AIS)—Considers all available inputs that may change within a
specific range according to physical or operating constraints. This set may represent
design or operational inputs. Operational inputs are manipulated variables (MV)
subject to control studies, whereas design inputs can be related to process materials,
design dimensions, etc. [11,16]. This set is defined as:

AIS =
{

u ∈ Rm
∣∣∣umin

i ≤ ui ≤ umax
i ; 1 ≤ i ≤ m

}
(1)

b. Expected disturbance set (EDS)—Represents the known process uncertainties, usu-
ally chosen as the extreme values in order to consider worst-case scenarios [16].

EDS =
{

d ∈ Rq
∣∣∣dmin

k ≤ dk ≤ dmax
k ; 1 ≤ k ≤ q

}
(2)

c. Achievable output set (AOS)—Compiles all possible outputs that the system can
achieve, given the AIS and considering an EDS. Thus, this set is defined as a function
of inputs and disturbances. For each disturbance scenario, d ∈ EDS, the AOS can be
obtained as [12]:

AOS(d) =
{

y ∈ Rn∣∣yj = M(u, d) ; 1 ≤ j ≤ n; u ∈ AIS; d ∈ EDS
}

(3)

The intersection of all AOS(d)s yields the AOS (shown in Equation (4)), which is a
region where the setpoints of the output variables can be moved successfully using
the available control action in the AIS while compensating for any disturbances in
the EDS [12].

AOS =
⋂

d∈EDS

AOS(d) (4)

d. Desired output set (DOS)—Corresponds to the desired region to be obtained for the
process. This set may be defined, for example, by production requirements such as
production rates or product qualities, process specifications, or efficiency. The DOS
is mathematically defined in Equation (5) [11].

DOS =
{

y ∈ Rn
∣∣∣ymin

j ≤ yj ≤ ymax
j ; 1 ≤ j ≤ n

}
(5)
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The DOS can be described by straight edges that connect the vertices given by ymin
j

and ymax
j for each output or discontinuous or disjointed points that discretize such edges [3].

In practice, a process is fully operable if all outputs satisfy the desired requirements, i.e.,
the DOS is a subset of the AOS. The operability index (OI) is defined to quantify the
achievability of the DOS, as shown in Equation (6). If some regions of the DOS are not
achievable, the OI is, thus, less than one [12].

OI =
µ(AOS ∩ DOS)

µ(DOS)
(6)

where µ represents a measure of the size of the set, e.g., area for 2-D sets, hypervolume
for high-D sets, etc. Thus, mathematical operations involving intersections of polytopes,
such as AOS ∩ DOS, need to be performed to determine the OI. For such operations, the
Multi-Parametric Toolbox (MPT) [22] in MATLAB can be used for convex regions. For
non-convex regions, the MATLAB built-in subroutine “boundary” may be employed.

In the classical operability methods, these sets are mainly studied at steady-state
conditions. The existing dynamic approach investigates the operability from the standpoint
of the minimum time required for a system to move between steady states and reject
expected disturbances. Existing dynamic operability methods can also be used to calculate
the amount of constraint relaxation necessary to prevent the occurrence of transient infea-
sibilities when disturbances affect the process [13,16]. The analysis proposed in the next
section considers the extension of the existing operability methods for the calculation of
dynamic sets employing concepts of statistics.

3. Proposed Approach: Dynamic and Statistical Operability

The classical steady-state operability concepts have inspired the proposed method
introduced in this section, which now considers the entire time frame, including the process
transient operations. In particular, the AIS remains the same as the concept described
by Equation (1), with the values indexed at the initial time (t0). The other sets have to
be redefined, considering their categorization in terms of their variable abilities to be
manipulated during process operation. For example, a reactant concentration can be
manipulated at the beginning of the batch, however once the reaction occurs, it will be
dependent on the process design and mass and energy balances. However, the amount of
fluid entering the jacket is always changeable. Therefore, two categories may be defined
for the process variables:

a. Static—no handling is available during the process and it is typically defined at the
beginning, e.g., for the initial temperature and concentrations;

b. Dynamic—the values can be changed during operation, whether in an open or closed
loop, e.g., for the thermal fluid inlet flow and temperature.

