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Abstract: The development of efficient methods for process performance verification has drawn a
lot of attention in the research community. Viability theory is a mathematical tool to identify the
trajectories of a dynamical system which remains in a constraint set. In this paper, viability theory
is investigated for this purpose in the case of nonlinear processes that can be represented in Linear
Parameter Varying (LPV) form. In particular, verification algorithms based on the use of invariance
and viability kernels and capture basin are proposed. The difficulty with the application of this
theory is the computation of these sets. A Lagrangian method has been used to approximate these
sets. Because of simplicity and efficient computations, zonotopes are adopted for set representation.
Two new sets called Safe Work Area (SWA) and Required Performance (RP) are defined and an
algorithm is proposed to use these concepts for the verification purpose. Finally, two application
examples based on well-known case studies, a two-tank system and pH neutralization plant, are
provided to show the effectiveness of the proposed method.

Keywords: performance verification; invariance sets; linear parameter varying models; viability
theory; zonotopes

1. Introduction

The objective of process design is that the process achieves the desired dynamical
behavior specified in terms of a set of specifications. Therefore, it must be verified that the
desired behavior is achievable or not [1]. The complexity of modern process as well as
the required performance are increasing. Developing a tool that can guarantee the desired
process behavior becomes an interesting area of research. A formal process verification
method should provide an answer to the following problem

Problem 1. Given a process model and a specification of allowed and required behavior, determine
if the possible behaviors of the process comply with the specifications.

In other words, formal verification tries to prove the correctness of a process behavior
with respect to the associated specifications. This task is a difficult problem to solve in
general; it can be solved for certain classes of processes and specifications [1]. There is a
trade-off between the complexity of process model and complexity of specifications to be
checked, i.e., complex specifications can be verified for simple processes and vice versa,
simple specifications can be verified for complex processes. Therefore, most of the methods
for verification in complex processes rely on some degree of approximation which may
give an inconclusive answer to Problem 1.
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Because of difficulties in formal process verification, sometimes it is interesting to
verify the safety of the process. A malfunction in safety-critical processes can have catas-
trophic consequences, hence there is a need to verify safety specifications of the process.
Safety verification can be provided by answering to the following problem

Problem 2. Given a process model and some non-safe regions, determine if the process can reach
non-safe regions.

There are two main approaches into process verification: direct and indirect meth-
ods [1]. The difference between these two families of approaches is that in direct methods
the whole model is considered, while a simplified or abstract model of the process is
considered in indirect verification. Reachability analysis is widely used in this area as an
acceptable tool for process verification [2]. Safety of the process is a major issue that is
investigated using reachability analysis [3]. Another method uses the concepts of abstrac-
tion and refinement. First, a simplified hybrid model is generated (abstraction). Then,
a search for finding an evolution violating the safety conditions is conducted to refine
abstraction [4,5].

There are also some computational tools for checking the system behavior especially
in the context of hybrid systems. Uppaal is a toolbox for verification of real-time systems
that has been applied successfully in many applications [6]. Hytech is a symbolic model
checker for linear hybrid automata which can perform parametric analysis [7]. Checkmate
is also a program package which accepts simulated event files in many formats and
models [8]. Verification has been successfully treated in many control systems, including
hybrid systems, cyber-physical systems, systems consisting of interacting agents, and
autonomous systems operating in challenging environments [9]. For example, verification
methods have been applied to robot applications [10], avionics [11], railway signaling
control system [12], and inverters [13]. In [14], a neuro-fuzzy model is used to assess the
performance of a control loop. A survey on the monitoring of industrial control loops
performance is presented in [15].

In the literature, the use of sets (and in particular, zonotopes) has also been proposed
for systems verification, but in general restricted to the reachability analysis, as e.g., the
works of Althoff and Girard, see [16] for a recent review. This paper extends this idea to a
more general framework, the viability theory.

Viability theory is a mathematical tool to identify the trajectories of a dynamical system
with uncertainty which remains in the viability constraint set, and distinguish them from
the trajectories that cross its boundaries [17]. This theory provides a solid framework for
control synthesis of constrained dynamical systems in a set-valued fashion [18,19], and
has been used in many applications such as robotics [20], aircraft collision avoidance [21]
and air traffic management [22]. It also plays an important role in safety verification in
control systems, a particular important problem for high-risk, expensive, or safety-critical
applications. In many engineering systems, input constraints limit the system’s ability
to remain within a desired safe region of operation. For such systems, constraints on the
state-space determine the safe set. It is important to identify the subset of the safe set for
which the existence of a control input that keeps the states of the system within the safe
region can be guaranteed.

In this paper, three concepts in viability theory are used to verify the process perfor-
mance and safety. These concepts are invariance kernel, viability kernel and capture basin.
The main contribution of this paper is an approach for process performance verification
using these concepts from viability theory. This approach exploits the relation between
concepts in performance verification and viability theory. The difficulty with this theory is
related to the computation of the sets involved. Thus, another contribution of this paper is
the introduction of algorithms to determine these sets. Because of simplicity and efficient
computations, the proposed algorithms are based on zonotopes for set representation and
computation, while for process representation the nonlinear system model is brought to a
Linear Parameter Varying (LPV) representation. In particular, the process non-linearities
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are embedded in the system matrices that are not constant but varying with the operating
point defined by some measurable process variables. The representation of the nonlinear
process model in this way facilitates the set computations based on zonotopes that are
required to apply the viability theory to the process performance verification problem. Few
of the evaluation and verification algorithms existing presently take into account bounds
and constraints of the system explicitly. Another contribution of the proposed method is
that bounds and constraints of the system has been considered in computing the viability
sets. To illustrate the effectiveness of the process verification approach proposed in this
paper, two application examples are provided. A preliminary version of the results of this
paper is presented in [23]. Here, an algorithm based

This paper is organized as follows. In Section 2, some preliminaries about LPV system
representation, viability theory concepts and reachability concepts are recalled. In Section 3,
the computation of involved sets using zonotopes is detailed in an algorithmic manner
for nonlinear systems represented in LPV form. The viability theory approach for process
verification is presented in Section 4.2. In Section 5, two case studies based on well-known
control benchmarks are used to illustrate the proposed approach. Finally, concluding
remarks are provided in Section 6.

