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Table S1. Code list of target variables related to modeling objects. 

No. 
Target Variables Related to Modeling Ob-

jects Description 

1 C Carbon 
2 OC Organic carbon 
3 CO  Carbon dioxide 
4 TC Total carbon 
5 TN Total nitrogen 
6 MC Microbial carbon 
7 ON Organic nitrogen 
8 MN Microbial nitrogen 
9 CH  Methane 

10 NH  Ammonia 
11 N O Nitrous oxide 
12 NH   Ammonium 
13 NO  Nitrate 
14 P Phosphorus 
15 N Nitrogen 
16 C/N Carbon to nitrogen ratio 
17 TOC Total organic carbon 
18 TKN Total Kjeldahl nitrogen 
19 TP Total phosphorus 
20 TK Total potassium 

Table S2. Code list of mechanism-derived model types. 

No. Mechanism-Derived Model Types Description 
1 MK Monod kinetics model 
2 FK First-order kinetics model 
3 MB Mass balance model 
4 HB Heat (energy) balance model 
5 MM Michaelis−Menten kinetics model 
6 SE Semi-empirical model 
7 MS Multi-stage model 
8 PB Process-based model 

Table S3. Code list of data-driven model types. 

No. Data-Driven Model Types Description 

1 GA Genetic algorithm aided by the stepwise clus-
ter analysis method 

2 LR Linear regression analysis 
3 MLR Multiple linear regression 
4 ANN Artificial neural network 

5 ANFIS An adaptive network-based fuzzy inference 
system  

6 CEF Critical exponential function 
7 RHF Rectangular hyperbola function  
8 FF Fourier function 
9 BN Bayesian network model 

10 RM Regression model 
11 RBFNN Radial basis functional neural network model 
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12 BPNN Backpropagation neural network model 

Table S4. Code list of applied scale types. 

No. Applied Environment Types Description 
1 LS Lab scale 
2 IpS Industrial plant scale 
3 FmS Farm scale 

Table S5. Summary of 22 models. 

No. Types 
Target Variables Re-

lated to Modeling 
Objects 

Applied En-
vironment Characteristics and Features References 

1 
ANN 
MLR C/N LS 

7 input variables (the proportions 
of food and yard, ash and scoria 
waste, the moisture content, the 
fixed carbon content, the total 

amount of organic matter, high cal-
orific value, and pH) of 52 waste 

samples were collected for model-
ing. 

Bayram et al. 
2011 [66] 

2 LR TN, TP, and TK IpS 

A total of 147 samples were 
collected in different stages during 
composting. pH, EC, and dry mat-
ter content were selected as input 

variables.  

Huang et al. 
2011 [55] 

3 
SE 
MS TC and TN LS 

4 equations and 7 parameters were 
included for modeling. 

Kabbashi 2011 
[58] 

4 GA C/N LS 

5 input variables such as 𝑁𝐻 −𝑁 concentration, moisture content, 
ash content, mean temperature, 

and mesophilic bacteria biomass of 
198 samples were included. 

Sun et al. 2011 
[65] 

5 
ANN  

 
𝑁𝐻  LS 

Models contain 7 input variables 
(chemical and physical parameters 
of composting) and 1 output (am-
monia emission). 550 cases of data 

were included.  

Boniecki et al. 
2012 [59] 

6 ANFIS 𝐶𝑂  LS 

4 input variables (aeration, mois-
ture, particle size, composting 
time) 48 groups data were col-

lected for modeling 

Díaz et al. 2012 
[68] 

7 
MK 
FK 
MB 

𝐶𝑂  LS 10 equations and 42 parameters 
were included. 

Oudart et al. 
2012 [47] 

8 FK C LS 5 equations were included. 
Villaseñor et al. 

2012 [50] 

9 
MK 
FK 
MB 

𝐶𝑂  LS 7 equations were included. Zhang et al. 2012 
[51] 
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10 
MK 
FK 
MB 

OC and 𝐶𝑂  LS 
10 equations, 21 parameters and 12 

variables were included. 
Lashermes et al. 

2013 [52] 

11 

CEF 
RHF 
FF 

MLR  

TOC and TKN LS 

Composting formula, time and 
composting formula interacting 

through the time of 54 groups data 
were selected as input variables.  

 

St Martin et al. 
2014 [53] 

12 RM 𝐶𝐻   LS 

3 input variables, such as air-filled 
porosity, moisture content, and 

dissolved OC content of 14 groups 
of data, were included. 

Mancebo and 
Hettiaratchi 2015 

[69] 

13 
SE 
PB 𝐶𝑂 , 𝑁 𝑂 and 𝑁𝐻  FmS 

10 equations and 55 parameters 
were included. 

Oudart et al. 
2015 [44] 

14 
MK 
MB 
HB 

𝐶𝑂  LS 
27 (8 ordinary differential 

equations) and 35 parameters were 
included. 

Petric and Mus-
tafić 2015 [56] 

15 

MK 
FK 
MB 
HB 

 

N and P, and 𝐶𝑂  IpS 22 equations were included. Villaseñor et al. 
2012 [50] 

16 BN TN, TP, and TK LS 

68 composts and vermicomposts 
that were analyzed for their C, lig-
nin and NPK contents throughout 

the composting process. 

Faverial et al. 
2016 [15] 

17 

FK 
MM 
HB 
MB 

 

𝐶𝐻  LS 10 equations were included. Ge et al.2016 [48] 

18 
SE 
PB 

 

OC, MC, ON, MN, 𝑁𝐻 , 𝑁𝑂 ,  𝐶𝑂 , 𝑁 𝑂,  and 𝑁𝐻  
FmS 26 equations and 96 parameters 

were included. 
Bonifacio et al. 

2017 [33,59] 

19 RM TN LS 

3 input variables, such as sucrose-
adding ratio, adding time, sucrose 
concentration of 15 groups of data, 

were included. 

Li et al. 2017 [54] 

20 RBFNN 𝐶𝑂  LS 

Data from 2 combinations of 20-
day duration experiments were an-
alyzed for modeling. Input varia-
bles included moisture content, 
pH, EC, TOC, TKN, soluble bio-

chemical oxygen demand, 𝑁𝐻 −𝑁 concentration, available phos-
phorous, C/N, total phosphorous, 

oxygen uptake rate, Na, K, Ca. 

Varma et al. 2017 
[70] 

21 BPNN 
LR 

𝑁 𝑂 
 LS 

68 groups data from 11 published 
papers were collected for model-

ing. 4 inputs were selected as input 
variables; they are C/N, moisture 

Chen et al. 2019 
[71] 
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content, aeration rate, and super-
phosphate content. 

22 
ANN  
MLR  TN and TP LS 

pH, EC, C/N, 𝑁𝐻 /𝑁𝑂 , water-
soluble carbon, dehydrogenase en-
zyme, and total phosphorus are se-

lected as variables. 20 groups of 
data were included. 

Hosseinzadeh et 
al. 2020 [67] 

EC (electrical conductivity); DM (dry matter). 
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