

Review

A Review of Composting Process Models of Organic Solid Waste with a Focus on the Fates of C, N, P, and K

Zheng Yang ^{1,*}, Furqan Muhayodin ¹, Oliver Christopher Larsen ¹, Hong Miao ², Bing Xue ¹ and Vera Susanne Rotter ^{1,*}

- ¹ Chair of Circular Economy and Recycling Technology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; furqan.muhayodin@campus.tu-berlin.de (F.M.); oliver.larsen@tu-berlin.de (O.C.L.); bing.xue@tu-berlin.de (B.X.)
- ² College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; mh0514@163.com
- * Correspondence: zheng.yang@campus.tu-berlin.de (Z.Y.); vera.rotter@tu-berlin.de (V.S.R.)

Citation: Yang, Z.; Muhayodin, F.; Larsen, O.; Miao, H.; Xue, B.; Rotter, V. A Review of Composting Process Models of Organic Solid Waste with a Focus on the Fates of C, N, P, and K. *Processes* **2021**, *9*, 473. https://doi.org/10.3390/pr9030473

Academic Editor: Antoni Sánchez

Received: 16 February 2021 Accepted: 3 March 2021 Published: 6 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

No.	Target Variables Related to Modeling Objects	Description
1	С	Carbon
2	OC	Organic carbon
3	CO ₂	Carbon dioxide
4	TC	Total carbon
5	TN	Total nitrogen
6	MC	Microbial carbon
7	ON	Organic nitrogen
8	MN	Microbial nitrogen
9	CH_4	Methane
10	NH ₃	Ammonia
11	N ₂ O	Nitrous oxide
12	NH_4^+	Ammonium
13	NO ₃ ⁻	Nitrate
14	Р	Phosphorus
15	Ν	Nitrogen
16	C/N	Carbon to nitrogen ratio
17	TOC	Total organic carbon
18	TKN	Total Kjeldahl nitrogen
19	TP	Total phosphorus
20	TK	Total potassium

Table S1. Code list of target variables related to modeling objects.

Table S2. Code list of mechanism-derived model types.

No.	Mechanism-Derived Model Types	Description
1	МК	Monod kinetics model
2	FK	First-order kinetics model
3	MB	Mass balance model
4	HB	Heat (energy) balance model
5	MM	Michaelis-Menten kinetics model
6	SE	Semi-empirical model
7	MS	Multi-stage model
8	РВ	Process-based model

Table S3. Code list of data-driven model types.

No.	Data-Driven Model Types	Description
1	$C \wedge$	Genetic algorithm aided by the stepwise clus-
1	GA	ter analysis method
2	LR	Linear regression analysis
3	MLR	Multiple linear regression
4	ANN	Artificial neural network
F	ANIEIC	An adaptive network-based fuzzy inference
5	AINFIS	system
6	CEF	Critical exponential function
7	RHF	Rectangular hyperbola function
8	FF	Fourier function
9	BN	Bayesian network model
10	RM	Regression model
11	RBFNN	Radial basis functional neural network model

No.

		12		BPNN	Backpropagation neural r	network model
Table S4. Code list				plied scale type	25.	
		No.	App	lied Environn	ient Types Desci	ription
		1		LS	Lab	scale
		2		IpS	Industrial	plant scale
		3		FmS	Farm	scale
			Table S	5. Summary of 2	22 models.	
	Types	Target Varia lated to Mo Objec	bles Re- odeling ts	Applied En- vironment	Characteristics and Features	References
	ANN MLR	C/N		LS	7 input variables (the proportions of food and yard, ash and scoria waste, the moisture content, the fixed carbon content, the total amount of organic matter, high cal- orific value, and pH) of 52 waste samples were collected for model- ing.	Bayram et al. - 2011 [66]
	LR	TN, TP, ar	nd TK	IpS	A total of 147 samples were collected in different stages during composting. pH, EC, and dry mat- ter content were selected as input variables.	Huang et al. 2011 [55]
	SE MS	TC and	TN	LS	4 equations and 7 parameters were included for modeling.	Kabbashi 2011 [58]
	GA	C/N		LS	5 input variables such as NH_4^+ – N concentration, moisture content, ash content, mean temperature, and mesophilic bacteria biomass of 198 samples were included.	Sun et al. 2011 [65]
	ANN	NH ₃		LS	Models contain 7 input variables (chemical and physical parameters of composting) and 1 output (am- monia emission). 550 cases of data were included.	Boniecki et al. 2012 [59]
	ANFIS	<i>CO</i> ₂		LS	4 input variables (aeration, mois- ture, particle size, composting time) 48 groups data were col- lected for modeling	Díaz et al. 2012 [68]
	MK FK MB	<i>CO</i> ₂		LS	10 equations and 42 parameters were included.	Oudart et al. 2012 [47]
	FK	С		LS	5 equations were included.	Villaseñor et al. 2012 [50]
	MK FK MB	<i>CO</i> ₂		LS	7 equations were included.	Zhang et al. 2012 [51]