3.1. Expected Disturbance Set

The new EDS definition considers a probabilistic approach, in which not only are
the worst-case scenarios analyzed, but also the intermediate ones with more likelihood of
occurring. The dynamic and probabilistic expected disturbance set (EDSp(t)) is defined by
Equation (7) as follows:

EDSp(t) =
{

d(t) ∈ Rq
∣∣∣dmin

k ≤ dk ≤ dmax
k with ± 3σ; 1 ≤ k ≤ q

}
(7)

• Disturbance intensity—The deviation from the nominal value of the disturbance
variable is assumed random for unbiased processes and with a Gaussian behavior.
Essentially, this work considers ±3σ limits for dmin

k and dmax
k as in Equation (7) and

the generation of random disturbances within these bounds;

• Dynamic expectation—A disturbance may occur at any moment during operations,
reaching a maximum value and then reducing its magnitude due to a control action;
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thus, it can have different behaviors (e.g., step or impulse). In this work, it is assumed
that the disturbance follows a ramp, reaching the maximum value at 25%, 50%, or 75%
for a one-hour long batch. Such disturbance intensity then remains for 5, 15, or 30 min,
respectively. Figure 2 illustrates a disturbance example in which the temperature is
affected, reaching 61.52 ◦C at the 15 min mark, remaining for 5 min, and then returning
to its nominal value of 60.00 ◦C.
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Figure 2. Representation of assumed disturbance behavior.

The more disturbance possibilities that are considered, the more representative the
EDSp(t) is. In real batch reaction systems, historical data can be investigated to further
characterize the disturbance behavior throughout the operation. In a PIMS infrastructure,
time-series data for different variables, including disturbances, may come from sensors,
estimators, or historical databases.

3.2. Achievable Output Set

As the outputs are considered time-dependent, AOS(d,t) defined by Equation (8) is
indexed per timestamp and by the disturbance d, which is part of the EDSp(t).

AOS(d, t) =
{

y(t) ∈ Rp|y(t) = M(u, d, t);
for all u ∈ AIS

and a fixed d ∈ EDSp(t)

}
(8)

The AOS(t) is similarly calculated as in the original definition, based on the intersection
of the AOS(d,t)s for a specific time t given by Equation (9).

AOS(t) =
⋂

d∈EDSp(t)

AOS(d, t) (9)

3.3. Desired Output Set

Previous operability studies shows the desired output set (DOS) as a set desired to be
achieved at steady state [3,9]. For intrinsic time-dependent batch processes, the interest lies
in the final process specification. Thus, the DOS(t f ) can be defined, where t f denotes the
final time for the same definition as in Equation (5).
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The proposed dynamic operability framework has to first consider the conditions
capable of satisfying the DOS(t f ). Based on these conditions, the dynamic profiles can be
mapped backwards and the desired output set can be evaluated per timestamp, defining
the DOS(t). This mapping strategy is based on a joint reliability region, which carries
information about all variables/dimensions of DOS(t f ) and their self-correlations based on
the covariance matrix. The proposed method, thus, relies on multivariate distributions that
change their shape according to the variable interactions. Figure 3 is based on the concepts
presented in [18,23] and shows an example from a bidimensional analysis of the desired
regions represented by an ellipse.
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For the ellipse in Figure 3, a perfect circle will be found if there is no correlation be-
tween y1 and y2, while the ellipse becomes “thinner” as the relationship between variables
strengthens. This shape change in Figure 3 is due to the eigenvalues (λj) present in the
semi-axis expression, which can be evaluated by Equation (10).

lj =
√

λj·χ2
ν,α (10)

in which χ2
ν,α is the critical value of a chi-square distribution with ν degrees of freedom and

α% level of significance. Additionally, the shape geometry is centered around the mean
value (y1, y2) and has directions defined by the eigenvectors (e1 and e2) and the angle θ.
The ellipse parametric coordinates are described by Equations (11) and (12).

y1 = y1 + a· cos θ· cosϕ− b· sin θ· sinϕ (11)

y2 = y2 + a· cos θ sinϕ− b· sin θ· cosϕ (12)

These multivariate concepts are the basis of the DOSp(t) definition. The DOSp(t), thus,
represents the desired output region at a specific time t, in which the “p” subscript is due
to its probabilistic nature. Therefore, the DOSp(t) can be mathematically defined as in
Equation (13).

