2 M processes

Review

Model-Based Monitoring of Biotechnological
Processes—A Review

Velislava Lyubenova "*, Georgi Kostov >

check for

updates
Citation: Lyubenova, V.; Kostov, G.;
Denkova-Kostova, R. Model-Based
Monitoring of Biotechnological
Processes—A Review. Processes 2021,
9,908. https://doi.org/10.3390/
pro060908

Academic Editor: Hyun-Seob Song

Received: 5 April 2021
Accepted: 19 May 2021
Published: 21 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Rositsa Denkova-Kostova 3

Institute of Robotics, Bulgarian Academy of Science, Acad. G. Bonchev str., bl. 2, 1113 Sofia, Bulgaria
Department of Wine and Beer Technology, Technological Faculty, University of Food Technologies,

26 Maritza Blvd., 4000 Plovdiv, Bulgaria; george_kostov2@abv.bg

Department of Biochemistry and Molecular Biology, Technological Faculty, University of Food Technologies,
26 Maritza Blvd., 4000 Plovdiv, Bulgaria; rositsa_denkova@mail.bg

*  Correspondence: v_lyubenova@ir.bas.bg

Abstract: The monitoring of the main variables and parameters of biotechnological processes is of key
importance for the research and control of the processes, especially in industrial installations, where
there is a limited number of measurements. For this reason, many researchers are focusing their
efforts on developing appropriate algorithms (software sensors (SS)) to provide reliable information
on unmeasurable variables and parameters, based on the available on-line information. In the
literature, a large number of developments related to this topic that concern data-based and model-
based sensors are presented. Up-to-date reviews of data-driven SS for biotechnological processes
have already been presented in the scientific literature. Hybrid software sensors as a combination
between the abovementioned ones are under development. This gives a reason for the article to
be focused on a review of model-based software sensors for biotechnological processes. The most
applied model-based methods for monitoring the kinetics and state variables of these processes are
analyzed and compared. The following software sensors are considered: Kalman filters, methods
based on estimators and observers of a deterministic type, probability observers, high-gain observers,
sliding mode observers, adaptive observers, etc. The comparison is made in terms of their stability
and number of tuning parameters. Particular attention is paid to the approach of the general dynamic
model. The main characteristics of the classic variant proposed by D. Dochain are summarized.
Results related to the development of this approach are analyzed. A key point is the presentation
of new formalizations of kinetics and the design of new algorithms for its estimation in cases of
uncertainty. The efficiency and applicability of the considered software sensors are discussed.

Keywords: biotechnological processes; model-based software sensors; kinetics estimation; adaptive
observation; monitoring

1. Topicality of the Monitoring of Biotechnological Processes

Process monitoring is a mandatory element of modern industrial production. Monitor-
ing methods also play a significant role in the study, development, optimization, and main-
tenance of processes in a state of maximum efficiency and desired product quality [1-3].
Contemporary biotechnological productions are no exception to the above. Biotechnologi-
cal processes (BTP) are carried out in bioreactors in which microorganism growth is the
result of the consumption of substrates (sources of carbon, oxygen, nitrogen, etc.). Usually,
bioreactors are connected to systems for control of the physico-chemical parameters of
pH, temperature, and stirring, guaranteeing suitable environmental conditions for good
microbial activity. In recent decades, BTP have been at the heart of the production of a
number of products primary and/or secondary metabolites. Their applications are mainly
in the pharmaceutical industry, food industry, biofuel production and others. They also
include classes of processes related to the treatment of wastewater from organic waste. The
used scientific directions in the field of industrial biotechnology can be summarized in three
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main groups: (i) microbiology and genetic engineering; (ii) biotechnological engineering;
and (iii) control of biotechnological processes. Microbiology and genetic engineering aim
at developing microorganisms that allow the synthesis of new products or are aimed at
selecting strains to obtain the desired product or product quality. Bioengineering is aimed
at improving the productivity of BTP by developing new technologies and/or improving
reactor designs. Automatic control aims at increasing the productivity by developing
methods for monitoring and control, leading to real-time BTP optimization. These three
areas complement each other and are constantly evolving. The development of the second
and the third direction is focused mainly on the study and control of BTP in real-time. In
traditional biotechnological production, information on biological variables and kinetic
parameters is still obtained through hardware sensors and laboratory analyses. In recent
years, intensive work has been devoted to the use of available measurements for the de-
velopment of so-called software sensors (SS), which provide information about the main
variables and parameters of the processes in real-time. Software sensors improve BTP
monitoring, which is essential for quality and quantity control of the final product, as well
as for maintenance of the optimal physiological state of the culture [4]. In BTP development,
the most essential information about the microbial activity is obtained by monitoring the
kinetics. Kinetics knowledge has two important applications. The first one is related to
the kinetic parameters included in algorithms for adaptive process productivity control [5].
The second application is related to the study of processes by continuous monitoring of
the physiological state. BTP monitoring includes both methods for estimating basic ki-
netic parameters, such as growth rates of microorganisms, consumption of basic (limiting)
substrates, production of target products, and others [6], and important non-measurable
process variables.

