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Abstract: Various offset-free economic model predictive control schemes that include a disturbance
model and the modifier-adaptation principle have been proposed in recent years. These schemes
are able to reach plant optimality asymptotically even in the presence of plant–model mismatch.
All schemes are affected by a major issue that is common to all modifier-adaptation formulations,
namely, plant optimality (note that convergence per se does not require perfect plant gradients)
requires perfect knowledge of static plant gradients, which is a piece of information not known in
most practical applications. To address this issue, we present two gradient-estimation techniques,
one based on Broyden’s update and the other one on linear regression. We apply these techniques
for the estimation of either the plant gradients or the modifiers directly. The resulting economic
MPC schemes are tested in a simulation and compared on two benchmark examples of different
complexity with respect to both convergence speed and robustness to measurement noise.

Keywords: economic model predictive control; real-time optimization; modifier adaptation; gradient
estimation; Broyden’s update; linear regression

1. Introduction

Economic model predictive control (eMPC) [1] has been proposed to overcome the
traditional separation between control and optimization layers in industrial process op-
erations [2,3]. eMPC merges standard MPC with the economic optimization layer that
is characteristic of real-time optimization (RTO) [2]. In particular, this combination is
obtained by substituting the MPC tracking objective with economic performance [4]. There
are many similarities between MPC and eMPC, with one of the main challenges being
optimality under plant–model mismatch [3]. Note that the tracking-MPC (tMPC) and RTO
communities have dealt with this challenge for many years, and two main solutions have
been established. The first one concerns tMPC schemes and consists of augmenting the
nominal model with a disturbance model so as to generate a steady-state offset correction to
set-point changes [5,6]. A comprehensive review about offset-free tMPC can be found in [7].
On the other hand, RTO formulations have incorporated the so-called modifier-adaptation
(MA) idea [8,9]. The essence of the MA strategy is to force the KKT optimality conditions
of the modified model to match those of the plant upon convergence by using zeroth- and
first-order correction terms [10].

To handle plant–model mismatch in eMPC schemes, a methodology that combines
the augmented model used in tMPC [7] and the MA approach used in RTO [8] was first
proposed in [11] and labeled “offset-free eMPC” (OF-eMPC). Alternative OF-eMPC for-
mulations have been proposed in recent years [11–13]. These formulations can overcome
plant–model mismatch and let the controlled plant reach plant optimality upon conver-
gence. This is done with the help of zeroth- and first-order modifier terms that exploit
an alternative version of MA, labeled “output MA” (MAy). Instead of modifying the cost
function and the constraints as in traditional MA [8], MAy sets the modifier terms on the
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outputs. A recent comprehensive analysis of MAy and its convergence properties can be
found in [14].

Despite its ability to converge to plant optimality in the presence of plant–model
mismatch, OF-eMPC suffers from a major caveat to proper MA schemes. Indeed, these
schemes require accurate knowledge of static plant gradients with respect to inputs. This
represents a major challenge, especially when dealing with noisy measurements. Even
the most recent MA investigations, which strive for feasibility improvement [15], faster
convergence [16], applicability to periodic systems [17], or large-scale systems [18], are
still based on the assumption that the plant gradients are perfectly known. Nevertheless,
several approaches for estimating plant gradients have been proposed, as detailed next.

The gradient estimation techniques found in literature can be divided into two
classes [10]. The first class, and by far the largest, includes steady-state perturbation meth-
ods that rely on steady-state data (e.g., [19–21]). These methods are the ones that better
replicate the concept of steadiness of RTO iterations. On the other hand, it might be ad-
vantageous with slow processes to use transient data and estimate steady-state gradients
on the go [22–24]. In this case, we speak of dynamic perturbation methods, which exhibit
a compromise between convergence speed and accuracy. Concretely, gradient approxi-
mations are computed using either a finite-difference approach (see [10] for an overview
of available approaches) or some type of system identification [21,24,25]. Exploiting the
so-called directional modifier-adaptation concept [20], recent works have shown how
privileged directions can ease gradient estimation—thereby making the approach more
reactive to plant–model mismatch [26,27]—and how these directions can be computed
efficiently [28]. Jeong et al. [29] recently compared the performance of different gradient es-
timation methods with MA schemes. These methods include multivariate linear regression,
partial least-squares regression, and principal component analysis. It is shown that the use
of latent-variable space can result in fast convergence and stability near plant optimality.

It is worth noting that researchers have also tried to avoid working with plant gradient
estimation. Navia et al. [30] formulated a nested optimization problem, in which the
modifiers are computed via gradient-free optimization in the outer loop. Although the
nested implementation was proved to be robust in the presence of noisy measurements
and capable of reaching plant optimality, it was rather slow. Another modifier-estimation
technique based on optimization has been proposed recently in [31]. In this case, the
limiting factor becomes the choice of weighting factors in the optimization problem and
the speed at which plant optimality can be reached.

This paper aims at investigating alternative solutions to the gradient estimation prob-
lem. In particular, we propose two main techniques to estimate static plant gradients,
namely, a Broyden’s update and linear regression. Note that these techniques have already
been used to estimate plant gradients and modifiers in the RTO context, but not in the
control context, that is, using fast sampling time and dynamic optimization. Another
important advantage over our previous work [21,25] is not requiring repeated local per-
turbations of the process. Moreover, taking inspiration from the aforementioned “plant
gradient-free” methodologies [30,31], we also use the same two techniques to estimate the
modifiers directly.

This work represents an extension to [32], but it also goes further by comparing several
gradient-estimation techniques. This is important to steer future research on how MA can
best be combined with eMPC.