2. Preliminary Concepts
2.1. Zonotopic Sets

There exist several families of geometric shapes which can be used to describe convex
(or non-convex) sets with varying degrees of accuracy. However, an important limiting
factor is the trade-off between the accuracy of the approximation and the complexity of the
computations involved, i.e., a particular family may be able to represent a great number
of shapes but due to computationally expensive manipulations will be useless in practice.
Usually there exists an inverse relation between flexibility of a family and the numerical
cost of the representation.

Zonotopes represent a particular class of polytopes which exhibit symmetry with
respect to their center. In realistic situations, often the constraints that are given in polytopic
form have enough symmetry to be described as zonotopic sets. Even when this is not
the case, zonotopic approximations may be constructed. For polytopic sets, [24] gives the
tightest zononotopic approximation in fixed directions and [25] introduces an iterative
algorithm. In [26], it is proven that any Euclidean ball can be approximated arbitrarily
close, in the sense of the Hausdorff distance, by means of a zonotope.

Definition 1 (Minkowski sum). The Minkowski sum of two sets X and Y is defined by

X⊕Y = {x + y : x ∈ X, y ∈ Y}

Definition 2 (Zonotope). Given a vector c ∈ Rn (center) and a matrix H ∈ Rn×m (segment
matrix), the set represented as:

Z = c⊕ Hβm = {c + Hz : z ∈ βm}

is called a zonotope of order m and corresponds to the Minkowski sum of the segments defined by
the columns of matrix H. In this expression, βm is a unitary box composed by m unitary intervals.

Definition 3 (Interval hull). The interval hull �X of a closed set X is the smallest interval box
that contains X.

Given a zonotope X = π ⊕ Hβmz , its interval hull can be easily computed by

�X = {x ∀i = 1, · · · , n : |xi − πi| 6 ‖Hi‖1}

where xi and πi are the ith components of x and π, respectively and Hi is the ith row of H.
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Zonotopes have a lot of appealing properties [27]. Some properties that have been
used in the following sections are introduced in the Appendix A.

2.2. LPV Representation

LPV systems are a special class of nonlinear systems which appears to be well suited
for control and estimation of dynamical systems with parameter variations. This framework
was introduced to address the control of nonlinear systems using the extension of powerful
linear time-invariant approaches based on linear matrix inequalities (LMIs) [28]. In general,
LPV techniques provide a systematic design procedure for gain-scheduled multivariable
controllers. The idea of LPV models through parameter nonlinear embedding approach is
not to use linearization, but to hide non-linearities into some parameters ρ such that the
system can be represented with linear state-space structure. However, since parameters will
vary with time, and the resulting LPV model cannot be considered a Linear Time-Invariant
(LTI) system and new theory have been developed for the analysis and design [29].

Existing approaches for the LPV modeling of nonlinear systems can be classified into
three main categories: linearized-based, state-transformation and nonlinear embedding
approach (an automated conversion procedure) [29]. In the first category, nonlinear dy-
namic system is linearized at several operating points, then the resulting linearized models
are interpolated to get a global approximation of the system [30]. State-transformation
approaches starts with a priori choice of states and try to apply a coordinate change of
the nonlinear state-space representation to get an LPV form [31]. Nonlinear embedding
approaches try to rewrite the nonlinear representation in a form where nonlinear terms can
be absorbed by varying parameters [32]. The first methodology provides an approximation
of the systems with slow variations of the operating point, whereas the others usually pro-
duce an exact LPV representation. The last category stands for the automated approaches
that try to find an exact LPV representation with least possible conservativeness [29,33].
However, they are computationally intensive algorithms and provide little system theoretic
understanding of the choices taken.

In this paper, a discrete-time LPV representation of the nonlinear model is used

x(t + 1) = A(ρ(t))x(t) + B(ρ(t))u(t) + E(ρ(t))w(t) (1)

where A, B and E are known matrices of appropriate dimensions that depends on the
parameter ρ(t) that can be measured (or estimated) online. x(t) ∈ X is the state, u(t) ∈ U
is the control input and w(t) ∈W is unknown input (disturbance). The bounding sets X,
U and W are defined as

X = {x ∈ Rn : |x− xc| 6 x̄, xc ∈ Rn, x̄ ∈ Rn}
U = {u ∈ Rm : |u− uc| 6 ū, uc ∈ Rm, ū ∈ Rm}
W = {w ∈ Rq : |w− wc| 6 w̄, wc ∈ Rq, w̄ ∈ Rq}

where xc, uc, wc, x̄, ū and w̄ are constant vectors. The set X is a priori known set where the
states will always lie. The set U is the set of constraints on the control input signal. It is
assumed that the disturbances are unknown but bounded by the set W. These sets can be
rewritten as zonotopes

X = xc ⊕ H x̄βn

U = uc ⊕ Hūβm

W = wc ⊕ Hw̄βq

where H x̄ ∈ Rn×n, Hū ∈ Rm×m and Hw̄ ∈ Rq×q are diagonal matrices with their diagonal
entries composed of x̄, ū and w̄, respectively. The varying parameters ρ(t) embed the
non-linearities and are function of some system measurable variables known as scheduling
variables. Since there exist several possibilities of embedding the non-linearities in the
varying parameters ρ(t), the result of the transformation is non-unique leading to different
possible LPV representations. The number of the associated scheduling signals increases
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rapidly with the system order. As it involves no approximation of the system dynamics,
efficient modeling solutions can be achieved in many applications [29,34].