2. Issues with Biotechnological Process Monitoring

The last few decades have seen the growing application of biotechnological processes
in the industry [7,8], which is explained by the improvement of profitability and quality in
industrial production, new legislative standards in industrial technologies, and others.

The problems arising from industrialization [9] lead to an increase in the requirements
for a process monitoring (control) system, which must be equipped with a sufficient num-
ber of quality sensors to ensure stable process development in real time, optimization
of the operation mode, monitoring of the physiological condition or detection of a mal-
function. In practice, very few installations are currently equipped with such monitoring
systems [6]. The situation can be explained by two main reasons: first, biological processes
are complex because they involve living organisms whose characteristics, in their nature,
are very difficult to study and understand. There are two main difficulties in modeling
these processes [6,10]. On the one hand, the lack of reproducibility of the experiments and
the inaccuracy of the measurements lead not only to problems related to the choice of the
model structure, but also to problems related to the concepts of structural and parametric
identifiability. On the other hand, difficulties arise during the validation phase of these
models. The changes in the parameters are the result of metabolic changes in biomass
or even genetic modifications that cannot be predicted and observed from a macroscopic
(visible to the naked eye) point of view. The second main difficulty is the almost systematic
lack of sensors giving access to measurements necessary for the knowledge of the internal
functioning of biological processes. Most of the key variables associated with these sys-
tems (concentrations of microorganisms, substrates and products) can only be measured
by laboratory analyses, which usually require heavy and expensive maintenance. The
available real-time biomass and metabolite sensors are, in most cases, not robust enough
for routine industrial applications. For this reason, most of the monitoring and control
strategies used in industry are very often limited to indirect control of BTP by controlling
the environment-specific variables, such as dissolved oxygen, temperature, pH and others.
The development of so-called software sensors [11] makes it possible to overcome, to a large
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extent, the discussed problems. Definition of the term “software sensor” and classification
of SSs are given in the next section.

3. Software Sensor Concept and Software Sensor Types

By definition [9], a software sensor (SS) is an algorithm for the real-time estimation
of state variables and parameters that are not measurable based on related real-time
measurements that are more readily available.

Figure 1 presents the relationship between the hardware sensor and the estimation
algorithm. In fact, there may be different combinations between them. Software sensors
have a wide range of applications: process monitoring, control, diagnostics and prediction.

Operational Software sensor

¥y p afare — )
Parameters Tuning

. l * Sensor Algorithm
R H "‘ %
—>{ Process > (hardware) (software) )
; Estimated
Control m S riabes
State variables measurements vl RENES

Figure 1. Idea of a software sensor.