DOSp(t) =

{
y(t) ∈ Rn|

υj

∑
j=1

(
yj(t)− yj(t)

)2

lj(t)
= 1 for lj(t) =

√
λj(t)·χ2

ν,α(t); 2 ≤ j ≤ n

}
(13)
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where n is the DOS dimension; thus, when n = 2, Equation (13) corresponds to an ellipse,
n = 3 is an ellipsoid, and so on.

Finally, the dynamic operability index (OI(t)) is evaluated at each timestamp according
to Equation (14). The lower the OI(t), the more attention is needed in the specific analyzed
time period to guarantee the desired process specification. If no process condition can
satisfy the DOS(t f ), the OI(t f ) is null, resulting in batch run conditions that are not able to
achieve the desired specifications.

OI(t) =
µ
(

AOS(t)
⋂

DOSp(t)
)

µ
(

DOSp(t)
) (14)

4. Case Study Definition and Setup

This section presents a case study that consists of a pilot batch reactor system. The
proposed operability script for this system is described along with the time-series dataset
used. Additionally, the developed dynamic model for this system is validated against the
pilot bench unit, producing a digital twin for the process. Following the script, automatic
model runs are performed considering all of the recipes within a digital experimentation
strategy encompassing 900 simulated conditions (with approximately 1000 generated
points per simulated condition), which are defined based on the AIS and the EDSp(t).

4.1. Pilot Batch Unit

The addressed system is characterized by an endothermic second-order reaction
between sodium hydroxide (NaOH) and ethyl acetate (CH3COOCH2CH3), as described
in Equation (15). This reaction is carried out in a 1.2L stirred batch reactor and follows
the kinetic parameters according to [24]. In this reactor system, water flows in a jacket
to transfer enough heat for isothermal operation. A pH indicator is used to mark the
end of the reaction process. The experimental apparatus is depicted in Figure 4, where
a thermocouple and an electrical conductivity meter are used to acquire the reactor’s
temperature and concentration, respectively.

NaOH + CH3COOCH2CH3 
 CH3COONa + C2H5OH (15)Processes 2021, 9, x FOR PEER REVIEW 8 of 20 
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The heating fluid flows in a closed circuit, where electrical resistance is manipulated
to control the reactor temperature. A peristaltic pump guarantees its setpoint flow, which
is seated in a supervisory control and data acquisition (SCADA) system present in the
vendor software and used in the pilot unit operation. The system is also able to acquire
the data as a time-series database per batch. The reactants have been previously prepared
at determined concentrations and volumes per experiment. The conversion is calculated
based on the conductivity measurements, and along with temperature, represents the most
relevant variables in the study.

The digital experimentation strategy is delimited by a sensitivity analysis involving
different ethyl acetate concentrations (0.1, 0.05, and 0.07 mol/dm3) and temperatures
(30, 35, and 40 ◦C), with a fixed sodium hydroxide concentration of 0.1 mol/dm3. The
experimental pilot plant was used to develop and validate a process digital twin, enabling
automated and extensive digital manipulation of the system with minimal financial cost
and safety risks.

4.2. Dynamic Operability Sets Applied to the Batch Case Study

The categorization of the process variables employed is detailed in Table 1, and was
used to define the available input set (AIS), as well as the probabilistic expected disturbance
set (EDSp(t)). This categorization is essential when studying the AIS and EDS.

Table 1. Categorization of variables in the AIS and EDS.

