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Abstract: The current research concerns the group acceptance sampling plan in the case where (i) the
lifetime of the items follows the Marshall–Olkin Kumaraswamy exponential distribution (MOKw-E)
and (ii) a large number of items, considered as a group, can be tested at the same time. When the
consumer’s risk and the test terminsation period are defined, the key design parameters are extracted.
The values of the operating characteristic function are determined for different quality levels. At the
specified producer’s risk, the minimum ratios of the true average life to the specified average life
are also calculated. The results of the present study will set the platform for future research on
various nano quality level topics when the items follow different probability distributions under the
Marshall–Olkin Kumaraswamy scheme. Real-world data are used to explain the technique.

Keywords: Marshall–Olkin Kumaraswamy; consumer’s risk; group acceptance plan

1. Introduction

It is now an established fact that nanotechnology affects our daily lives like never
before. Advancement in nanotechnology might never have been possible without the
use of appropriate statistical methods. Ref. [1] presented a detailed review of the use of
statistical methods in nanoscale applications. Wherever we rely on destructive tests for
testing the quality of products, sampling is the only way out. For selecting a representative
sample, traditional sampling techniques (simple random sampling, systematic sampling,
etc.), and their hybrids are used. For the nano process, however, new sampling techniques
have been created [1]. With a smaller sample size and good use of the sampling plan,
we can obtain a more precise inference and save money on sampling. In the manufacturing
area, sampling plans are employed to decide on the acceptance or rejection of the incoming
or outgoing batches based on some pre-specified quality, which is commonly known
as lot sentencing. The size of the sample and the duration of the experiment are the
two most critical factors for design engineers to consider, and both must be optimized.
Acceptance sampling plans can help to achieve this optimization. Simple acceptance plans
give us the minimum sample size to be used for testing. In this case, it is presumed
that a single item is evaluated in a tester at a time, in order to maximize both cost and
time. Ref. [2] posited the use of group to cut back on the amount of time and money
invested on research. When more than one item is checked in a tester, the set of items
is considered a group, justifying the name Group Acceptance Sampling Plan (GASP).
As GASP is combined with truncated life testing, the result is known as a GASP based on
truncated life test, which assumes that a product’s lifespan matches a certain probability
distribution. The attributes group acceptance sampling plan was originally established
by [3] for the truncated life test, assuming that the lifetime of each item followed the Weibull
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distribution. For the given values of producer and consumer risks, the number of groups
and acceptance numbers are obtained simultaneously in such a sampling plan.

When the product followed various forms of probability distributions, some authors
worked on a GASP based on a truncated life test. For instance, ref. [3] considered the inverse
Rayleigh and log-logistic distributions, ref. [4] the extended Lomax distribution, ref. [5] the
Marshall–Olkin (MO) extended Weibull distribution, ref. [6] the generalized exponential
distribution and finally, and [7] the odd generalized exponential log-logistic distribution.

Since 1997, there has been a surge of interest in designing new distributions based
on baseline distributions and composite approaches, with the prospect of incorporating
new parameters. Indeed, the inclusion of parameters has proven to be helpful in terms
of exploring skewness and tail properties, as well as enhancing the goodness-of-fit of
the created family. For an exhaustive list of references on extended family of probability
distributions, see [7]. Additionally, ref. [8] offered a detailed explanation of how new
families of univariate continuous distributions are formed by using additional parameters.
The most relevant source for the present study’s theoretical foundation is [9], where the
authors developed the Kumaraswamy MO (KwMO) family of distributions, by using the
MO [10] and the cumulative distribution function (cdf) as a baseline distribution in the
Kumaraswamy-G family by [11], and studied its many properties. The second most relevant
study is [12], which developed the MO Kumaraswamy-G (MOKw-G) family of distributions.
It was based on the Kumaraswamy-G family cdf as the baseline distribution in the MO
extended family, and studied its various properties at length. The primary goal of this
paper is to further improve the GASPs for the MO Kumaraswamy exponential distribution
(MOKw-E). As sketched in [12], the basic interests of considering the MOKw-E in this
context are as follows: (i) the MOKw-E extends the modeling capabilities of the exponential
distribution, and some of its powerful exponentiated versions, via a simple ratio scheme
with several strategically well placed tuning parameters, (ii) the MOKw-E has a strong
physical interpretation in terms of order statistics; it corresponds to the distribution of the
time to the first failure of a component in a series system with N independent components,
where N can be modeled by a random variable following a geometric distribution and the
lifetime of a component that can be modeled by a random variable with the Kumaraswamy
exponential distribution (Kw-E), (iii) thanks to the MO scheme, the MOKw-E directly
benefits from strong stochastic ordering properties, and (iv) diverse sub-distributions of
the MOKw-E have been proved to be particularly efficient to analyze lifetime data of
various kinds (see [13,14]). As a result, we suggest that the MOKwE is an ideal candidate
distribution for GASP.