The paper is organized as follows. The problem definition and the constituents of
OF-eMPC are detailed in Section 2. Several gradient-estimation techniques based on
either plant gradient estimation or modifier estimation are discussed in Section 3, while
Section 4 presents two OF-eMPC algorithms. The resulting OF-eMPC schemes are then
compared via a numerical example and a standard benchmark case study in Section 5.
Finally, conclusions are presented in Section 6.
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2. Preliminaries

The OF-eMPC algorithm described in this paper deals with a general nonlinear plant
and cost. Let us detail the main concepts and techniques.

2.1. Plant and Cost Specifications

The plant to be optimized is expressed by the following discrete-time nonlinear
dynamic system:

x+p = fp(xp, u)
yp = hp(xp),

(1)

where xp ∈ Rnxp , u ∈ Rnu and yp ∈ Rny are the plant states, inputs, and outputs, respec-
tively; x+p are the successor states. The unknown functions fp : Rnxp ×Rnu → Rnxp and
hp : Rnxp → Rny are assumed to be differentiable. The measured plant outputs yp at time
k ∈ Z are noted yp,k. Furthermore, the inputs and outputs are bounded,

umin ≤ u ≤ umax, ymin ≤ y ≤ ymax, (2)

with umin, umax, ymin, and ymax being the corresponding lower and higher bounds.
Plant (1) is said to be optimized when the known and differentiable function `e :

Rny × Rnu → R is minimized. Hence, the triple (x̄?p, ū?, ȳ?p) that defines the economic
optimum equilibrium of Plant (1) can be computed as:

(x̄?p, ū?, ȳ?p) = arg min
x,u,y

`e(y, u) (3)

subject to

x = fp(x, u) (4)

y = hp(x) (5)

umin ≤ u ≤ umax (6)

ymin ≤ y ≤ ymax. (7)

We introduce the following assumption about Problem (3)–(7):

Assumption 1 (Plant optimality).
• Problem (3)–(7) is feasible;
• The triple (x̄?p, ū?, ȳ?p) is the unique solution to Problem (3)–(7).

Remark 1 (Unknown plant optimum). Given that the functions fp and hp in Equation (1) are
typically unknown, the solution triple of Problem (3)–(7) is also unknown.

2.2. Nominal and Augmented Models

We consider the following nominal process model:

x+ = f (x, u)
y = h(x),

(8)

in which x and x+ ∈ Rnx denote the current and successor states, respectively. It is assumed
that the functions f : Rnx ×Rnu → Rnx and h : Rnx → Rny are known and differentiable.

Remark 2 (Plant–model mismatch). The functions f and h in Equation (8) differ from the plant
functions fp and hp in Equation (1) due to plant–model mismatch.

Augmenting Model (8) linearly with the integral states d ∈ Rnd , called disturbances,
has proven to be very effective for improving the performance of tMPC under plant–model
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mismatch [5,6,33–35]. In the general formulation, the effects of the disturbances on the
states and outputs are modeled using the matrices Bd ∈ Rnx×nd and Cd ∈ Rny×nd :

x+ = F(x, u, d) = f (x, u) + Bdd
d+ = d
y = H(x, d) = h(x) + Cdd.

(9)

The resulting augmented functions F : Rnx ×Rnu ×Rnd → Rnx and H : Rnx ×Rnd → Rny

are assumed to be continuous and consistent with f and h, that is, F(x, u, 0) → f (x, u),
H(x, 0)→ h(x). To guarantee that the augmented model can represent the plant without
steady-state offset, we introduce the following assumption (see [35] (Remark 8)):

Assumption 2 (Observability). The augmented system (9) is observable.

2.3. State and Disturbance Estimation

At each time step, the estimation procedure includes two steps, namely, prediction
and filtering. First, using the augmented model (9), one computes the predicted values x̂k, d̂k,
and ŷk as

x̂k = F(x̂∗k−1, uk−1, d̂∗k−1)

d̂k = d̂∗k−1
ŷk = H(x̂k, d̂k),

(10)

where x̂∗k−1 and d̂∗k−1 are the estimates of xk−1 and dk−1 at time k− 1. Then, using output
measurements, these predicted values are filtered appropriately to give the estimates x̂∗k , d̂∗k ,
and ŷ∗k .

There are different types of estimators. For example, the so-called moving-horizon
estimator (MHE) processes past output measurements in an optimization framework [36].
In contrast, a Luenberger observer or Kalman filter uses only the current measurements yp,k
to estimate the augmented states from their predicted values. This is the type of estimator
used in this study and is detailed next.

The prediction errors at time k are expressed as

εk = yp,k − ŷk (11)

and used to estimate the augmented states as follows:

x̂∗k = x̂k + Kxεk
d̂∗k = d̂k + Kdεk.

(12)

Note that the matrices Kx ∈ Rnx×ny and Kd ∈ Rnd×ny must be chosen to form an
asymptotically stable observer, which implies ny = nd and Kd to be invertible [5,35].

2.4. Output Modifiers

The output-correction scheme adopted in this study follows the MAy formulation
that was originally developed in the RTO literature [14] and firstly applied in the eMPC
framework by [11]. The correction is based on zeroth- and first-order terms that represent
the steady-state deviations between plant and model outputs. In our implementation,
we use the disturbance estimates d̂∗ as zeroth-order corrections. The first-order modifier
matrix at time k is noted Λk ∈ Rny×nu , with Λ0 = 0. Its evolution over time is described by
the following filtering equation:

Λk = (1− σ)Λk−1 + σ
(

Dugp(ūk−1)−Dug(ūk−1)
)

, (13)

where σ is a scalar filter constant ∈ (0, 1], the operators Du(·) are the derivatives of the
considered output functions (either gp or g) with respect to the inputs u, and ūk−1 are
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the input steady-state targets computed at the previous iteration by the target calculation
described in the next subsection.

