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Table S1. Code list of target variables related to modeling objects.

Target Variables Related to Modeling Ob-

No. . Description
jects
1 C Carbon
2 ocC Organic carbon
3 CO, Carbon dioxide
4 TC Total carbon
5 TN Total nitrogen
6 MC Microbial carbon
7 ON Organic nitrogen
8 MN Microbial nitrogen
9 CH, Methane
10 NH; Ammonia
11 N,0 Nitrous oxide
12 NH,* Ammonium
13 NO3™ Nitrate
14 P Phosphorus
15 N Nitrogen
16 C/N Carbon to nitrogen ratio
17 TOC Total organic carbon
18 TKN Total Kjeldahl nitrogen
19 P Total phosphorus
20 TK Total potassium

Table S2. Code list of mechanism-derived model types.

No.

Mechanism-Derived Model Types

Description

IO Ul WO DN -

MK
FK
MB
HB
MM
SE
MS
PB

Monod kinetics model
First-order kinetics model
Mass balance model
Heat (energy) balance model
Michaelis—-Menten kinetics model
Semi-empirical model
Multi-stage model
Process-based model

Table S3. Code list of data-driven model types.

No.

Data-Driven Model Types

Description

O O NN SN O bk WD -

— =
_ O

GA

LR
MLR
ANN

ANFIS

CEF
RHF
FF
BN
RM
RBENN

Genetic algorithm aided by the stepwise clus-
ter analysis method
Linear regression analysis
Multiple linear regression
Artificial neural network
An adaptive network-based fuzzy inference
system
Critical exponential function
Rectangular hyperbola function
Fourier function
Bayesian network model
Regression model
Radial basis functional neural network model
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12

BPNN

Backpropagation neural network model

Table S4. Code list of applied scale types.

No. Applied Environment Types Description
1 LS Lab scale
2 IpS Industrial plant scale
3 FmS Farm scale

Table S5. Summary of 22 models.

Target Variables Re- Applied En
No. Types lated to Modeling I.’P Characteristics and Features References
. vironment
Objects
7 input variables (the proportions
of food and yard, ash and scoria
waste, the moisture content, the
1 ANN C/N LS fixed carbon content, the total Bayram et al.
MLR amount of organic matter, high cal- 2011 [66]
orific value, and pH) of 52 waste
samples were collected for model-
ing.
A total of 147 samples were
collected in different stages during
. Huang et al.
2 LR TN, TP, and TK IpS composting. pH, EC, and dry mat- 2011 [55]
ter content were selected as input
variables.
SE 4 equations and 7 parameters were Kabbashi 2011
T T L
3 MS Cand TN 5 included for modeling. [58]
5 input variables such as NH," —
N concentration, moisture content,
4 GA C/N LS ash content, mean temperature, Sun et al. 2011
. -y [65]
and mesophilic bacteria biomass of
198 samples were included.
Models contain 7 input variables
(chemical and physical parameters N
ANN . Boniecki et al.
5 NH; LS of composting) and 1 output (am-
. . 2012 [59]
monia emission). 550 cases of data
were included.
4 input variables (aeration, mois-
6 ANFIS co, LS t}lre, particle size, composting ~ Diaz et al. 2012
time) 48 groups data were col- [68]
lected for modeling
MK .
- FK co LS 10 equations and 42 parameters ~ Oudart et al.
2 .
MB were included. 2012 [47]
. . Villasefior et al.
8 FK C LS 5 equations were included. 2012 [50]
MK
Zh 1. 2012
9 FK Cco, LS 7 equations were included. ang et al. 20

MB

[51]
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MK
10 equations, 21 parameters and 12 Lashermes et al.
10 15[1; OCand €O, LS variables were included. 2013 [52]
CEF Composting formula, time and
composting formula interacting .
RHF L
11 FF TOC and TKN LS through the time of 54 groups data St I\z/gilrf%; a
MLR were selected as input variables.
i iabl h as air-fill
e e et Mancbo
12 RM CH, LS PpOTOsity, ' Hettiaratchi 2015
dissolved OC content of 14 groups [69]
of data, were included.
SE 10 equations and 55 parameters ~ Oudart et al.
13 PB €Oz Np0 and NHs FmS were included. 2015 [44]
MK 27 (8 ordinary differential Petric and Mus-
14 MB €O, LS equations) and 35 parameters were tafic 2015 [56]
HB included. e
MK
kK Villasefior et al
15 MB Nand P, and CO, IpS 22 equations were included. '
2012 [50]
HB
68 composts and vermicomposts
that were analyzed for their C, lig- Faverial et al.
1 B TN, TP, and TK L
6 N s 2han 5 nin and NPK contents throughout 2016 [15]
the composting process.
FK
MM
17 HB CH, LS 10 equations were included.  Ge et al.2016 [48]
MB
SE OC, MC, ON, MN, . I
BT wmowos oo s SeRmdvenmndr S
N,0, and NH, ‘ ’
3 input variables, such as sucrose-
19 RM N LS adding rat.lo, adding time, sucrose Li et al. 2017 [54]
concentration of 15 groups of data,
were included.
Data from 2 combinations of 20-
day duration experiments were an-
alyzed for modeling. Input varia-
bles included moisture content,
20 RBENN co, LS pH, EC, TOC, TKN, soluble bio- * 214 ¢t al- 2017
; + [70]
chemical oxygen demand, NH," —
N concentration, available phos-
phorous, C/N, total phosphorous,
oxygen uptake rate, Na, K, Ca.
68 groups data from 11 published
1 BPNN N,0 LS papers were collected for model- Chen et al. 2019
LR ing. 4 inputs were selected as input [71]

variables; they are C/N, moisture
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content, aeration rate, and super-
phosphate content.

22

pH, EC, C/N, NH,*/N0O;~, water-
soluble carbon, dehydrogenase en-
TN and TP LS zyme, and total phosphorus are se-
lected as variables. 20 groups of
data were included.

ANN
MLR

Hosseinzadeh et
al. 2020 [67]

EC (electrical conductivity); DM (dry matter).
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