The original and still predominant application field is the prediction of process vari-
ables x determined at low sampling rates (laboratory analyses). Since these process vari-
ables are related to the quality of the output y of the process, they are important for its
control. It is essential to include additional information from higher frequency sampling,
which expands the scope toward real-time prediction, in the SS structure obtained. Other
important areas of application of software sensors are process monitoring [12] and malfunc-
tion detection [6]. The information obtained from the variables and parameters observed
by these algorithms actually supports the process operator and allows him/her to make
faster, better and more objective decisions. Software sensors are easier to maintain, as
they do not get damaged mechanically and are, therefore, more efficient than hardware
sensors from a financial point of view. In general, two types of software sensors can be
distinguished: model-based and data-based ones. Model-based software sensors are white
box estimation methods because they involve knowledge of the process. Data-based SS [13]
are black box methods because they are based solely on empirical observations of the
process. Combinations of model- and data-based approaches are known as hybrid ones.

Table 1 shows the basic classification of SS with some of the most commonly used methods.

Table 1. Basic classification of software sensors.

Model-Based SS Data-Based SS Hybrid SS
(White Box Type) (Black Box Type) (Grey Box Type)
Principal component analvsis Combinations between data-based
Nonlinear observers, Kalman and Lef t uage a roacﬁ] and model-based methods:
Luenberger filters, Adaptive observers, etc. St squares app hybrid model with EKF

Neural networks, Neural fuzzy logics, etc. EKF with Neural Networks, etc.

This article discusses mainly the first-principle models as, most often, a soft sensors
model-based family [14]. These models are built on a fundamental understanding of
underlying physio-chemical phenomena, such as mass transfer, heat transfer and mass flow.
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4. Model-Based Software Sensors

The most popular methods include nonlinear observers [15], extended Kalman fil-
ter [16], adaptive observers [17] and others. These software sensors most often use the
abovementioned models that describe the physical and chemical basis of the process (mass
balance models). The models were originally developed for planning and development of
technological (production) installations and usually focus on the description of perfectly
established process modes, which is one of their shortcomings in the synthesis of SS. The
main properties of the most commonly used SS-based models will be briefly presented.

In the literature [17], it is accepted that software sensors for estimating state variables
are defined as state observers, while those for estimating kinetic parameters of the model
are defined as parameter estimators.

4.1. Linear Observers

Luenberger Observer (LO) includes in its structure a correction of estimates with one
term, which is a function of the difference between measured and predicted outputs. The
tuning parameter of this observer makes it possible to adjust the rate of convergence of the
observer. The value of this parameter is a compromise between the rate of convergence
and the sensitivity to disturbances that must be made.

The Kalman filter (KF) is another method of controlling this trade-off. It can be
considered as a Luenberger observer with a non-stationary tuning factor. KF allows
minimizing the variance of the estimation error. LO and FC require accurate information
on the structure and parameters of the models. Their uncertainty can cause a large deviation
in the estimates.

4.2. Extension of Linear Observers

The first class of observers is based on accurate information about the structure and
parameters of the models. This class includes the Extended Kalman Filter (EKF), the
Extended Luenberger Filter, and nonlinear observers [6].

The Extended Kalman Filter is introduced as an approximation of the optimal observer
when extending the method for nonlinear systems. The process and measurement model
is linearized around its estimated trajectory. This problem is equivalent to the synthesis of
a Kalman Filter for a nonstationary system. Only a few theoretical results guarantee its
convergence, and in the best case, the guaranteed stability is local. Estimation errors have
been shown to be limited if the rank condition for the nonlinear observability is met and
if the initial estimation error, as well as the modeling and measurement noise, are small
enough. The application of the method leads to complex nonlinear algorithms, as well as
to deviations in the estimates and even to divergence if the algorithm is not well initialized.
Its stability is difficult to be proven analytically.

The values of the tuning parameters for the Advanced Luenberger Filter [18] must
guarantee asymptotic stability of the linearized error dynamics. Like EKF, the stability
is local and valid around the equilibrium state due to the linearized process model. It is
difficult to guarantee stability in a wide range.