For the current study, the median is taken as the quality parameter. We can refer
to [15], which states that the median is a better-quality parameter for a skewed distribution
than the mean. Since the MOKw-E is a skewed distribution, percentile point shall be
employed as the quality parameter. Hence, the main purpose of the present study is to
offer a GASP based on truncated life test assuming that the lifetimes of a product follow
the MOKw-E developed by [12] with known shape parameters. Scrolling through the
literature, the authors were not able to find GASP in the context of the MOKw-E. The GASP
for the MOKw-E is constructed, satisfying specific consumer’s and producer’s risks at some
specific quality level. Furthermore, the minimum number of groups and approval number
needed for a given customer risk and test termination time are calculated for a given group
size. The results of the present study will set a platform for future research based on the
proposed sampling plan for studying nano quality level (NQL) when products follow
different probability distributions under the MO Kumaraswamy family scheme.

Format of the Paper

The remainder of this paper is structured as follows. In Section 2, we establish the
theoretical background of MOKw-G and how the probability distribution function (pdf), cdf,
and quantile function of MOKw-E are worked out. Section 3 addresses the design of GASP
for the lifetime percentiles under a truncated life test. Section 4 provides a summary of the
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proposed approach as well as real-world data examples. Finally, Section 5 summarizes the
observations and addresses several possible future consequences.

2. Marshall–Olkin Kumaraswamy Exponential (MOkw-E) Distribution

First, let us recall the pdf, cdf, and quantile function of MOKw-G from which the pdf,
cdf, and quantile function of MOKw-E are derived. For in-depth mathematical derivations,
see [12]. The pdf MOKw-G is listed by:

f MOKwG(t) =
αabg(t)G(t)a−1[1− G(t)a]b−1[

1− α
[
1− G(t)a]b

]2 (1)

where a and b constitute shape parameters with a, b > 0, α is the tilt parameter for the
extended family of distributions with “α > 0”, α = 1− α, and G(t) is the cdf of a baseline
distribution with pdf g(t). Then, the cdf of MOKw-G is given by:

FMOKwG(t) =
1−

[
1− G(t)a]b

1− α
[
1− G(t)a]b (2)

and the pth quantile function tp of MOKw-G is taken form [12] as:

tp = G−1

[
1−

{
1− αp

1− αp

} 1
b
] 1

a

(3)

Using the exponential distribution as a baseline, the pdf, cdf, and the quantile function
for MOKw-E can be worked out by substituting the pdf, cdf, and the quantile function
of the exponential distribution in Equations (1)–(3). That is, we consider g(t) = λe−λt,
and G(t) = 1− e−λt, λ > 0, t > 0. Thus, the pdf of MOKw-E is given by:

f MOKwE(t) =
αabλe−λt[1− e−λt]a−1

[
1−

(
1− e−λt)a

]b−1

[
1− α

[
1−

(
1− e−λt

)a
]b
]2 (4)

and the cdf of MOKw-E is given by:

FMOKwE(t) =
1−

[
1−

(
1− e−λt)a

]b

1− α
[
1−

(
1− e−λt

)a
]b (5)

Since the pth quantile of the exponential distribution is obtained as tp = − 1
λ log[1− p],

the pth quantile function tp of MOKw-E using Equation (3) is:

tp = − 1
λ

log

1−
{

1−
(

1− αp
1− αp

) 1
b
} 1

a

. (6)

3. Description of the Gasp

The design parameters of a GASP are now obtained in the context of MOKw-E.
The steps for implementing the group acceptance plan and obtaining the design parameters
were followed from [3,16], and consist of:

• Selecting ‘g’ number of groups, and allocating predefining r items to each group. Thus,
the sample size for a lot is obtained as ‘n’ = g × r.
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• Selecting ‘c’ with reference to the acceptance number for a group with experiment
time t0.

• Simultaneously performing the experiment for ‘g’ groups and recording the number
of failures for each group.

• Accepting the lot if no more than ‘c’ failures occur in all groups.
• Truncating the experiment and refusing the lot if more than ‘c’ failures occur in

any group.

Thus, the proposed GASP is defined by two design parameters (g, c) for a given r.
From Equation (5), it can be seen that the cdf of MOKw-E depends on α, t, a, and b and
the median life of MOKw−E is given by Equation (6). It would be appropriate to calculate
the termination time t0 as t0 = a1m0, where a1 denotes a certain constant and m0 refers to
the specified life. For instance, if a1 = 0.5, the experiment time is half that of the specified
life, or, if a1= 3, the experiment time is three times that of the specified life. In this setting,
the probability of accepting a lot is:

Pa(p) =

[
c

∑
i=0

(
r
i

)
pi(1− p)r−i

]g

, (7)

where ‘p’ refers to the probability that an item in a group fails before t0, and this probability
of failure is derived by inserting Equation (6) in Equation (5).

Based on Equation (6), we set

m = − 1
λ log

1−
{

1−
(

1− αp
1−αp

) 1
b
} 1

a

.

Let η = log

1−
{

1−
(

1− αp
1−αp

) 1
b
} 1

a


Now, substituting λ = − η

m and t = a1m0 in Equation (5), the probability of failure is
given by:

p =
1−

[
1−

(
1− e−λt)a

]b

1− α
[
1−

(
1− e−λt

)a
]b

which can be expressed as:

p =
1−

[
1−

{
1− eηa1(m/mo)

−1
}a]b

1− α
[
1−

{
1− eηa1(m/mo)

−1
}a]b

For chosen a and b, p can be determined when a1 and r2 =
m
m0

are specified. The ratio
of a product’s mean lifetime to the specified lifetime m

m0
can be used to express the product’s

quality level.
All that is required now is to minimize ASN = n = g × r, subject to the following

constraints:

Pa(p1| m
m0

=r1)
=

[
c

∑
i=0

(
r
i

)
pi

1(1− p1)
r−i

]g

≤ β (8)

and

Pa(p 2| m
m0

=r2)
=

[
c

∑
i=0

(
r
i

)
pi

2(1− p2)
r−i

]g

≥ 1− α1 (9)
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where r1 and r2 denote the means ratio at the consumer’s risk and at the producer’s
risk, respectively. Here, α1 and α should not be confused; as stated earlier, α is the tilt
parameter for the extended family of distributions. The probabilities of failure to be used
in Equations (8) and (9) are as follows:

p1 =
1−

[
1− {1− eηa1}a]b

1− α
[
1− {1− eηa1}a]b (10)

and

p2 =
1−

[
1−

{
1− eηa1(m/mo)

−1
}a]b

1− α
[
1−

{
1− eηa1(m/mo)

−1
}a]b (11)

Both Equations (10) and (11) above are extracted from Equation (9).