2.3. Viability Theory Concepts

It is assumed that the system (1) is defined in a proper open set O ⊆ Rn and that there
exists a globally defined solution for every initial condition x(0) ∈ O. Also, assume that
for each u(t) ∈ U and x(t) ∈ X, Equation (1) has a unique solution

S(t, x, u), t ∈ T

where S(0, x, u) = x(0) and T is a discrete time range [0, ∞) .
Viability theory is concerned with ensuring that the system state remains within a

viability constraint set K ⊆ Rn. Any trajectory of system (1) that leaves the set K at some
point in time is considered to be no longer viable.

Let introduce some viability theory concepts that will be used later in the paper for
introducing the proposed process performance assessment methodology:

Definition 4 (Viability Kernel). The viability kernel of K under the evolutionary system S is
the set ViabS(k) of initial states x(0) ∈ K from which starts at least one evolution x(t) ∈ S(x)
viable in K for all times t ∈ T

ViabS(K) ,

{
x(0) ∈ K|∃x(.) ∈ S(x)
such that ∀t ∈ T, x(t) ∈ K

}
(2)

This means that from a point x(0) in the viability kernel of the environment K starts at
least one evolution viable in K forever. This is equivalent to say that all evolutions starting
from a state belonging to the complement of the viability kernel K leave the environment
in finite time. Sometimes, from the engineering point of view, the existence of at least
one solution in S is not enough, since nothing is said about all other possible solutions.
Therefore, another stronger concept is defined known as the invariance kernel.

Definition 5 (Invariance Kernel). Let K ⊂ X be an environment. The subset InvS(K) of initial
states x(0) ∈ K such that all evolutions x(t) ∈ S(x) starting at x(0) are viable in K for all t > 0
is called the invariance kernel of K under S

InvS(K) ,

{
x(0) ∈ K|∀x(.) ∈ S(x),

∀t ∈ T, x(t) ∈ K

}
(3)

A state x(0) belongs to the invariance kernel of the environment K under an evolution-
ary system S if all the evolutions starting from it are viable in K forever. Despite viability
kernel, invariance kernel can guarantee that every system trajectory will remain in the set
forever. This concept is widely accepted as a useful tool for fault detection and isolation
[35]. Positive invariance in set theory has the same definition as invariance kernel. Viability
kernel and weak positive invariance are equivalent definitions in viability and set theories,
respectively [19]. Capture basin is another concept that has a wide range of applications,
for example, in process control [36] and economics [37].

Definition 6 (Capture Basin). The capture basin of C (viable in K) under the evolutionary
system S is the set CaptS(K, C) of initial states x(0) ∈ K from which starts at least one evolution
x(t) ∈ S(x) viable in K on [0, T) until the finite time T when the evolution reaches the target at
x(T) ∈ C.

CaptS(K, C) ,

{
x(0) ∈ K|∃x(.) ∈ S(x),

∀t ∈ T, x(t) ∈ K, x(T) ∈ C

}
(4)
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From a state x(0) in the capture basin of the target C viable in the environment K
starts at least one evolution viable in K until it reaches C in finite time. It is equivalent
to say that starting from a state belonging to the complement of K, all evolutions remain
outside the target C until they leave the environment K. Development of the methods for
obtaining these three sets is still an important research area and not an easy task [38]. A
conceptual representation of these sets is shown in Figure 1.

Figure 1. Conceptual representation of: (a) viability kernel (b) invariance kernel (c) capture basin
(Adapted from [23]).

2.4. Reachability Concepts

Reachability analysis identifies the set of states backward (forward) reachable by a
constrained dynamical system from a given target (initial) set of states. The notions of
maximal and minimal reachability analysis were introduced in [39]. Their corresponding
constructs differ in how the time variable and the bounded input are quantified. In the
formation of the maximal reachability construct, the inputs tries to steer as many states as
possible to the target set. On the other hand, in the formation of the minimal reachability
construct, the trajectories reach the target set regardless of the input applied. Based on these
differences, the maximal and minimal reachable sets and tubes (the set of states traversed
by the trajectories over the time horizon [39]) are formed.

In [18,39], it is shown that the minimal reachable tube and the viability kernel are the
only constructs that can be used to prove safety of the system and to synthesize inputs
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(controllers) that preserves it. Since the viability kernel and the minimal reachable tube are
dual concepts, they do not need to be treated separately.

Definition 7 (Forward Maximal Reachable Set). The forward maximal reachable set at time
instant t is the set of states for which there exists an input such that the trajectories emanating from
initial states in R reach that set exactly at time instant t:

ReachF
t (R) ,

{
x(t) ∈ Rn|∃u(.) ∈ U[0,t], x(0) ∈ R

}
(5)

Definition 8 (Backward Maximal Reachable Set). The backward maximal reachable set at
time instant t is the set of initial states for which there exists an input such that the trajectories
emanating from those states reach R exactly at time instant t:

ReachB
t (R) ,

{
x(0) ∈ Rn|∃u(.) ∈ U[0,t], x(t) ∈ R

}
(6)

There are already some references that provide some methods for computing reachable
sets using zonotopes, see for example [40,41].