In the study of dynamical systems, linearization is a method for estimating the local
stability of an equilibrium point of a system of nonlinear differential equations or discrete
dynamical systems. Usually, a linearized approximation of the nonlinear model by a Taylor
series approximation around the point of interest (equilibrium state, current estimate,
etc.) is applied [17]. This is the so-called “linearized tangent model”. As the linearization
process leads to errors in the nonlinear system due to the calculation of the Jacobian matrix
and therefore a decrease in the accuracy of the estimate, the unscented Kalman filter
(UKF), central difference Kalman filter (CDKF), and square root unscented Kalman filter
(SRUKF) [19] are proposed in the literature for solving this problem. These methods are
based on similar ideas and belong to a class of approximate nonlinear filtering methods
(sigma point Kalman filter (SPKF) method) based on Gaussian distribution. In the UKF
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method [20], several sigma points for nonlinear systems to obtain second-order accuracy
are used.

4.3. Observers for Linear Time Varying Systems

In some cases, the nonlinearity of the processes is overcome by modeling them as
linear time-varying systems. In these models used in SS synthesis, linearity is achieved by
considering and estimating some parameters as unknown time-varying ones [21,22]. More
detail on this approach will be discussed in Sections 5 and 6.

Adaptive EKF observers can also to be applied to simultaneously estimate state
variables and nonstationary parameters [23].

4.4. Nonlinear Observers

It is a well-known and proven fact that linear observers with constant model parame-
ters are inadequate for estimating nonlinear processes [24]. In the case of linear systems,
the problem of observer synthesis has been intensively studied and many methods are
already available. In the nonlinear case, the published solutions depend on the specific
problem. They are either suitable for a very limited class of nonlinear systems or their
global convergence cannot be analytically proven [15].

Generally speaking, there are several approaches to observer synthesis for nonlinear
systems. One is based on an extension of the linear versions of observers. Another approach
known in the literature is based on the derivation of precisely linearized error dynamics [25].
As a disadvantage, these developments require appropriate transformations to be made.
The existence of such a transformation imposes a series of assumptions that are difficult to
verify in practice.

High Gain Observer (HGO) requires a high-quality model [26]. The idea is to present
the observer in a new canonical form, i.e., as a numerical differentiator of output. This
means that there exists information for the time derivatives. Then, returning to the initial
coordinates, this observer will give estimates of the required variables. The synthesis of
such observers requires acceptance of the hypothesis that the dynamics of the observer is
faster than that of the system. The exponential stability depends on the Lipschitz condition
on the nonlinear part. Variants of this method are observer with a fixed tuning factor,
observer with a variable tuning factor [27], and others.

The Moving Horizon Estimator (MHE) uses nonlinear programming to solve an
optimization problem that increases computational costs [28]. The method includes some
restrictions and calculates state trajectories based on the process model and the initial state
vector. With a large deviation from the initial estimates from the true values, two problems,
related to falling into the local optimum and a lack of convergence, appear.

Observers, based on Lipschitz systems, ensure convergence estimates by selecting
the value of the observer tuning parameter so that the Lipschitz constant meets a specific
condition. The Lipschitz constant is the maximum ratio between variations in the output
space and variations in the input space of a function and thus, is a measure of the sensitivity
of the function with respect to input perturbations [29]. A number of global optimiza-
tion algorithms rely on the value of the Lipschitz constant of the objective function [30].
Various approaches to its estimating are known, including those based on a priori knowl-
edge of the particular process, the Lipschitz optimization without the Lipschitz constant,
etc. [31-33]. The solutions, obtained independently of the prediction task, show a trend for
noise sensitivity.

Linear matrix inequality (LMI) is another approach to observer synthesis [34]. The
main idea is to prove the inertia of the nonlinear part of the error dynamics and to sat-
isfy the Kalman-Popov lemma for the linear part by solving a task related to a linear
matrix inequality.