The plant steady-state input-to-output maps gp : Rnu → Rny are unknown, and
Dugp(ūk−1) must be estimated experimentally from input and output measurements. The
model steady-state input-to-output maps g : Rnu → Rny are calculated from Model (8)
upon imposing the target inputs ūk−1 as follows:{

x̄k−1 = f (x̄k−1, ūk−1)

ȳk−1 = h(x̄k−1)
=⇒ ȳk−1 = g(ūk−1). (14)

Remark 3 (Model gradients). Since a linear disturbance model is used, the derivatives of Mod-
els (8) and (9) with respect to u are identical.

2.5. Target Calculation with Modifiers

The equilibrium triple (xk, uk, yk) at time k is calculated via steady-state optimization.
The modifiers described in Section 2.4 correct the outputs so as to eliminate any first-
order plant–model mismatch. The following steady-state target problem is solved at
each iteration:

(x̄k, ūk, ȳk) = arg min
(x,u,y)

`e(y, u) (15)

subject to

x = F(x, u, d̂∗k ) (16)

y = H(x, d̂∗k ) + Λk(u− ūk−1) (17)

umin ≤ u ≤ umax (18)

ymin ≤ y ≤ ymax. (19)

The modifier terms Λk(u− ūk−1) in Equation (17) ensure KKT matching between Prob-
lems (3)–(7) and (15)–(19) [11,14].

2.6. Economic MPC with Modifiers

The finite-horizon optimal control problem (FHOCP) typical of eMPC is modified
similarly to the method in Equation (17). Defining the generic state and input sequences
x := {χ0, χ1, . . . , χN} and u := {ν0, ν1, . . . , νN−1}, the optimal problem solved over N steps
at each decision time k reads

(x?k , u?
k ) = arg min

x,u

N−1

∑
i=0

`e(γi, νi) (20)

subject to

χ0 = x̂∗k (21)

χi+1 = F(χi, νi, d̂∗k ) (22)

γi = H(χi, d̂∗k ) + Λk(νi − ūk−1) (23)

umin ≤ νi ≤ umax (24)

ymin ≤ γi ≤ ymax (25)

χN = x̄k. (26)

Assumption 3 (FHOCP).
• Problem (20)–(26) is feasible
• The ordered pair (x?k , u?

k ) is the unique solution to Problem (20)–(26)
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The inputs implemented in the plant are the first ones of the optimal sequence u?
k ,

that is,
uk = u?

k [1]. (27)

We remark that, since the modifier terms in Equations (17) and (23) serve the same
goal, for consistency purposes, the steady-state input targets used in Problem (20)–(26)
are ūk−1 and not ūk. Moreover, for ensuring closed-loop stability of eMPC at nominal
conditions, the following assumption is introduced:

Assumption 4. Steady-state operation is assumed to be more profitable than oscillating behavior,
that is, the system is dissipative with respect to the stage cost `e(·) [37].

Furthermore, to be able to deal with plant–model mismatch, we also need the
following assumption:

Assumption 5. The closed-loop control sequence generated by the FHOCP (20)–(26) converges.

Note that Assumption 5 is consistent with the convergence requirements of tracking
offset-free MPC [7], modifier-adaptation schemes [9,14], and offset-free economic MPC [12].

3. Gradient or Modifier Estimation

The issue limiting the practical applicability of MA methods (and thus, also of MAy), is
the need to gather appropriate information about the plant–model mismatch. In particular,
it is necessary to accurately estimate the steady-state plant gradients Dugp(·) for the OF-
eMPC algorithm in Section 2 to work properly. As a matter of fact, convergence to plant
optimality is only ensured with perfect gradient estimation [38].

3.1. Basic Idea

This section compares two methodologies based on steady-state perturbation methods.
We also compare the performance when one uses only measurements taken at the current
iteration versus data collected at several (previous) iterations.

In Section 2.4, the first-order modifiers Λk are updated at every sampling time. This
works fine if the plant measurements correspond to steady-state conditions; however, when
dealing with transient measurements, the system must reach some sort of “steadiness”
before updating Λk. For this reason, with all the methods investigated next, the modifiers
are updated every M sampling times, where M ∼ τst

τ is a tuning parameter, with τst being
the time to reach steady state and τ being the sampling time. This way, we let the sys-
tem reach quasi-stationary conditions between two successive modifier updates, thereby
satisfying the necessity of operating with (near) steady-state measurements. This implies
a time-scale separation between the control and gradient-estimation tasks. Since Λk is
updated recursively, it helps to start the recursion with a fair estimate of Λ. In this initial-
ization phase, we apply nu appropriate input perturbations and collect quasi-stationary
output measurements, with which we can construct an initial nonzero Λ0. The next two
subsections will address plant gradient estimation and modifier adaptation, respectively.

3.2. Plant Gradient Estimation

We propose two techniques for the estimation of plant output gradients.

3.2.1. Broyden’s Update for Plant Gradient Estimation

Broyden’s update offers a recursive way of updating the estimated gradients using
current and past measurements [10,39,40]. The advantage of Broyden’s update is that it
does not require additional perturbations; however, being a numerical method, sufficient
variation between two consecutive inputs is needed for the scheme not to fail. The technique
is a standard secant method in nonlinear programming for updating estimates of first-order
derivatives, such as Jacobian matrices [41].
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At the kth iteration, Dugp,k, which are estimates of Dugp(ūk−1), are updated by defining

∆Yk := yp,k − yp,k−M (28)

∆Uk :=uk−1 − uk−M−1 (29)

and using Broyden’s formula as follows:

Dugp,k = Dugp,k−M +
∆Yk −Dugp,k−M∆Uk

∆UT
k ∆Uk

∆UT
k . (30)

The gradients of the model output functions g(·) can be computed from their defini-
tion (14) using the implicit function theorem:

Dug(·) = Dxh(x)
[
(I −Dx f (x, u))−1Du f (x, u)

]
. (31)

Then, the gradient differences are calculated as follows:

∆gk = Dugp,k −Dugk. (32)

When applying Equation (30), care must be taken to avoid ill-conditioning when
∆Uk → 0. Hence, the step given by Equation (30) is performed only if ‖∆Uk‖ ≥ ρu, where
ρu is a chosen threshold.