3. Computation of Viability Sets

The difficulty with the application of viability theory to nonlinear systems is due to the
computation of the related sets presented in Section 2. In this section, several algorithms
are proposed to derive these sets based on zonotopic sets and the LPV representation of
the nonlinear system.

3.1. Invariance Kernel Computation

According to Definition 4 and Property 1 in the Appendix, the zonotope Xt that bounds
the trajectories of the system (1) at instant t is computed from the previous approximating
zonotope at time instant t− 1, Xt−1 = xc

t−1 ⊕ H x̄
t−1βn. Thus,

ReachF
1 (Xt−1) = Xt = xc

t ⊕ H x̄
t βn (7)

where
xc

t = mid(A(ρ(t− 1)))xc
t−1 + mid(B(ρ(t− 1)))uc

+mid(E(ρ(t− 1)))wc

H x̄
t =

[
J1 J2 J3 J4 J5 J6

]
J1 = seg

(
♦A(ρ(t− 1))H x̄

t−1
)

J2 =
diam(A(ρ(t− 1)))

2
xc

t−1

J3 = seg
(
♦B(ρ(t− 1))Hū)

J4 =
diam(B(ρ(t− 1)))

2
uc

J5 = seg
(
♦E(ρ(t− 1))Hw̄)

J6 =
diam(E(ρ(t− 1)))

2
wc

(8)

where mid(χ) and diam(χ) denotes, respectively, the center and diameter of the interval
matrix χ element-wise. Zonotopic inclusion operator ♦ is defined in Appendix A. J1, J3
and J5 are calculated using this operator.

Considering Q = c⊕ Hβm is a zonotope, it is clear that seg(Q) = H. Please note that
the set of states has an increasing number of segments generating the zonotope Xt+1 using
this method. To control the domain complexity, a reduction approach must be used. Here,
we use the method proposed in [42] to reduce the zonotope complexity. It is also important
to note that ρ(t− 1) must be calculated based on information from xc

t−1.
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The sequence of sets ReachF
1 (Xt) generated from the dynamic evolution of the sys-

tem (1) can be determined iteratively to find invariance kernel

Inv(X) =
∞
⊕

t=0
ReachF

1 (Xt)

Algorithm 1 summarizes the calculation of the invariance kernel based on above dis-
cussion.

Algorithm 1 Invariance Kernel Estimation
K0 ← X
t← 1
while t 6 N do

if Kt = ∅ then
KN ← ∅
break

end if
if Kt = Kt−1 then

KN ← Kt
break

end if
Kt ← ReachF

1 (Kt−1) (see Equation (7))
t← t + 1

end while
return (KN) KN = Inv(X)

3.2. Viability Kernel Computation

Lagrangian methods have been applied successfully to the computation of reachable
sets [43]. In contrast to Eulerian methods, Lagrangian methods use representations that
follow the vector field’s flow. Since Lagrangian methods do not depend on gridding the
state-space, they are computationally feasible to analyze high-dimensional systems.

In this section, based on [38], a method of expressing finite horizon viability kernels
in terms of reachable sets is presented. This provides a modified version of Saint-Pierre’s
viability kernel algorithm that can be implemented using efficient and scalable techniques
developed within the context of reachability analysis. We can reformulate this recursive
definition of the finite horizon viability kernels Kn that is defined as ViabS in (2) but with
T = [0, n], in terms of the backward reach set over one discrete time step ReachB

t (X).

Theorem 1. The sequence of finite horizon viability kernels Kn can be computed recursively in
terms of reach sets as

K0 = K

Kt+1 = K0 ∩ ReachB
1 (Kt)

(9)

Proof. See [38].

Now, considering nonlinear system expressed in discrete time in the form (1), the
backward reachable set over a single time step is computed as

ReachB
1 (X) = A(ρ(t))−1{X⊕ (−B(ρ(t)))U ⊕ (−E(ρ(t)))W} (10)

Here A(.)−1 denotes the pre-image of a set under the map A : Rd → Rd. We will
assume that A is non-singular, and thus the pre-image of A can be calculated simply by
applying the linear transformation A(ρ(t))−1 to the set

X⊕ (−B(ρ(t)))U ⊕ (−E(ρ(t)))W
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This is a fair assumption because we are mainly concerned with discrete time systems
that arise from the discretization of continuous time systems. Such systems have a dynamics
matrix of the form A = exp(Act) which is always invertible.

As the operations required include Minkowski summation, linear transformation and
intersection, using the zonotopic representation, there three operations can be performed
accurately, efficiently and using a constant amount of memory (see Appendix A). In
particular, Equation (8) can be rewritten to calculate backward reach set as

ReachB
1 (Xt) = Xt−1 = xc

t−1 ⊕ H x̄
t−1βn

xc
t−1 = mid

(
A(ρ(t))−1

)
xc

t + mid
(
−A(ρ(t))−1B(ρ(t))

)
uc

+mid
(
−A(ρ(t))−1E(ρ(t))

)
wc

H x̄
t−1 =

[
J1 J2 J3 J4 J5 J6

]
J1 = seg

(
♦A(ρ(t))−1H x̄

t

)
J2 =

diam
(

A(ρ(t))−1
)

2
xc

t

J3 = seg
(
♦− A(ρ(t))−1B(ρ(t))Hū

)
J4 =

diam
(
−A(ρ(t))−1B(ρ(t))

)
2

uc

J5 = seg
(
♦− A(ρ(t))−1E(ρ(t))Hw̄

)
J6 =

diam
(
−A(ρ(t))−1E(ρ(t))

)
2

wc

(11)

This method is similar to the one that is used for invariance kernel computation. The
difference is that in invariance kernel computation, the forward reachable set is used, but
backward reachable set is used in viability kernel computation.