Category Variable Description

Static

u1 Ethyl acetate initial molar concentration (CEtAc,0)
u2 Sodium hydroxide initial molar concentration (CNaOH,0)
u3 Initial reactor temperature (T0)
d1 Sodium hydroxide initial volume (VNaOH,0)
d2 Ethyl acetate initial volume (VEtAc,0)

Dynamic u4 Inlet mass flow of the heating fluid (
.

mw,in)
d3 Inlet temperature of the heating fluid (Tw,in)

The considered AIS has four dimensions, as given in Equation (16), with three static
variables, i.e., ones that can only be defined at the beginning of the batch. In particular, the
two reactant solutions were previously prepared at specified concentrations. Additionally,
the initial reactor temperature depends on the environmental conditions and the heating
system capacity.

AIS =


u ∈ R4

∣∣0.05 ≤ u1 ≤ 0.10 mol/dm3;
0.05 ≤ u2 ≤ 0.10 mol/dm3;

30 ≤ u3 ≤ 45 ◦C
0 ≤ u4 ≤ 10 kg/h

 (16)

Equation (17) describes the EDSp. Unlike d3, the two static disturbances (d1 and d2)
only need an intensity to be defined in the beginning of the batch, with no duration. A
ramp behavior is assumed for the dynamic disturbance to add complexity and simulate
the real case, in which the disturbance first changes from its nominal value and varies to a
maximum, where it remains for a certain period until a control system brings it back to its
nominal value. The specifically considered disturbance values are detailed in Table A1 in
the Appendix A.

EDSp(t) =


d(t) ∈ R3

∣∣−100 ≤ d1 ≤ 100 mL with σ1 = 33.33 mL;
−100 ≤ d2 ≤ 100 mL with σ2 = 33.33 mL;

−5 ≤ d3 ≤ 5 ◦C with σ3 = 1.67 ◦C

 (17)
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The DOS(t f ) is defined by Equation (18), where y1 and y2 correspond to reactor
conversion of sodium hydroxide and temperature, respectively. This definition is similar to
Equation (5), but related to the batch end time. The batches that satisfy the DOS(t f )—also
known as the deterministic desired output set in this work—will serve as basis to calculate
the intermediate DOSp(t)s, i.e., the probabilistic DOS’s.

DOS
(

t f

)
=
{

y ∈ R2
∣∣∣0.95 ≤ y1 ≤ 1.00 and 40.0 ≤ y2 ≤ 45.0 ◦C

}
(18)

4.3. Automated Digital Experimentation

Due to the large number of experiments to be performed, an automated digital
experimentation strategy is proposed using the Aspen software capability to communicate
with Excel and Visual Basic for Applications (VBA) via Aspen Simulation Workbook
(ASW). The batch recipes are defined by a multivariable experimental design formed by
combinations of AIS and EDSp(t), with variables and conditions tabulated in a database.
The strategy logics and queue organization are described in the experimentation planning
(EP) module in Figure 5, in which a VBA code is written to assemble the recipe specifications
and pass them to the process digital twin (DT) via ASW (Figure 5—step I).
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The DT corresponds to an Aspen (ABM) model that provides the results at different
timestamps because the AspenTech internal numerical method adjusts the time steps
per batch to provide better convergence; hence, the data need to be reconciled before
being archived in the final dataset. For this study, around 100 points for 10 variables are
stored per one-hour batch. The outputs are sent to the database manager (DM) via ASW
(Figure 5—step II). The DM is another VBA script responsible for writing the simulation
outputs that converge in a time-series database. Not necessarily all runs will converge,
since the EDSp(t) is pseudo-randomly generated; thus, a condition with no physical
solution could be found, which would be reported with a trial status. Once the batch
reaches the end, a signal is sent to EP via ASW (Figure 5—step III), and then the ABM
is reset to start the next simulation. This loop detailed in Figure 5 is repeated until the
last experiment is performed. The complete automated digital experimentation process
produces approximately 900,000 data points.
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The MATLAB code (described in the next section) and VBA dynamic arrays organize
the data in a tridimensional way according to Figure 6, where k response variables along
time t1 to t f have the information for the n batches. In such a way, all developed scripts
can be expanded to more extensive cases as necessary.
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5. Dynamic Operability Algorithm