$3 \ of \ 6$

10	MK FK MB	OC and CO_2	LS	10 equations, 21 parameters and 12 Lashermes et al. variables were included. 2013 [52]
11	CEF RHF FF MLR	TOC and TKN	LS	Composting formula, time and composting formula interacting through the time of 54 groups data were selected as input variables. St Martin et al. 2014 [53]
12	RM	CH4	LS	3 input variables, such as air-filled porosity, moisture content, and dissolved OC content of 14 groups of data, were included. Mancebo and Hettiaratchi 2015 [69]
13	SE PB	CO_2 , N_2O and NH_3	FmS	10 equations and 55 parametersOudart et al.were included.2015 [44]
14	MK MB HB	<i>CO</i> ₂	LS	27 (8 ordinary differential equations) and 35 parameters were included. Petric and Mus- tafić 2015 [56]
15	MK FK MB HB	N and P, and CO_2	IpS	22 equations were included. Villaseñor et al. 2012 [50]
16	BN	TN, TP, and TK	LS	68 composts and vermicomposts that were analyzed for their C, lig-Faverial et al. nin and NPK contents throughout 2016 [15] the composting process.
17	FK MM HB MB	CH ₄	LS	10 equations were included. Ge et al.2016 [48]
18	SE PB	OC, MC, ON, MN, NH_4^+ , NO_3^- , CO_2 , N_2O , and NH_3	FmS	26 equations and 96 parametersBonifacio et al.were included.2017 [33,59]
19	RM	TN	LS	3 input variables, such as sucrose- adding ratio, adding time, sucrose concentration of 15 groups of data, were included.
20	RBFNN	C 0 ₂	LS	Data from 2 combinations of 20- day duration experiments were an- alyzed for modeling. Input varia- bles included moisture content, pH, EC, TOC, TKN, soluble bio- chemical oxygen demand, NH_4^+ [70] N concentration, available phos- phorous, C/N, total phosphorous, oxygen uptake rate, Na, K, Ca.
21	BPNN LR	N ₂ O	LS	68 groups data from 11 published papers were collected for model- Chen et al. 2019 ing. 4 inputs were selected as input [71] variables; they are C/N, moisture

				content, aeration rate, and super- phosphate content.	
22	ANN MLR	TN and TP	LS	pH, EC, C/N, NH_4^+/NO_3^- , water- soluble carbon, dehydrogenase en- zyme, and total phosphorus are se- lected as variables. 20 groups of data were included.	Hosseinzadeh et al. 2020 [67]

EC (electrical conductivity); DM (dry matter).

References

Bayram A.; Kankal M.; Ozsahin T, Saka F. Estimation of the carbon to nitrogen (C:N) ratio in compostable solid waste using artificial neural networks. *Fresenius Environ Bull.* **2011**, *20*, 3250–3257.

Boniecki, P.; Dach, J.; Pilarski, K.; Piekarska-Boniecka, H. Artificial neural networks for modeling ammonia emissions released from sewage sludge composting. *Atmospheric Environ.* **2012**, *57*, 49–54, doi:10.1016/j.atmosenv.2012.04.036

Bonifacio, H.F.; Richard, T.L.; Rotz, C.A. A Process-Based Model for Cattle Manure Compost Windrows: Part 1. Model Description. *Trans. ASABE* 2017, 60, 877–892, doi:10.13031/trans.12057

Bonifacio, H.F.; Richard, T.L.; Rotz, C.A. A Process-Based Model for Cattle Manure Compost Windrows: Part 2. Model Performance and Application. **Trans. ASABE** 2017, 60, 893–913, doi:10.13031/trans.12058

Chen, H.; Sun, S.; Zhang, B. Forecasting N2O emission and nitrogen loss from swine manure composting based on BP neural network. *MATEC Web Conf.* **2019**, 277, 01010, doi:10.1051/matecconf/201927701010.

Díaz, M.J.; Eugenio, M.E.; López, F.; García, J.C.; Yañez, R. Neural Models for Optimizing Lignocellulosic Residues Composting Process. *Waste Biomass-Valorization* **2012**, *3*, 319–331, doi:10.1007/s12649-012-9121-y.