Algorithm 2 summarizes the calculation of the viability kernel based on the previ-
ous explanations.

Algorithm 2 Viability Kernel Estimation
K0 ← X
t← 1
while t 6 N do

if Kt = ∅ then
KN ← ∅
break

end if
if Kt = Kt−1 then

KN ← Kt
break

end if
L← ReachB

1 (Kt−1) (see Equation (11))
Kt+1 ← K0 ∩ L (Equation (A1))

t← t + 1
end while
return (KN) KN = Viab(X)

3.3. Capture Basin Computation

Based on capture basin concept (see Definition 6), it is clear that we can easily adapt
Algorithm 2 to compute it. In the viability kernel definition, no time constraint is considered.
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Therefore, the algorithm is repeated until it converges to a set. However, in the capture
basin concept, there is a time limit that can be considered by a small change in the stop
criterion of the viability algorithm. Actually, we must find the backward reachable tube for
each time instant t. Following this idea, Algorithm 3 is proposed.

Please note that the computed set must lie inside the initial set. Therefore, an inter-
section of the output of while loop (Kt) and initial set (X) is computed at the end of the
algorithm.

For Algorithms 1 and 2, N is a big number that assures the algorithm will converge in
N steps while it will not go inside an unlimited while loop. In Algorithm 3, the number of
time steps is provided in the definition of capture basin as T.

Algorithm 3 Capture Basin Estimation
K0 ← C
t← 1
while t 6 T do

if Kt = ∅ then
KT ← ∅
break

end if
Kt ← ReachB

1 (Kt−1) (see Equation (11))
t← t + 1

end while
KN = KT ∩ X
return (KN) KN = Capt(X, C)

4. Process Performance Verification
4.1. Problem Description

As discussed in the introduction, the problem of process verification has recently
received increased attention (see e.g., [2,44]) providing the answer to questions as: Is there a
potentially unsafe configuration, or state, reachable from an initial configuration? The problem of
process performance verification may be encoded as a condition on the region of operation
in the system state-space: given a region of the state-space that represents unsafe operation,
prove that the set of states from which the system can enter this unsafe region has empty
intersection with the system initial states.

The size and shape of these sets depends on the control and disturbance system inputs.
Control variables may be chosen to change the sets, whereas the full range of disturbance
variables must be taken into account in this computation [2].

In this paper, the aim is to investigate if the performance requirements of a given
process are satisfied. This can be illustrated by using the notion of the process behavior
(Figure 2). It is important to associate to which process output y(t) reacts if a change in a
particular input u(t) is applied. The pair (u, y) is called input-output pair and the set of all
possible pair that may occur for a given process define the behavior βp. The behavior βp is
a subset of the space U ×Y of all possible combinations of input and output signals [45].
The behavioral requirements of the system can be shown as the βs of those I/O pairs. As
βp lies completely within the set βs

βp ⊂ βs

the process satisfies the considered specifications.
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Figure 2. Process behavior characterization.

4.2. Process Performance Verification Using Viability Theory

Based on the viability concepts recalled in Section 2 and the algorithms for computing
the sets involved presented before, it can be readily deduced that there are some similarities
that allow use of viability theory in process performance verification. It is desirable to find
equivalency between concepts that until now are used for process verification and those
coming from the viability theory.

4.2.1. Safety Verification

The system is required to work in a set that satisfies some given specifications. In
safety verification, only parts of trajectories of system (1) that are contained in a given set
X ⊆ Rn and that start from a given set X0 ⊆ X of possible initial states are considered.
The unsafe region of the system is denoted by Xu ⊆ X. With these notations, the safety
property can be defined as follows.

Definition 9 (Safety). The safety property holds if there exist no time instant t ∈ [0, T] for the
considered set of inputs and disturbances

u : [0, T]→ U

w : [0, T]→W

such that gives rise to an unsafe system trajectory, i.e., a trajectory x(.) ∈ S(x) satisfying x(0) ∈
X0, x(T) ∈ Xu and x(t) ∈ X for all t ∈ [0, T].

Initializing the system for every x(0) inside the viability kernel, there exist a system
trajectory that remains inside that kernel. Therefore, if the viability kernel does not intersect
with the unsafe set Xu, it can be regarded as safe area. The Safe Work Area (SWA) of the
system (1) can be represented by

SWA = {(x, u, w) ∈ (X, U, W)|∀t, x(t) ∈ Viab(X) \Xu} (12)

This set conceptually corresponds to βs in Figure 2. Therefore, if the system works in
the viability kernel, safety requirements are met. In the viability kernel definition, there
is a limitation that the system must have at least one evolution that remains in the set.
This is close to the concept of stability in Lyapunov theory. The above definition about
safety does not consider the performance of the system. In the next section, a performance
index is introduced and then, the way of assessing this index using viability concepts
is investigated.

4.2.2. Performance Verification

Suppose that the system (1) must reach a desirable set (C) in a given time (T). The
performance of the system can be defined as follows.
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Definition 10 (Performance). The performance requirements can be met if there exist a time
instant T > 0 such that for some inputs and disturbances satisfying

u : [0, T]→ U

w : [0, T]→W

makes the system to reach a desired set (C) in time T, i.e., there exists a trajectory x(.) ∈ S(x)
satisfying x(0) ∈ X0, x(T) ∈ C and x(t) ∈ X for all t ∈ [0, T].