3.2.2. Linear Regression for Plant Gradient Estimation

This method relies on output measurements at ns + 1 steady-state operating points
corresponding to the inputs uk, uk−M, . . . , uk−ns M, with ns ≥ nu. Using such a data set, the
plant output gradients are computed as linear interpolation if nu = ns or linear regression
if ns > nu. These gradients are often called simplex gradients [42]. A similar approach
is used in [43]. In the present work, we use ns past points, with ns > nu, to estimate the
nu-dimensional gradients since the resulting redundancy helps deal with measurement
noise [20].

Hence, at the kth iteration, we set nsk = min
{

ns, k
M − 1

}
to construct the

following matrices:

Uk =
[
uk − uk−M . . . uk − uk−nsk M

]
∈ Rnu×nsk (33)

Yp,k =
[
yp,k − yp,k−M . . . yp,k − yp,k−nsk M

]
∈ Rny×nsk . (34)

The length of the sets Uk and Yp,k increases at each iteration from nu, when only nu + 1
operation points are available, to ns. Defining

Yp,k = Dugp,k Uk, (35)

the simplex gradients are computed as the least-squares solution to Equation (35):

Dugp,k = Yp,k U †
k = Yp,k UT

k (UkUT
k )
−1. (36)

The matrix U †
k in Equation (36) can be poorly conditioned if the successive points

do not extend in all directions of the input space [42]. This ill-conditioning can lead to
erroneous gradient estimates; hence, as with Broyden’s update, Step (36) is performed only
if ‖Uk‖1 ≥ ρu. Then, the gradient differences are calculated as in (32).

3.3. Modifier Estimation

In this section, we propose to use the two techniques developed in Section 3.2 to
estimate the differences between the plant and model gradients directly, that is, ∆gk. In
fact, direct estimation of modifiers is often preferred over the estimation of the individual
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gradients since the plant and the model are approximated using the same numerical scheme.
A graphical explanation can be derived similarly to the one made for linear interpolation
in [10, Figure 3], but this is beyond the scope of the present paper.

3.3.1. Broyden’s Update for Modifier Estimation

Analogously to Section 3.2.1, we define the following quantities:

δyk := yp,k − h(x̂k) (37)

∆Ek := δyk − δyk−M, (38)

which leads to Broyden’s update:

∆gk = ∆gk−M +
∆Ek − ∆gk−M∆Uk

∆UT
k ∆Uk

∆UT
k . (39)

It should be noted that when applying Equation (39), the same issue mentioned for
Equation (30) of avoiding ill-conditioning must be considered.

3.3.2. Linear Regression for Modifier Estimation

Analogously to Equation (34), at the kth iteration, we construct the following matrix:

∆Ek =
[
δyk − δyk−M . . . δyk − δyk−nsk M

]
∈ Rny×nsk , (40)

with δyk defined in Equation (37). The matrix of differences between plant and model
gradients is computed as the least-squares solution to the following regression problem:

∆Ek = Dugp,k Uk −Dugk Uk = ∆gk Uk, (41)

for which the solution is

∆gk = ∆Ek U †
k = ∆Ek UT

k (Uk UT
k )
−1. (42)

As above, we need to consider the ill-conditioning problem occurring when Uk → 0.

3.4. Role of Disturbance Model

The role played by the disturbance model is not the same for plant gradient estimation
and modifier estimation. This issue is discussed next.

3.4.1. Plant Gradient Estimation

In the case of plant gradient estimation, the computation of Dugp,k in Equation (30)
or Equation (36) depends on the disturbance model that has been selected:

• Using a linear disturbance model, as in (9), implies an equivalence between the nominal
and augmented models for computing Dug(·), as in (31), since the disturbances d
would not appear in any of the derivatives involved, that is, DxF(·), Dx H(·), and
DuF(·). Hence, the disturbance variables are not involved in the gradient calculation.

• In contrast, using a nonlinear disturbance model, it would not be possible to discard the
disturbance variables when calculating gradients. Moreover, a nonlinear disturbance
model may be more challenging to implement; however, if implemented correctly, the
first-order modifier terms might become superfluous (see [11] for an example).

Hence, in the case of plant gradient estimation, the most straightforward option is to
work with a linear disturbance model and use first-order modifiers.

3.4.2. Modifier Estimation

The driving terms ∆Ek in Broyden’s update (39) and ∆Ek in the linear regression
update (42) use the output errors δyk (the differences between the plant and nominal
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model outputs) in place of the prediction errors εk (the differences between the plant and
augmented model outputs). As a matter of fact, using

∆Ek = εk − εk−M =
(
yp,k − H(x̂k, d̂k)

)
−
(
yp,k−M − H(x̂k−M, d̂k−M)

)
(43)

or
∆Ek =

[
εk − εk−M . . . εk − εk−nsk M

]
∈ Rny×nsk (44)

to compute ∆gk in Equation (39) or Equation (42) would not work. The implicit secant
equation behind the Broyden update, namely, εk − εk−M = ∆gk∆Uk, does not hold true
because d̂k 6= d̂k−M. The same problem appears when dealing with the linear regression
update and Equation (41). Hence, the nominal model (8) is used for estimation, while the
augmented model (9) is used for optimization to ensure convergence.

4. Offset-Free Economic MPC Algorithms

This sections formulates algorithmically the two OF-eMPC schemes based on Broy-
den’s update and linear regression. The way the algorithms are initialized is presented first.