Faverial, J.; Cornet, D.; Paul, J.; Sierra, J. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling. *PLOS ONE* **2016**, *11*, 0157884, doi:10.1371/journal.pone.0157884.

Ge, J.; Huang, G.; Huang, J.; Zeng, J.; Han, L. Particle-Scale Modeling of Methane Emission during Pig Manure/Wheat Straw Aerobic Composting. *Environ. Sci. Technol.* 2016, 50, 4374–4383, doi:10.1021/acs.est.5b04141.

Hosseinzadeh, A.; Baziar, M.; Alidadi, H.; Zhou, J.L.; Altaee, A.; Najafpoor, A.A.; Jafarpour, S. Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions. *Bioresour*. *Technol.* **2020**, *303*, 122926, doi:10.1016/j.biortech.2020.122926.

Huang, G.; Wang, X.; Han, L. Rapid estimation of nutrients in chicken manure during plant-field composting using physicochemical properties. *Bioresour. Technol.* **2011**, *102*, 1455–1461, doi:10.1016/j.biortech.2010.09.086.

Kabbashi, N. Sewage sludge composting simulation as carbon/nitrogen concentration change. J. Environ. Sci. 2011, 23, 1925–1928, doi:10.1016/s1001-0742(10)60642-0.

Lashermes, G.; Zhang, Y.; Houot, S.; Steyer, J.P.; Patureau, D.; Barriuso, E.; Garnier, P. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model. *J. Environ. Qual.* **2013**, *42*, 361–372, doi:10.2134/jeq2012.0141.

Li, W.; Wu, C.; Wang, K.; Meng, L.; Lv, L. Nitrogen loss reduction by adding sucrose and beet pulp in sewage sludge composting. *Int. Biodestrior. Biodegradation* **2017**, 124, 297–303, doi:10.1016/j.ibiod.2017.03.013.

Mancebo, U.; Hettiaratchi, J.P.A. Rapid assessment of methanotrophic capacity of compost-based materials considering the effects of air-filled porosity, water content and dissolved organic carbon. *Bioresour. Technol.* **2015**, *177*, 125–133, doi:10.1016/j.biortech.2014.11.058.

Oudart, D.; Paul, E.; Robin, P.; Paillat, J.M. Modeling organic matter stabilization during windrow composting of livestock effluents. *Environ. Technol.* **2012**, *33*, 2235–2243, doi:10.1080/09593330.2012.728736.

Oudart, D.; Robin, P.; Paillat, J.; Paul, E. Modelling nitrogen and carbon interactions in composting of animal manure in naturally aerated piles. *Waste Manag.* **2015**, *46*, 588–598, doi:10.1016/j.wasman.2015.07.044.

Petric, I.; Mustafić, N. Dynamic modeling the composting process of the mixture of poultry manure and wheat straw. J. Environ. Martin, C.C.S.; Bekele, I.; Eudoxie, G.D.; Bristol, D.; Brathwaite, R.A.; Campo, K.-R. Modelling response patterns of physico-chemical indicators during high-rate composting of green waste for suppression of Pythium ultimum. *Environ. Technol.* **2013**, *35*, 590–601, doi:10.1080/09593330.2013.839719.

Sun, W.; Huang, G.H.; Zeng, G.; Qin, X.; Yu, H. Quantitative effects of composting state variables on C/N ratio through GAaided multivariate analysis. *Sci. Total. Environ.* **2011**, 409, 1243–1254, doi:10.1016/j.scitotenv.2010.12.023.

Varma, V.S.; Kalamdhad, A.S.; Kumar, B. Optimization of waste combinations during in-vessel composting of agricultural waste. *Waste Manag. Res.* **2017**, *35*, 101–109, doi:10.1177/0734242x16678068.

Vasiliadou, I.A.; Chowdhury, A.K.M.M.B.; Akratos, C.S.; Tekerlekopoulou, A.G.; Pavlou, S.; Vayenas, D.V. Mathematical modeling of olive mill waste composting process. *Waste Manag.* **2015**, *43*, 61–71, doi:10.1016/j.wasman.2015.06.038.

Villasenor, J.; Mayor, L.R.; Romero, L.R.; Fernández, F. Simulation of carbon degradation in a rotary drum pilot scale composting process. J. Environ. Manag. 2012, 108, 1–7, doi:10.1016/j.jenvman.2012.04.030. Zhang, Y.; Lashermes, G.; Houot, S.; Doublet, J.; Steyer, J.; Zhu, Y.; Barriuso, E.; Garnier, P. Modelling of organic matter dynamics during the composting process. *Waste Manag.* **2012**, *32*, 19–30, doi:10.1016/j.wasman.2011.09.008.