The dynamic operability analysis is implemented in MATLAB, according to the dia-
gram described in Figure 7. Essentially, the time-series database is loaded first, the variables
are identified, and after a few inputs to the algorithm have been defined, the methodology
evaluation is started. These inputs correspond to:

• Output variables for AOS and DOS;
• DOS at the end of the batch (DOS(t f ));
• Tolerance allowed (α%) for the joint reliability regions of DOSp(t);
• Number of periods used during the process to run the analysis.

Once the dataset is loaded and inputs are defined (Figure 7—step I), all the results
impacted by the first disturbance considered are combined (Figure 7—step II) at the
beginning of the process (t0). Then, the AOS(d, t0) is determined (Figure 7—step III) by
a MATLAB built-in code called boundary. The Multi-Parametric Toolbox (MPT) was also
tested for this calculation, but the boundary function demonstrated improved behavior in
both convex and non-convex regions. Then, the AOS(t0) is evaluated (Figure 7—step IV)
using Equation (9). This procedure is repeated for all predefined periods until the final
time (t f ). Subsequently, the DOS(t f ) specifications described in Equation (18) are examined
(Figure 7—step V). If no output satisfies these limits, the final requirements cannot be
achieved by the process under the AIS conditions and considering the disturbances in the
EDSp(t). Otherwise, the batches that fulfill the desired set are tracked (Figure 7—step VI)
and the DOSp(t f ) is calculated (Figure 7—step VII) via the implementation of Equation (13).
Finally, the areas of each AOS(t) and DOSp(t) are determined and the OI(t) is evaluated
(Figure 7—step VIII). The last steps (Figure 7—VII and VIII) are repeated backward until
the first timestamp is achieved.
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6. Results

Initially, the validation of the digital twin model with the experimental results from
the pilot plant is presented. Then, the dynamic operability results are shown for different
sets, namely AOS(d,t), DOS(t f ), and DOSp(t), as well as the OI(t) calculations.

6.1. Batch Model Validation with Experimental Results

The batch reactor temperature and sodium hydroxide molar concentration are used
as variables for the model validation. The experiments are conducted until the acid–base
indicator (crystal violet) marks the end of the reaction, with the same experiment duration
applied as for the simulation.

The comparisons between the pilot unit data and the simulated digital twin outcomes
are presented for the experiments in Figures 8 and 9. The sodium hydroxide concentration
and reactor temperature profiles are shown in Figure 8a,b respectively for the fixed initial
concentration of ethyl acetate specified in the legend.

The digital twin result profiles in Figure 8 thus closely represent the experimental
ones for the entire batch. Specifically, the higher the initial concentration of ethyl acetate
(EtAc), the more sodium hydroxide is converted; hence, the sodium hydroxide molar
concentration is lowest when ethyl acetate starts at 0.10 mol/L. The highest relative error
(4.0% approximately) occurs at the temperature profile for the lowest ethyl acetate initial
concentration (0.05 mol/dm3); however, this condition did not substantially affect the
molar concentration of sodium hydroxide over time.
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Figure 8. Comparison between experimental and simulated results for different ethyl acetate initial concentrations. (a) Molar
concentration of sodium hydroxide. (b) Reactor temperature profile.
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Figures 8 and 9 indicate that the model matches the behavior shown by the experimen-
tal results of the pilot unit for all the sensitivity analyses performed for both concentration
and temperature profiles. The highest relative error obtained was around 15% when the
molar concentration was below 0.02 and the temperature was at 30 ◦C (see Figure 9), which
is likely related to sensor precision. Thus, as the digital twin (DT) parameters are well
adjusted to represent the entire batch system, this DT is used in the proposed dynamic
and statistical operability approach. This ABM model is then simulated multiple times
considering the cases determined by the design experimentation (see summary in Table A1).
In this work, nearly a million data points were generated by the DT, with the corresponding
data stored in a process database.