To assess if the system performance is acceptable (i.e., satisfies the specifications), the
capture basin concept is used. Capture basin is a set that shows the capability of the system
to reach a target set (C) in predefined time range. After finding the viability kernel based on
state and input constraints, the capture basin can be obtained. The Required Performance
(RP) for the system (1) can be stated as

RP = {(x, u, w) ∈ (X, U, W)|x(t) ∈ Capt(X, C)} (13)

The RP set can be considered to be the plant behavior βp in Figure 2. This means
that if the system works in the capture basin, it has the capability to arrive to the target
in a finite and desired time T that is used in capture basin calculation algorithm. The
target corresponds to a small set near steady state set inside viability kernel or a small set
around a predefined trajectory. Also, the invariance kernel can be used as target in capture
basin computation:

C ≡ InvS(X)

4.2.3. Algorithm

Now, after formulating the system verification problem using viability theory concepts,
an algorithmic procedure will be provided. The performance evaluation starts obtaining
the viability kernel given a set of initial states and the system dynamics. This procedure
was described in Algorithm 2 in the previous section. Then, invariance kernel is computed
based on the Algorithm 1. After that, capture basin is computed using Algorithm 3 and
considering invariance kernel as target and a desired step size. If the capture basin and
viability kernel have no empty intersection, it can be said that required performance of
the system can be achieved by the control loop if the system starts on that region. The
procedure can be repeated for each operation mode of the system. Algorithm 4 shows the
procedure for system verification using viability theory concepts.
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Algorithm 4 System Verification
Considering the process dynamics (1) and the desired requirements,
at each time iteration in the time horizon selected for the analysis:

Determine viability kernel using Algorithm 2
Determine SWA from the viability kernel using Equation (12)

Determine invariance kernel using Algorithm 1
Determine capture basin from the capture basin based on invariance kernel and desired

time steps to reach the target using Algorithm 3
Determine RP using Equation (13)
if SWA ∩ RP 6= ∅

if the system starts in SWA ∩ RP
Process requirements are satisfied

else if the system starts in SWA
Process works in safe area

else
Process is not safe

end if
else

Process requirements cannot be satisfied
end if

5. Illustrative Examples

In this section, we provide two examples based on well-known case studies to illustrate
how the proposed method can be used in process performance verification.

5.1. Two-Tank System

First, the algorithms for system verification developed in the previous sections are
applied to a two-tank process that is modeled as a LPV system. The two-tank process is
composed of two cylindrical tanks: an upper tank (tank 1) and a lower tank (tank 2), see
Figure 3. A pump is used to send water from the water reservoir to tank 1 and the outflow
of tank 1 flows through tank 2 to the water reservoir. Pressure sensors located at the bottom
of each tank are used to measure the water levels in the tanks. The dynamics model of the
water levels h1(t) and h2(t) can be written as [35]

ḣ1(t) = −
( s

S

)√
2gh1(t) +

( κ

S

)
u(t) + w1(t)

ḣ2(t) =
( s

S

)√
2g(h1(t)− h2(t)) + w2(t)

(14)

where u(t) is the voltage applied to the pump, h1(t) and h2(t) are system states, w1(t), w2(t)
are bounded state disturbances. The system parameters are as follows: S = 15.5179 cm2 is
the cross-section area of the tanks; s = 0.1781 cm2 is the cross-section of the tanks outflow
orifice; κ = 3.3 cm3 Vs is the gain of the pump; and g = 981 cm/s2 is the gravitational
constant. After Euler discretization with sampling period τ = 1 s, the whole system is
formulated in LPV form by using the parameter nonlinear embedding approach [46]

x(t + 1) = A(ρ(t))x(t) + Bu(t) + Ew(t)
y(t) = Cx(t) + η(t)

(15)
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where
x(t) =

[
h1(t) h2(t)

]T

A(ρ(t)) = I + τ

[
−ρ1(t) 0
ρ1(t) −ρ2(t)

]
B = τ

[
κ
S 0

]T

C =
[

0 1
]

E = τ
[

1 1
]T

η(t) =
[

η1(t) η2(t)
]T

I is the identity matrix and the varying parameters ρ are defined as follows

ρi(t) =
s
S

√
2g

hi(t)
, i = 1, 2

Therefore, by measuring hi during the system operation, it is possible to find ρi online.
η(t) is the measurement noise matrix. Disturbances and noises are considered bounded by
means of zonotopes with center in 0 and segment of 0.01

wi = 0⊕ 0.01β, i = 1, 2

ηi = 0⊕ 0.01β, i = 1, 2

Pump

Tank 1

Tank 2

h1

h2

Water Reservior

Inlet Pipe

Figure 3. Schematic diagram of the two-tank process.

In this system, because the maximum value for states (water height in each tank) is
30 cm, the system must meet the following condition to become safe:

xi ∈
[

0, 30
]
, i = 1, 2

Also, let assume that the system must satisfy the following performance requirements:

• The goal is for h2(t) to track a reference of 5 cm.
• It must be able to go near the reference in 5 sample times.
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The initial zonotope for system states is chosen to cover all the possible values for
states. Accordingly, initial zonotope for states x is considered to be:

X0 =

[
15
15

]
⊕
[

15 0
0 15

]
β2

As discussed in Section 4, the viability kernel can be interpreted as a tool for verifying
if the system can reach the steady state (see Algorithm 2). As shown in Figure 4, the system
is working in SWA. Please note that because there is no unsafe set (Xu) in this system, SWA
is the same as viability kernel that can be computed using Algorithm 2. Here, because
starting from any height there is a possibility to achieve the desired steady state, viability
kernel covers all the initial zonotope (X0) approximately. It means that if no time limitation
is considered, each state can arrive to its steady state.