4. Discussion and Example
4.1. Discussion

The design parameters under GASP for different values of the α (1.25 and 1.50) are
presented in Tables 1 and 2. The code in R is provided in Appendix A. The values of
r = 5 and 10 are considered. Then, it is noticed that a reduction in consumer’s risk, β,
leads to a rise in the number of groups. Furthermore, as r2 increases, the number of groups
rapidly decreases. However, after a certain point, even though the number of groups and
acceptance numbers remain constant, the probability of accepting a lot begins to rise. The ta-
ble also shows the impact of a1. As an example, observe that, with β = 0.25, a1 = 0.5, r2 = 6,
α = 1.25, and, for r = 5, a total of eight groups, i.e., 8 × 5 = 40 number of units, are necessary
on the life test. Additionally, when r = 10, then only two groups, i.e., 2 × 5 = 10 number of
units, are necessary for the life test. As a result, in this case, 10 groups would be preferable.
Table 2 reports α = 1.50. According to the reported values, increasing the shape parameter
value results in a smaller group size for the associated plan. For the considered GASP, un-
der the MOKw-E and using median lifetime as the quality parameter, the number of groups
decreases and the OC values (P(a)) increase when the true median life increases. This is pre-
sented in Table 1 for various values of the parameters (α = 1.25, β = 0.01, r = 10, and a1 = 1.0)

m/m0 = r2 4 6 8
G 11 6 3
C 5 4 3

P(a) 0.9653 0.9758 0.9793

To cross check the results shown in Tables 1 and 2, an example from [17] is considered.
Suppose that the lifetime of ball bearings placed on a test follow MOKw-E, with the shape
parameter α = 1.25, and the mean specified life of the ball bearings is 2000 cycles. When the
true mean life is 2000 cycles, the consumer faces a 25% risk, while the producer faces a 5%
risk when the true mean life is 4000 cycles. Now, an experimenter wants to run a 1000-cycle
experiment with 10 units in each group to see if the ball bearings’ mean life is longer
than the specified life. In this context, we have α = 1.50, m0 = 2000 cycles, a1 = 0.5, r = 10,
β = 0.25, r1 = 1, producer’s risk = 0.05, and r2 = 4. In addition, from Table 2, we have g = 39
and c = 3. This implies that 195 units (n = g × r) must be drawn, with five units assigned
to each of the 39 groups. If no more than three units fail in each of these groups before
1000 cycles, the mean life of the ball bearings will be statistically assured to be greater
than the specified life. If a quality control engineer wants to test the hypothesis that ball
bearings have a life span of 4000 cycles but a true average life of four times that, he or she
can test 39 groups of five units each; if fewer than three units fail in 1000 cycles; as a1 = 0.5
and the mean life length is in thousands of cycles, the engineer will infer that the life is
more than 4000 cycles with 95 percent confidence. Therefore, the lot under investigation
should be accepted.
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Table 1. GASP for a = 1, b = 1, and α = 1.25, showing minimum g and c.

β r2

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

g c P(a) g c P(a) g c P(a) g c P(a)

0.25

2 - - - - - - - - - - - -
4 41 3 0.9852 8 3 0.9678 3 3 0.9693 2 4 0.9620
6 8 2 0.9809 3 2 0.9552 2 2 0.9552 1 3 0.9743
8 8 2 0.9914 3 2 0.9786 2 2 0.9972 1 3 0.9897

0.10

2 - - - - - - - - - - - -
4 67 3 0.9760 83 4 0.9863 13 4 0.9840 6 5 0.9809
6 13 2 0.9691 13 3 0.9869 5 3 0.9870 3 4 0.9878
8 13 2 0.9861 4 2 0.9715 3 2 0.9681 2 3 0.9794

0.05

2 - - - - - - - - - - - -
4 88 3 0.9686 107 4 0.9823 17 4 0.9792 8 5 0.9746
6 16 2 0.9621 16 3 0.9839 7 3 0.9818 4 4 0.9838
8 16 2 0.9829 5 2 0.9645 3 2 0.9681 2 3 0.9794

0.01

2 - - - - - - - - - - - -
4 134 3 0.9526 165 4 0.9729 26 4 0.9683 11 5 0.9653
6 134 3 0.9892 25 3 0.9749 10 3 0.9741 6 4 0.9758
8 25 2 0.9734 25 3 0.9910 10 3 0.9907 3 3 0.9793

Remark: The cells with hyphens (-) indicate that a very large sample size is needed.