4.1. Algorithm Initialization

To improve convergence speed, the OF-eMPC schemes require a good initial estimate
for ∆g, which translates into an appropriate Λ0. This can be achieved by perturbing each
input individually around the current operating point and calculating the corresponding
gradient elements, which requires nu input perturbations. Following each perturbation,
one must wait M sampling times for the system to approach a steady state.

Next, we detail this initialization phase. Let k0 denote the iteration at which the plant
first reaches steady state, with the inputs uk0 . The following control law is then used during
the initialization phase, for j = 1, . . . , nu:

uk = uk0 + sjej for (j− 1)M ≤ k− k0 < jM, (45)

where sj is the amplitude of a step of duration M in the direction ej, with ej being a unit
vector in input space. One sees that the jth component of u is perturbed individually
by the amount of sjej during M iterations. The initialization phase ends at iteration
k f := k0 + nu M.

The jth column of the plant gradient to be used in Equation (30) is estimated as

Dugp,k f ,j =
yp,k0+jM − yp,k0

sj
, (46)

while the jth column of the gradient differences to be used in Equation (39) is

∆gk f ,j =
(yp,k0+jM − yp,k0)−

(
h(x̂k0+jM)− h(x̂k0)

)
sj

. (47)

Note that, unlike Broyden’s update, the linear regression method in Equation (36) or
in Equation (42) does not require Jacobian initialization, albeit the initialization phase is
still used.

These estimated plant gradients or gradient differences are used to compute Λk
as follows:

Λk =


0 for k0 < k < k f (initialization phase) (48)

Λk−1 if mod (k− k f , M) 6= 0 k > k f (49)

(1− σ)Λk−1 + σ∆gk if mod (k− k f , M) = 0 k ≥ k f . (50)
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4.2. OF-eMPC Algorithm Using Broyden’s Update

The block diagram and algorithm describing the OF-eMPC scheme with Broyden’s
update are given in Figure 1 and Algorithm 1. For the sake of brevity, the initialization
phase is not shown, and only the behavior for k > k f is displayed.

As can be seen in Figure 1, gradient estimates are computed after k0 + nu M iterations.
The modifier matrix is updated every M time steps, but only when the difference between
two successive inputs is not too close to zero. This is needed to avoid calculating gradient
differences based on little informative data, that is, to avoid ill-conditioning of the updating
Equation (30) or Equation (39). Hence, the parameter ρu can be seen as a tuning parameter
for the performance of the gradient estimation method.

FHOCP (20–26,27) k→ k− 1
uk

Plant
yp,kuk−1

Prediction
module (10)

uk−1

Filtering
module (11,12)

x̂k, d̂k, ŷk
Augmented

state
estimator

mod (k − k f , M) = 0

x̂∗k , d̂∗k

‖∆Uk‖ ≥ ρu

PGE is True

Gradient
estimation (30)

Gradient
difference

evaluation (32)

YES

YES

YES

Dugp,k

Gradient
difference

estimation (39)

NO

Modifier
update (50)

∆gk

∆gk

Target
optimization

problem (15)–(19)

x̄k, ūk

Λk

NO
Λk = Λk−1

NO
Λk = Λk−1

Figure 1. Block diagram for the eMPC algorithm described in Sections 2, 3.2.1, and 3.3.1 using
Broyden’s update formula, for k > k f . The acronym PGE stands for Plant Gradient Estimation.
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Algorithm 1 Offset-free eMPC algorithm using Broyden’s update.

1: Set k = k f and initialize uk using current plant values, x̂∗k , d̂∗k from (12) and Λk from (50),
with Λk−1 = 0.

2: Inject inputs uk into plant and wait for next sampling instant.
3: Update time index k := k + 1.
4: Read yp,k from plant.
5: Predict successor quantities using (10).
6: Evaluate prediction errors using (11).
7: Estimate states and disturbances using (12).
8: if mod (k− k f , M) = 0 then
9: if Plant Gradient Estimation is True then

10: Define ∆Uk and ∆Yk as in (29) and (28).
11: else
12: Define ∆Uk and ∆Ek as in (29) and (38).
13: end if
14: if ‖∆Uk‖ ≥ ρu then
15: if Plant Gradient Estimation is True then
16: Evaluate plant gradients using (30).
17: Evaluate gradient differences using (32).
18: else
19: Evaluate gradient differences using (39).
20: end if
21: Update modifier matrix using (50).
22: else
23: Do not update modifier matrix.
24: end if
25: else
26: Do not update modifier matrix.
27: end if
28: Solve (15)–(19) to obtain targets (x̄k, ūk, ȳk).
29: Solve FHOCP (20)–(26), set inputs uk as per (27).
30: Output: uk, x̂∗k , d̂∗k , and Λk.
31: Goto 2.

4.3. OF-eMPC Algorithm Using Linear Regression

The block diagram and algorithm describing the OF-eMPC scheme that uses linear
regression are given in Figure 2 and Algorithm 2. Here, the initialization phase is not
shown, and only the behavior for k > k f is displayed.
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FHOCP (20–26,27) k→ k− 1
uk

Plant
yp,kuk−1

Prediction
module (10)

uk−1

Filtering
module (11,12)

x̂k, d̂k, ŷk
Augmented

state
estimator

mod (k − k f , M) = 0

x̂∗k , d̂∗k

Input data
collection (33)

PGE is True

Output data
collection (34)

Output difference
collection (40)

‖Uk‖1 ≥ ρu

Gradient
difference

estimation (42)

NO

‖Uk‖1 ≥ ρu

Gradient
estimation (36)

Gradient
difference

evaluation (32)

YES

Uk,Yk

YES

Dugp,k

YES

YES

Uk, Ek

Modifier up-
date (50)

∆gk

∆gk

Target
optimization

problem (15)–(19)

x̄k, ūk

Λk

NO
Λk = Λk−1

uk−1

NO

Λk = Λk−1

yp,kyp,k

Figure 2. Block diagram for the eMPC algorithm described in Sections 2, 3.2.2, and 3.3.2 using the
linear regression solution, for k > k f . The acronym PGE stands for Plant Gradient Estimation.
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Algorithm 2 Offset-free eMPC algorithm using linear regression

1: Set k = k f and initialize uk using current plant values, x̂∗k , d̂∗k from (12) and Λk from (50),
with Λk−1 = 0.