Invariance kernel can be computed using Algorithm 1 that is a set around the steady
state of the system. It can be used as a tool for detecting faults in steady state [35]. Also, it
can be used as initial set for capture basin construction. Capture basin defining the RP set
is computed by means of Algorithm 3 using invariance kernel, denoted as reference (Ref )
in Figure 5.

-10 0 10 20 30 40

h
1

-5

0

5

10

15

20

25

30

35

h
2

X
0

SWA

Figure 4. Initial zonotope (X0) and SWA of two-tank system.
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h
1

-10

-5

0

5

10

15

20

25

h
2

RP

Ref

Figure 5. RP of two-tank system.

Taking into account that the sampling time of the system (τ = 1 s), the system requires
5 s to reach the steady state. Using the RP set, it can be assessed if the system has the
possibility to achieve the desired set. It must be pointed out that starting inside RP does not
mean that the system will inevitably go to the reference in 5 s. This means that the system
can go there in the desired time. According to Algorithm 4, it is required that RP and SWA
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should not have empty intersection. The intersection of these two sets is shown in Figure 6.
In this figure, the system is simulated considering that it starts from x0 =

[
10 0

]T . It
is clear that the system goes to the target in about 10 step times, but because it starts in
SWA ∩ RP, it is safe and can go there in 5 step times by using an appropriate controller.
However, starting outside this set, there is no possibility to achieve the target in 5 step
times.

Figure 6. A two-tank system simulation.

5.2. pH Neutralization Plant

The second application example is based on a bench-scale pH neutralization plant
where an acid stream and an alkaline stream provide a 2.5 L constant volume to a well-
mixed tank. The pH is measured through a sensor located directly in the tank. A mathe-
matical model of this process has been presented in [47]

ẋ1 = 1
θ (x1,i − x1)− 1

θ x1u
ẋ2 = 1

θ x2 +
1
θ (x2,i − x2)u

ẋ3 = 1
θ x3 +

1
θ (x3,i − x3)u

h(x, y) ≡ ξ + x2 + x3 − x1 − Kw
ξ −

x3

1+ Kxξ
Kw

= 0

(16)

The last equation can also be expressed in the polynomial form as follows

h(x, y) ≡ Kxξ3 + [Kw + (x3 + x2 − x1)Kx]ξ2

+(x2 − x1 − Kx)Kwξ − K2
w = 0,

where ξ = 10−y, θ = V
/

qA, u = qB
/

qA. The model parameters are given in Table 1. The
system has proven to be a good case study as it exhibits significant nonlinear behavior and
model mismatch.

Table 1. Model parameters for pH system

Parameter Value

x1,i 0.0012 mol HCl/L
x2,i 0.002 mol NaOH/L
x3,i 0.0025 mol NaHCO3/L
Kx 10−7 mol/L
Kw 10−14 mol2/L2

qA 1 L/min (16.67 mL/s)
V 2500 mL
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As the proposed algorithms for finding viability sets are formulated in a discrete time
scheme, the system (16) can be discretized using Euler discretization method and expressed
in the LPV form using the nonlinear embedding approach as follows

x(t + 1) = Ax(t) + B(x(t))u(t) + Ew(t)

where

x(t) =
[

x1(t) x2(t) x3(t)
]T

A = I3×3 + τ

 − 1
θ 0 0

0 − 1
θ 0

0 0 − 1
θ


B(x(t)) = τ

[
− 1

θ x1
1
θ (x2,i − x2)

1
θ (x3,i − x3)

]T

E = τ
[ 1

θ x1,i 0 0
]T

Initial zonotope of X for finding invariance kernel and SWA is considered to be:

X0 =

 0
0
0

⊕
 5× 10−3 0 0

0 5× 10−3 0
0 0 5× 10−3

β3

Assume that the required performance in this process is that it must reach the refer-
ence in less than 100 s. Considering different values for τ will change A, B and E values,
therefore the size of predefined sets will change. Here, two discretization times are con-
sidered: τ = 1 s and τ = 5 s. For τ = 1 s, initial zonotope, invariance kernel and SWA
set are drawn in Figure 7. Here, the invariance kernel and SWA are computed using
Algorithms 1 and 2, respectively.

Initial zonotope for RP calculation is the invariance kernel and is shown as Ref in
Figure 8. The RP set is calculated by Algorithm 3. If discretization time is assumed to be
τ = 5 s, the sets are calculated in the same way. Because the sets in this case are not very
different, the corresponding figure is similar to Figures 7 and 8. For comparison purposes,
the definition of the zonotopes corresponding to these sets are provided for these two cases
in Table 2. It is clear from Table 2 that considering different sample times, the results do not
change significantly.

Table 2. Calculated sets for different sample times in pH system.