6.2. Dynamic and Statistical Operability Results

As at t = 0 h, there is no change in the system; the first AOS(d,t) is analyzed at
t = 0.1 h, as depicted in Figure 10. In this figure, all of the outputs from the simulations
at this timestamp are represented by the markers, while the non-disturbance case, i.e.,
AOS (d = 0, t = 0.1 h), is represented by the solid black line. The results from the non-
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disturbance case are plotted along with the ones obtained by the #1 disturbance case
from Table A1—generating the AOS (d = 9.7, t = 0.1 h)—in Figure 10a.
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Figure 10. Points and boundary contours of the achievable output sets at t = 0.1 h. (a) Region representing the initial
condition (no disturbance) in black and disturbance #1 (Table A1) in blue. (b) All AOS(d,t = 0.1 h)s determined at 0.1 h and
AOS(t = 0.1 h).

Then, the outputs, AOS(d, t = 0.1 h), considering all the disturbance instances (in Table A1)
are outlined by the dashed lines (light blue) in Figure 10b. Finally, the AOS(t = 0.1 h) is delim-
ited by the solid line (dark blue) in Figure 10b, where the AOS(t = 0.1 h) is the intersection
of all AOS(d,t = 0.1 h)s at 0.1 h and is the one used for operability index (OI) calculation
purposes. For this figure, each region was outlined using the MATLAB boundary function,
while mathematical operations such as intersections were determined using another built-in
MATLAB function called “polybool”.

The procedure above is used to determine the AOS(d,t)s presented in Figure 11a with
the output points and AOS(t)s in Figure 11b, at all ten timestamps considered during the
batch operation. The developed script can consider as many intervals as are available in the
data; however, for visualization purposes, the analysis here is delimited to 10 time instants.
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Figure 11. Achievable output sets drawn along the batch. (a) Output points, AOS(d,t)s, and AOS(t)s determined at all
timestamps considered. (b) AOS(t)s separated for visualization purposes.
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The plot of the deterministic desired output set (DOS(t f )) at the end of the batch ana-
lyzes whether the designed process can achieve the specifications even with the expected
disturbances. By deterministic, it is referred here to the set described by Equation (18), out-
lined by lower and upper limits and considering no statistical interaction among variables.
The output points that satisfy the deterministic DOS(t f ) are indexed and used to build the
primary joint reliability region at the final timestamp, i.e., DOSp(t f ), as shown in Figure 12.
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The DOSp(t f ) is, thus, the tolerance region considered for control purposes, with its
center pulled by the region with the highest concentration of data, as shown by the ellipse
in Figure 12. Additionally, the DOSp(t f ) is outlined by considering the tolerance at 60%.
The data in Figure 12 are highly concentrated (with many points overlapping each other)
at 98–100% conversion and 58–65 ◦C, as well as at 35–45 ◦C and 95–100% conversion,
which is the set used to build the DOSp(t f ). Thus, if the desired output set is centered in a
range different from these conditions (such as around 47–56 ◦C and 95–100%), the desired
specifications might not be achieved after a 1 h batch with the AIS and EDSp(t) described
in this work.

With all outputs indexed by timestamp, the other DOSp(t)s can be calculated from this
final point, with the indexed data shown in Figure 13.

In the magnified portion in Figure 13, the shape of the joint reliability region is still
closer to an ellipse at the end of the batch, which indicates a strong correlation between
temperature and conversion. The funnel-like behavior shown in the figure indicates more
desirable possibilities with a higher probability of occurrence at the beginning of the
process, followed by the reduction of such possibilities at each time step. This response is
due to the fact that the batch is a time-dependent process that relies on cumulative state-
changing behavior along the operation (t). Such a process, thus, becomes more difficult to
operate as it evolves, as also reflected in the decreasing OI(t) values in Table 2.
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Table 2. Operability index calculated along batch timestamps.