2: Inject inputs uk into plant and wait for next sampling instant.
3: Update time index k := k + 1.
4: Read yp,k from plant.
5: Predict successor quantities using (10).
6: Evaluate prediction errors using (11).
7: Estimate states and disturbances using (12).
8: if mod (k− k f , M) = 0 then
9: Update input matrix Uk as in (33).

10: if Plant gradient estimation is True then
11: Update output matrix Yk as in (34).
12: else
13: Update output difference matrix Ek as in (40).
14: end if
15: if ‖Uk‖1 ≥ ρu then
16: if Plant gradient estimation is True then
17: Evaluate plant gradients using (36)
18: Evaluate gradient differences using (32).
19: else
20: Evaluate gradient differences using (42).
21: end if
22: Update modifier matrix using (50).
23: else
24: Do not update modifier matrix.
25: end if
26: else
27: Do not update modifier matrix.
28: end if
29: Solve (15)–(19) to obtain targets (x̄k, ūk, ȳk).
30: Solve FHOCP (20)–(26), set inputs uk as in (27).
31: Output: uk, x̂∗k , d̂∗k , and Λk.
32: Goto 2.

4.4. Ill-Conditioning

Ill-conditioning of ∆gk in Equations (30), (36), (39), or (36) results from too small a
value of ∆Uk or Uk. When ∆Uk or Uk tends to zero, the aforementioned ∆gk can no longer
be calculated. This happens when two measurements corresponding to (almost) the same
steady state are used in ∆Uk or Uk, that is, with uk−1 u uk−M−1. Hence, before calculating
∆gk, we compare the value of ∆Uk or Uk with the threshold value ρu, which depends on
the input–output sensitivity and the size of measurement noise. This is an engineering
choice that the designer has to make based on the process at hand.

We underline that, if modifier update does not take place due to ill-conditioning, and
thus the previous values of the gradients or modifiers are used, Problems (15) and (20) are
still solved as part of OF-eMPC. On the other hand, if the inputs u get “stuck” far away
from plant optimality, the system requires additional excitation for accurate estimation of
plant gradients or modifiers.
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5. Simulation Results

Two examples taken from the literature are used to compare the performance of five
eMPC schemes, all using the same nominal model, cost function, and sampling time. There
is significant plant–model mismatch, and the augmented model (9) reads

x+ = f (x, u)
d+ = d
y = h(x) + d.

(51)

The estimator of Section 2.3 is the deadbeat Kalman filter with the parameters Kx = 0
and Kd = I. In addition, all eMPC controllers use the target calculation (15) and the
FHOCP (20). The five controllers are the following:

1. eMPC0 assumes the plant gradients to be perfectly known, i.e., Dugp,k = Dugp(ūk−1).
This controller is not practically implementable but is used as reference.

2. eMPC1 uses the Broyden’s gradient update described in Section 3.2.1.
3. eMPC2 estimates the plant gradient using linear regression as per Section 3.2.2. The

number of data points in the regression is ns = 4.
4. eMPC3 uses the Broyden’s modifier update described in Section 3.3.1.
5. eMPC4 estimates the modifiers using linear regression as per Section 3.3.2. The

number of data points in the regression is also ns = 4.

Note that, in the presence of plant–model mismatch, the use of the disturbance
model (51) by itself is not sufficient to eliminate offset, as reaching plant optimality requires
perfect knowledge of plant gradients [25,32]. When not otherwise specified, M = 15
is chosen for all controllers. Moreover, the filter constant for updating the modifiers in
Equation (13) is σ = 0.5, and the tolerance threshold for avoiding numerical ill-conditioning
is ρu = 5 · 10−4.

5.1. CSTR with Competitive Reactions

The first example is a continuous stirred-tank reactor (CSTR), in which two consecutive
reactions take place:

A
k1−→ B

k2−→ C. (52)

The objective is to maximize the profit expressed as the difference between the rev-
enues generated by the desired product B and the cost of the raw material A. The following
system of ordinary differential equations describes the reactor dynamics:

ẋ1 = u
V (cA0 − x1)− k1x1

ẋ2 = u
V (cB0 − x2) + k1x1 − k2x2,

(53)

where x1 and x2 represent the molar concentrations of A and B in the reactor, the cor-
responding feed concentrations are cA0 and cB0, and the input u is the feed flow rate
regulated through a valve. For the sake of simplicity, the reactor is assumed to have a
constant volume V and to be isothermal. Both states are assumed to be measured. The
reactor parameters are taken from [25]. Optimal steady-state performance is computed by
solving the following optimization problem:

max
u,x

p(u, x) (54)
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subject to

u
V
(cA0 − x1)− k1x1 = 0 (55)

u
V
(cB0 − x2) + k1x1 − k2x2 = 0 (56)

0 ≤ x1 ≤ cA0 (57)

0 ≤ x2 ≤ cA0, (58)

with the running profit
p(u, x) = βBu x2 − βAu cA0 . (59)

Optimal operation corresponds to u?
s = 1.043 m3/min, x?1,s = 0.511 kmol/m3, and

x?2,s = 0.467 kmol/m3 with the maximal profit p(u?, x?) = 0.906 e/min.