Table 2. GASP for a = 1, b = 1, and α = 1.50, showing minimum g and c.

β r2

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

g c P(a) g c P(a) g c P(a) g c P(a)

0.25

2 - - - - - - - - - - - -
4 39 3 0.9803 9 3 0.9553 3 3 0.9853 5 5 0.9786
6 8 2 0.9747 9 3 0.9877 3 3 0.9888 1 3 0.9668
8 8 2 0.9886 9 3 0.9726 2 2 0.9716 1 3 0.9860

0.10

2 - - - - - - - - - - - -
4 65 3 0.9674 109 4 0.9762 13 4 0.9763 7 5 0.9701
6 12 2 0.9623 15 3 0.9797 5 3 0.9814 4 4 0.9773
8 12 2 0.9826 5 3 0.9547 3 2 0.9576 2 3 0.9721

0.05

2 - - - - - - - - - - - -
4 85 3 0.9575 142 4 0.9691 17 4 0.9691 9 5 0.9617
6 16 2 0.9501 20 3 0.9730 7 3 0.9741 5 4 0.9717
8 16 2 0.9768 20 3 0.9898 3 2 0.9576 3 3 0.9585

0.01

2 - - - - - - - - - - - -
4 132 3 0.9876 218 4 0.9530 25 4 0.9549 10 5 0.9607
6 125 3 0.9846 30 3 0.9597 10 3 0.9632 7 4 0.9606
8 24 2 0.9654 30 3 0.9848 10 3 0.9862 5 3 0.9872

4.2. Example

We consider now a data set which consists of a sample of 50 observed values of break-
ing stress of carbon fibers given by [18]. The unit is Gba. The data set can be expanded as
follows: {1.12,0.17,0.64,4.32,1.22,0.37,1.16,1.42,0.09,1.67,0.13,0.25,0.08,0.04,2.35,0.20,0.78,0.34,
1.02,0.17,1.76,2.39,0.50,1.35,3.36,0.45,0.90,2.92,6.53,1.62,7.46,3.19,2.49,1.40,7.49,0.57,0.14,0.63,
5.23,0.71,0.68,0.12,0.09,3.47,5.93,1.82,4.20,7.29,3.13,3.41}.

The maximum likelihood estimates with standard errors (in parentheses) of the four
parameters of MOKw−E for the data are λ̂ = 0.2978 (0.5117), â = 0.9356 (0.2371), b̂ = 1.2805
(0.6596), and α̂ = 0.6361 (0.5377). The ‘maximum distance’ between the data and the fitted
MOKw−E is 0.0681 with a p-value of 0.9743, according to the Kolmogorov–Smirnov (K–S)
test. Figure 1 depicts the histogram of the data with the estimated pdf, the empirical cdf
with the estimated cdf, the probability–probability (P–P) plot, and the quantile–quantile
(Q–Q) plot. Figure 2 completes Figure 1 by considering the total time on test (TTT) plot
to have some information regarding the underlying hazard rate function (hrf) and the
estimated hazard rate function.
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Figure 1. Examples of fits of MOKw-E for the carbon fibers dataset: (a) histogram fitted by the estimated pdf, (b) empirical
cdf fitted by the estimated cdf, (c) P–P plot, and (d) Q–Q plot.

Figure 2. Plot of (a) TTT, and (b) the estimated hrf (ehrf) for the carbon fibers data set.

Figure 1 shows that MOKw-E has a good fit for the carbon fibers data set, whereas
Figure 2 displays the total time on test (TTT) plot and the estimated hrf that the given
data set has a decreasing hazard rate. Thus, MOKw-E provides a reasonable fit of the data.
The plan parameters for the 50th percentile are also calculated using fitted parametric
values and are shown in Table 3. The behavior of the plan parameters in Table 3 matches
the values of the plan parameters in Tables 1 and 2.
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Table 3. GASP for MLE â =0.94, b̂ = 1.14, and α̂ = 0.63, showing minimum g and c.