t (h) µ{AOS(t)} µ{DOSp(t)} OI(t)

0.00 0 0 -
0.10 4.6075 0.5359 99.93%
0.20 3.3821 0.3740 84.05%
0.30 2.2572 0.2898 68.23%
0.40 1.5442 0.2373 54.86%
0.50 1.1098 0.2006 45.09%
0.60 0.8248 0.1731 37.22%
0.70 0.6333 0.1522 31.02%
0.80 0.6308 0.1359 38.23%
0.90 0.6307 0.1222 45.13%
1.00 0.6307 0.1119 51.82%

Similarly to the classical operability analysis, the intersections between the AOS(t)s
and DOSp(t)s can be evaluated at each timestamp over the batch campaign to provide a
graphical idea (as shown in Figure 14) of how much the desired output set is achievable
and where to operate the process in order to guarantee the final specifications would be
reachable. In particular, the black marker in Figure 14 exemplifies an operation sample of a
batch in which the specifications were achieved, even considering the random disturbances.
Thus, this process can be characterized as fully dynamically operable in terms of reactor
conversion and temperature specifications.
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In case of deviation from the dashed area in Figure 14, the series of regions would
serve as a path for the operation to drive the process back to the proper DOSp(t). In order to
drive the process back to the desired region in this case, a control system (such as classical
feedback or advanced model predictive control) would be required.

7. Conclusions

The dynamic operability approach introduced here was applied to a strictly time-
dependent process. The developed method consists of an extension of the classical op-
erability concepts to a scenario where process dynamics and disturbance statistics are
considered. The statistical concepts explored included multivariate normal distributions
and probabilistic analysis of the expected disturbance set (EDS). A new desired output set
(DOSp(t)) was proposed based on the joint reliability region in which the tolerance value α
definition is necessary. A procedure to generate a dynamic design space for a batch process
in the form of a sequence of regions was provided and can be used in practice to assist
batch process operations, monitoring, and control. Such regions consist of desirable and
achievable sets at each time step, considering the constraints and the disturbances being
assumed as normally distributed. The product specifications are guaranteed at the end of
the process if operated inside the intersection series between the AOS and DOS regions.

The process model developed for the performed batch case study was validated
with experiments from a pilot plant. This model was defined as the digital twin for the
batch process, and an automated digital experimentation strategy was proposed in an
Industry 4.0 framework. The success of the analysis performed here depends on the data
source reliability and quality generated by the digital twin. The methodology accuracy
is improved as more data are available, and from this perspective a plant information
management system (PIMS) can be a powerful tool for operability studies. In future work,
the authors plan to integrate the current solution with alarms and message notifications
whenever the dynamic operability methodology detects operational actions necessary for
the process to return to an operable state.
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Appendix A

Table A1. Different disturbances in EDSp(t) in the dynamic operability analysis.

N Disturbance % of Beginning Intensity from Nominal Value Time Span (min)

1
d1 (mL)

0 9.70 0
2 0 −12.24 0
3 0 −16.43 0

4
d2 (mL)

0 −73.81 0
5 0 49.99 0
6 0 −15.66 0

7

d3 (◦C)

0 1.52 5
8 0 1.52 15
9 0 1.52 30
10 0 −3.15 5
11 0 −3.15 15
12 0 −3.15 30
13 0 4.17 5
14 0 4.17 15
15 0 4.17 30
16 25 1.52 5
17 25 1.52 15
18 25 1.52 30
19 25 −3.15 5
20 25 −3.15 15
21 25 −3.15 30
22 25 4.17 5
23 25 4.17 15
24 25 4.17 30
25 50 1.52 5
26 50 1.52 15
27 50 1.52 30
28 50 −3.15 5
29 50 −3.15 15
30 50 −3.15 30
31 50 4.17 5
32 50 4.17 15
33 50 4.17 30
34 75 1.52 5
35 75 1.52 15
36 75 −3.15 5
37 75 −3.15 15
38 75 4.17 5
39 75 4.17 15
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