5.1.1. Model

We assume plant–model mismatch and design the controller with erroneous values of
the two kinetic parameters: the model values known by the controller are k̃1 = 0.5 min−1

and k̃2 = 0.4 min−1, meaning that, compared to the true values k1 = 1.0 min−1 and
k2 = 0.05 min−1, the first reaction rate is underestimated, while the second one is overesti-
mated. The economic cost function to be minimized in Problem (20) is

`e(y(ti), u(ti)) = −
∫ ti+τ

ti

p
(
u(t), y2(t)

)
dt =

∫ ti+τ

ti

[
βAu(t)cA0 − βBu(t)y2(t)

]
dt, (60)

with the sampling time τ = 0.25 min. Furthermore, the dynamics (53) is discretized using
an implicit Euler method and the initial conditions are x1,0 = x2,0 = 0.1 kmol/m3. Note
that, with τst ' 4 min, the choice M = 15 is quite appropriate.

5.1.2. Reactor Performance

The input and the cost function of the reactor with the five aforementioned controllers
are depicted in Figure 3. We can immediately see that all schemes reach plant optimality
even under the presence of plant–model mismatch. Before reaching the initialization phase
at t = 3.75 min, the behavior is the same for the practical controllers eMPC1–eMPC4 as
they all use the disturbance model (51) and no first-order correction. eMPC0 is, of course,
significantly better as it uses perfect knowledge of plant gradients. Λk is updated for the
first time at time step k f = k0 + nu M = 30, which corresponds to t = 7.5 min. After
initialization, we see a slight difference between the schemes that use Broyden’s update
(eMPC1 and eMPC3) and those that rely on linear regression (eMPC2 and eMPC4). All
of them start to move towards plant optimality, with the methodologies using Broyden’s
update reaching steady state faster. We observe a steplike profile, since the corrections are
updated every M time samples. The average convergence time for the proposed methods
is about 40 min.

To speed up convergence, one can reduce the value of M, thereby looking for a
compromise between convergence speed and steadiness of the collected samples. Figure 4
shows the reactor performance with the five controllers when M has been reduced from 15
to 5. For the sake of comparison, the same initial steady state was used, that is, we have
k0 = 15 and k f = 20, with t = 5 min being the first time that Λk is updated. All schemes
reach plant optimality in about half the time of the previous case. Note also that, with
all schemes, the profit (bottom panel of Figure 4) quickly reaches plant optimality. Only
eMPC3 presents some erratic behavior that could result from poor numerical conditioning
when Broyden’s update is used on the gradient difference. However, adjusting the filtering
parameter α can improve the situation.
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Figure 3. Reactor performance with five controllers and M = 15: input (top) and profit (bottom).
The dotted vertical lines depict the time interval [3.75–7.5] min used for Λ-initialization.
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Figure 4. Reactor performance with five controllers and M = 5: input (top) and profit (bottom). The
dotted vertical lines depict the time interval [3.75–5] min used for Λ-initialization.

5.2. Williams–Otto Reactor
5.2.1. Process

As a well-known RTO example [10,44], the Williams–Otto reactor is a nonisothermal
CSTR, in which three reactions take place:

A + B
k1−→ C r1 = k1(Tr)cAcB

B + C
k2−→ P + E r2 = k2(Tr)cBcC

C + P
k3−→ G r3 = k3(Tr)cCcP.

(61)

The reactor feed consists of two components: Species A fed at the constant flow rate
QA with molar concentration cA0, and Species B added at the variable flow rate QB with
molar concentration cB0. The desired products are P and E, while C and G are intermediate
and undesired products, respectively. The reactor outlet flow rate Qr is set equal to the
sum of the two inlet flow rates, that is, Qr = QA + QB, with the reactor volume V being
constant. Mimicking realistic process conditions, only the molar concentrations of the
two desired products are assumed to be measured, that is, yp =

[
cP cE

]T . The reactor
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temperature Tr is manipulated, assuming ideal cooling. The kinetic parameters depend on
the reactor temperature via an Arrhenius-type law:

ki(Tr) = ki0 exp
(

−Ei
Tr + 273.15

)
for i = 1, 2, 3. (62)

For the sake of brevity, the system dynamics are not reported here but can be found
in [12]. The reactor has two inputs, namely, the temperature Tr and the flow rate QB. The
profit to be maximized is

p(·) = QrcP pP + QrcE pE −QAcA0 pA −QBcB0 pB, (63)

where pP, pE, pA, and pB are the molar prices of products and reactants. The plant parame-
ters can be found in [32] and in Table 1.

Table 1. William–Otto reactor: Plant parameters

Parameter Value Unit

k10 9.9594× 106 m3/(kmol ·min)
k20 8.66124× 109 m3/(kmol ·min)
k30 9.9594× 106 m3/(kmol ·min)
E1 6666.7 K
E2 8333.3 K
E3 11,111 K
cA0 10 kmol/m3

cB0 10 kmol/m3

V 2.105 m3

QA 112.35 m3/min
pA 7.623 $/kmol
pB 11.434 $/kmol
pP 114.338 $/kmol
pE 5.184 $/kmol

5.2.2. Model

The model used for control design comprises only two reactions:

A + 2B
k̃1−→ P + E r̃1 = k̃1(Tr)cAc2

B

A + B + P
k̃2−→ G r̃2 = k̃2(Tr)cAcBcP,

(64)

for which the kinetic parameters are reported in Table 2.

Table 2. Williams–Otto reactor: Model parameters

Parameter Value Unit

k̃10 1.3134× 108 m6/
(

kmol2 ·min
)

k̃20 2.586× 1013 m6/
(

kmol2 ·min
)

Ẽ1 8077.6 K
Ẽ2 12,438.5 K
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We can infer from Equation (64) that they are 5 model states,

x =
[
cA cB cP cE cG

]T ,

while the plant has 6 states,

xp =
[
cA cB cC cP cE cG

]T .