β r2

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

g c P(a) g c P(a) g c P(a) g c P(a)

0.25

2 - - - - - - - - - 17 5 9575
4 33 2 0.9785 6 2 0.9715 6 2 0.9650 3 3 0.9813
6 7 1 0.9576 6 2 0.9917 6 2 0.9896 2 2 0.9728
8 7 1 0.9764 2 1 0.9717 2 1 0.9714 2 2 0.9882

0.10

2 - - - - - - - - - - - -
4 63 2 0.9646 10 2 0.9530 31 3 0.9873 4 3 0.9752
6 63 2 0.9900 10 2 0.9861 9 2 0.9845 2 2 0.9728
8 11 1 0.9632 3 1 0.9578 9 2 0.9935 2 2 0.9882

0.05

2 - - - - - - - - - - - -
4 81 2 0.9547 62 3 0.9872 41 5 0.9832 5 3 0.9691
6 81 2 0.9872 13 2 0.9820 12 2 0.9793 3 2 0.9595
8 14 1 0.9534 13 2 0.9926 12 2 0.9914 3 2 0.9824

0.01

2 - - - - - - - - - - - -
4 138 2 0.9635 94 3 0.9806 62 5 0.9747 8 3 0.9510
6 125 2 0.9803 19 2 0.9738 18 2 0.9692 8 3 0.9896
8 125 2 0.9920 19 2 0.9892 18 2 0.9871 4 2 0.9765

5. Conclusions

This study emphasizes a GASP assuming that the lifetime of the product follows
MOKw-E. All the attention is focused on certain key plan parametric quantities. The number
of categories, ‘g’, and the acceptance number, ‘c’, are calculated by balancing the risks of
the manufacturer and the customer. For all the parametric combinations considered in this
paper, it is observed in the proposed plan that as the percentile ratio increases, g decreases,
and as the number of items in each group increases, the number of groups decreases, which
is consistent with the results given in [7].
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Appendix A

R code for the considered sampling plan.

g=sEquation(1,1000,1);c=c(0,1,2,3,4,5);lp2=double(length(g));
lp1=double(length(g));lp21=double(length(c)); lp22=double(length(c));
lp23=double(length(c));lp24=double(length(c));G1=double(length(c));
G2=double(length(c));G3=double(length(c));G4=double(length(c));
p=function(alp,p,ratio,a,b ){

nu=log(1-(((1-(1-((alp*p)/(1-(1-alp)*p)))ˆ(1/b)))ˆ(1/a)))
d=(1-((1-exp(nu*((ratio)ˆ-1)*a1))ˆa))
y=(((1-d)ˆb)/(1-((1-alp)*(1-d)ˆb)));return(y)

}
p2=round(p(2,0.5,c(2,4,6,8,10),1,1,0.5),4);
p2; p1=round(p(2,0.5,1,1,1,0.5),4);p1
for(i in 1:length(c)){

for(j in 1:length(g)){
lp2[j]=(pbinom(c[i],10,p2[2]))ˆj
lp1[j]=(pbinom(c[i],10,p1))ˆj

}
G1[i]=min(which(lp2>=0.95 & lp1<0.25));lp21[i]=round(lp2[G1[i]],4);
G2[i]=min(which(lp2>=0.95 & lp1<0.10));lp22[i]=round(lp2[G2[i]],4);
G3[i]=min(which(lp2>=0.95 & lp1<0.05));lp23[i]=round(lp2[G3[i]],4);
G4[i]=min(which(lp2>=0.95 & lp1<0.01));lp24[i]=round(lp2[G4[i]],4);

}
cbind(c,G1,lp21,G2,lp22,G3,lp23,G4,lp24).
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