τ = 1 s τ = 5 s

Ref

 0.0010
2.4072× 10−4

3.0090× 10−4

⊕
 1.4813× 10−4 0 0

0 1.4813× 10−4 0
0 0 1.4813× 10−4

β3

 0.0010
2.4447× 10−4

3.0559× 10−4

⊕
 2.8879× 10−5 0 0

0 2.8879× 10−5 0
0 0 2.8879× 10−5

β3

SWA

 −1.5297× 10−5

−2.5488× 10−5

−3.1873× 10−5

⊕
 0.0017 0 0

0 0.0017 0
0 0 0.0017

β3

 −7.8933× 10−5

−1.3147× 10−4

−1.6437× 10−4

⊕
 0.0018 0 0

0 0.0018 0
0 0 0.0018

β3

RP

 0.0010
2.5272× 10−4

3.1590× 10−4

⊕
 2.8920× 10−4 0 0

0 2.8920× 10−4 0
0 0 2.8920× 10−4

β3

 0.0010
2.5292× 10−4

3.1616× 10−4

⊕
 2.9185× 10−4 0 0

0 2.9185× 10−4 0
0 0 2.9185× 10−4

β3



Processes 2021, 9, 482 18 of 23

-6

-4

5

-2

6

0

10
-3

x
3

4

2

x
2

10
-3 0 2

4

10
-3

x
1

0

6

-2
-4-5

-6

X
0

SWA

Invariance Kernel

Figure 7. Initial zonotope (X0), invariance kernel and SWA for pH system.
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Figure 8. Ref, SWA and RP for pH system.

A process simulation is presented in Figure 9. In this figure, every 100 sample times is
shown with a circle. It is clear that the system starts and remains inside SWA. Also, after
200 sample times, it reaches the capture basin and in 100 sample times it goes from capture
basin to invariance kernel. Therefore, the system works normally. The above analysis is
based on the assumption that input signal is inside the set:

U = 1⊕ 1β (17)

If the input signal is outside the zonotopic set (17) applied to the system, the states
will eventually go outside the viability kernel which means that the system is not safe (see
Figure 10).
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Figure 9. (a) A normal pH system simulation (b) Zoom.
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Figure 10. A pH system simulation with input signal outside predefined set (17).

6. Conclusions

In this paper, viability theory is used for process performance verification providing a
systematic methodology. The paper also proposes a set of algorithms based on the use of
zonotopes and the LPV representation of the system for computing the viability theory sets.
An algorithm that allows the process safety and performance verification using these sets
is also proposed. Two examples based respectively on a tank system and pH neutralization
plant are provided to illustrate the proposed approach. In viability theory, there are more
general definitions (as e.g., absorption basin, restoring viability) that could also be used
in the context of system verification. This will part of the future research as well as to the
application of the viability theory to fault-tolerant control.

The main benefit of the proposed approach is that it allows systematically checking the
performance of a given system just based on the system model and operational constraints,
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without considering a particular control law. Another limitation is the inclusion of the
different operating modes of the system. This would imply extending the current approach
to hybrid system, being this another path of future research.
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Appendix A

Some interesting properties of zonotopes have been recalled in this appendix:

Property A1 (Zonotope linear image transformation). [48] Consider a zonotope represented
by X = π ⊕ Hβmz , where π ∈ Rnz is a vector and H ∈ Rnz×mz is a matrix. The image of the
zonotope X through a linear transformation T ∈ Rnz×nz is a zonotope Y defined by

Y = qz ⊕ Nzβmz

where qz = Tπ and Nz = TH.

Property A2 (Zonotope Inclusion). [24] Consider a family of zonotopes represented by X =
π ⊕Mβmz , where π ∈ Rnz is a real vector and M ∈ Rnz×mz is an interval matrix. A zonotope
inclusion ♦(X) is defined by

♦(X) = π ⊕
[

mid(M) G
][ βmz

βnz

]
= π ⊕ Jβnz+mz

where G ∈ Rnz×mz is a diagonal matrix that satisfies:

Gii =
mz

∑
j=1

(
diam

(
Mij
)/

2
)

, i = 1, 2, · · · , n

where ’mid’ denotes the center and ’diam’ the diameter of the interval according to [27]. Under this
definition X ⊆ ♦(X).

Property A3 (Intersection). Given two zonotopes Z1 = p1 ⊕ H1βr1 and Z2 = p2 ⊕ H2βr2 and
matrix E, let us define

p̂(E) = Ep1 + (I − E)p2

Ĥ(E) =
[

EH1 (I − E)H2
]

then,
Z1 ∩ Z2 ⊆ Ẑ(E)

Ẑ(E) = p̂(E)⊕ Ĥ(E)βr1+r2
(A1)

Testing whether the intersection of two convex sets is empty or not can be done by
collision detection algorithms. Testing the emptiness of the intersection between two sets
is equivalent to test the membership of the origin in the Minkowski difference of the two
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sets [49]. Some collision detection algorithms can thus be used to test whether a point
belongs to a given set. The GJK (Gilbert-Johnson-Keerthi) algorithm is the robust and fast
collision detection algorithm that is introduced in [50].

As previously mentioned, detecting the collision between Z1 and Z2 can be reformu-
lated as testing the inclusion of origin in the Minkowski difference between Z1 and Z2:

0 ∈ Zd = Z1 ⊕ (−Z2) = cd ⊕ Hdβmd

The proposed solution is to find a separation vector w whose direction aims at proving
the non-membership of 0 in the zonotope. Indeed,

0 /∈ Zd ⇔ ∃w, 0 /∈ wTZd

⇔ ∃w,
∣∣∣wTcd

∣∣∣ > ∥∥∥wT Hd

∥∥∥
1

Therefore, the collision detection can be reformulated as the maximization of the
criterion J:

w∗ = max
w

J(w)

J(w) =

∣∣wTcd
∣∣

‖wT Hd‖1

(A2)

If
∣∣w∗Tcd

∣∣ > ∥∥w∗T Hd
∥∥

1 then 0 /∈ Zd. The problem is directly addressed by solving (A2)
by means of an iterative algorithm. In [49], a sub-optimal solution based on the optimization
of a criterion involving the Euclidean norm instead of the 1-norm is proposed:

Jsubopt(w) =

∥∥wTcd
∥∥2

2

‖wT Hd‖
2
2
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