In addition, the inputs are bounded as follows:

0.18 m3/min ≤ QB ≤ 0.36 m3/min (65)

75 °C ≤ Tr ≤ 100 °C. (66)

5.2.3. Reactor Optimization

The sampling time in this example is τ = 2 min, which calls for Mτ = 30 min between
two successive modifier updates. In this case, with τst = 35 min, the choice M = 15 is also
quite appropriate. The performance of the five controllers is depicted in Figure 5, together
with the optimal operating point that is unknown to the controllers. Λ-initialization is
performed in the time interval of 30–90 min. The starting point for the model state vector is

x0 =
[
2 2 1.1 1 0.6

]T ,

and the first measurement from the plant reads yp,0 =
[
1.1 0.6

]T .
A behavior similar to that shown in Figure 3 can be observed, namely, (i) all schemes

reach plant optimality; (ii) before the initialization phase, the practical schemes eMPC1-4
behave alike since the modifier matrix is still zero. Then, from k0τ = 30 to k f τ = 90 min,
the two inputs are excited individually and sequentially as described in Section 4.1. Once a
nonzero modifier matrix has been computed, we see a difference between the schemes that
use plant-gradient estimation (eMPC1 and eMPC2) and those that estimate the gradient
differences directly (eMPC3 and eMPC4). In this example, the schemes that rely on plant-
gradient estimation do not work well: eMPC1 and eMPC2 fail to reach plant optimality;
in addition, eMPC2 converges slowly, while the second input with eMPC1 gets stuck to
its upper bound. In contrast, eMPC3 and eMPC4 are able to reach plant optimality. These
results indicate that the two schemes based on estimating the gradient differences give the
best performance.

In order to check the robustness of these last two schemes, we propose to corrupt the
measurements with white noise, i.e., Plant (1) is modified as follows:

x+p = fp(xp, u)
yp = hp(xp)+Rvv,

(67)

where v ∈ Rny is a white noise signal with covariance Rv = 10−3 Iny . Figure 6 shows
the effect of noise on the convergence performance of eMPC3 and eMPC4. It is seen that
linear regression handles measurement noise better than Broyden’s update since the former
uses measurements stemming from several measurement points and therefore possesses a
stronger filtering effect. Note that eMPC3 and eMPC4 perform very similarly right after
the initialization phase when the number of measurements points is the same. As shown in
the top panels of Figure 6, as time advances and more measurements become available to
eMPC4, the inputs are able to move much quicker than with eMPC3. Another illustration
of the improved resilience of eMPC4 with respect to measurement noise is shown by the
profit profile in the bottom panel of Figure 6.
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Figure 5. Performance of the Williams–Otto reactor with five controllers and no measurement noise:
inputs (top and middle) and profit (bottom). The dotted vertical lines depict the time interval of
30–90 min used for Λ-initialization.
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Figure 6. Performance of the Williams–Otto reactor with eMPC3 and eMPC4 in the presence of
measurement noise: inputs (top and middle) and profit (bottom). The dotted vertical lines depict
the time interval of 30–90 min used for Λ-initialization.

5.3. Final Considerations

An interesting result is the improvement in estimation quality when the modifiers
are estimated directly rather than computed from the estimated plant gradients and the
predicted model gradients. This is related to the nature of the estimation error. The gradient
estimation error encompasses two terms resulting from truncation error and measurement
noise, respectively (see [9] for a more comprehensive discussion). These two error types
are quite different in nature, with the former being systematic and the latter being random.
On this basis, one can consider two different ways of estimating the modifiers:

1. Estimate the plant gradients from measurements, compute the model gradients
“analytically” from the model, and evaluate the modifiers as their differences, as per
Section 3.2. This approach is very sensitive to truncation errors, as these errors affect
the estimation of plant gradients but not of model gradients.

2. Estimate the plant gradients from measurements, estimate the model gradients from
the model using the same numerical scheme, and evaluate the modifiers as their
differences. This is equivalent to estimating the modifiers directly from measurements
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(see Section 3.3). In this case, the truncation errors tend to cancel out upon computing
the differences between plant and model gradients.

6. Conclusions

Different offset-free economic model predictive control schemes that combine an
augmented model structure and first-order modifiers on the outputs have been proposed
in recent years. These schemes proved to converge asymptotically to plant optimality, even
under plant–model mismatch. The main caveat of this formulation is the requirement of
perfect knowledge of static plant gradients.

This paper has investigated two different techniques to estimate plant gradients
using steady-state measurements, namely, Broyden’s update and linear regression. These
techniques have been adapted and applied to estimate either the plant gradient or the
modifiers directly. Consequently, four different approaches have been tested via two
examples: in the first (single-input) example, all methods give satisfactory results, and
also when the time between modifier updates is reduced to boost convergence speed. In
the second (multi-input) example, only the approach that estimates the modifiers directly
succeeded in reaching plant optimality. The approach was tested using both Broyden’s
update and linear regression. It was found that the approach that uses linear regression is
clearly superior in handling measurement noise. In general, although the most effective
estimation method should be chosen according to the specific case, it appears from these
results that estimating the modifiers directly is more effective than estimating the plant
gradient alone. Furthermore, in the presence of measurement noise, modifier estimation is
best implemented via linear regression.

Note that these findings are not the end of the story, as this investigation was limited
to plant gradient estimation using as many steady-state measurements as possible (M = 15
in this study). As mentioned in the introduction, one would like to be able to estimate static
plant gradients using transient data, so as to speed up convergence even more (ideally,
M = 1). Hence, a similar type of study to analyze the performance of eMPC in the presence
of plant–model mismatch and the availability of transient measurements is very welcome.
Finally, in the present paper, closed-loop stability has been assumed as per Assumption 5.
However, the stability of eMPC under plant–model mismatch is still an open issue, which
may motivate future research.
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