According to the type of uncertainty of the process, observers are divided into two
classes. The first class deals with cases in which uncertainties are due to noises in measure-
ments or modeling. When the BTP model is presented based on mass balance equations, it
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includes a term representing the kinetics, which in many cases cannot be modeled. For this
reason, observers with unknown inputs [35] are used. Their principle is the exclusion of
the unknown part of the model by the appropriate transformation and introduction of an
auxiliary variable. These observers define the second class (Asymptotic Observers) and
are often used in BTP [6,10], replacing the knowledge of the missing part of the process
model with available measurements. The main advantage of this method is that it does
not depend on the process kinetics. The main disadvantage is that the rate of convergence
depends only on the experimental conditions of the process. A necessary condition is that
the number of measurements is equal to the number of unknown kinetic reactions. Another
disadvantage is that convergence in batch processes is not guaranteed.

The nonlinear estimation methods discussed above are compared in Table 2 in terms
of tuning parameters and types of stability. An important problem in the synthesis of
observers and estimators is to prove their stability by analyzing the dynamics of errors.
The stability can be local, global, exponential or asymptotic depending on the method and
the structure of the model [36-38].

Table 2. Critical analysis of nonlinear methods.

No Observer Number of Tuning Parameters Stability

1 Extended Kalman Filter Two (R,Q) Local

2 Extended Luenberger Observer Number of the poles (ordered by the system) Local

3 Linearization of the error Depends on the linear method Global

4 Accurate linearization Depends on the linear method Local or global
5 High gain observer Number of the poles Local or global
6 Moving horizon observer One Asymptotic
7 Linear matrix inequality Two Global

8 Based on inertia Number of states Global

9 Asymptotic Observer Depends on experimental conditions of the process Asymptotic

The next subsection will review the model-based SS for biotechnological processes,
presented in the literature, as they are of particular interest in this article. An up-to-date
overview of the data-driven SS is presented in [20,39,40].

5. Model-Based BTP Software Sensors

In the last decades, software sensors have been intensively developed and widely
used for BTP monitoring. A number of review publications related to the topic have been
proposed in the literature [6,14,24,28,41-43].

As the estimation of process kinetics requires real-time measurements of state vari-
ables, many of the proposed methods are preceded by the synthesis of appropriate ob-
servers or adaptive algorithms proposed for the simultaneous evaluation of parameters
and variables. Two classes of state variable observers are most often applied [6,44]: classical
nonlinear observers based on accurate knowledge of the model structure, and asymptotic
observers in which the synthesis is based on mass and energy balance, and knowledge
of process kinetics is not required. Regarding the estimation of process kinetics, a widely
used method is based on the theory of linear systems [17]. This method includes esti-
mating the immeasurable state variables with asymptotic observers; then, the measured
and/or estimated variables are included in the synthesis of kinetic estimators, the so-called
observer-based estimators [17]. The most commonly used model-based methods for BTP
estimating are the following.

Methods based on balance equations: These methods are based on theoretical or
experimentally derived relationships between the measured variables and the parameters
to be evaluated. For the BTP purposes, various nonlinear empirical/balance equations that
do not take into account measurement noise and model uncertainties are derived.

Methods based on the advanced Kalman filter: The extended Kalman filter (EKF)
is a standard nonlinear method used to simultaneously estimate the state variables and
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parameters of nonlinear systems. The estimation is performed by linearizing the nonlinear
model around the current estimation and then applying the Kalman filter. Thus, it can be
considered an approximation of the optimal observer when extending the method to non-
linear systems. The linearization of dynamic process models can be accomplished with the
Taylor series around some point of equilibrium. This idea was developed in [17]. A number
of developments related to the application of EKF for biotechnological processes have been
published in [12,22,34,42,45-51]. The results were satisfactory, but the uncertainty in the
model parameters can generate a large deviation in the estimate [2]. The application of
EKF to estimate specific growth rate was performed in [17,47,52,53]. Despite the fact that
this method is easy to apply, it has two main drawbacks. First, its stability and convergence
are local and there is no guarantee that acceptable estimates will be obtained over a wide
range of operating conditions. Second, the exponential convergence of the filter is based
on the assumption that the linearized model is observed close to the equilibrium state. As
noted in [54], this assumption is not valid in many practical cases.

Probabilistic observers [55] are considered for a class of continuous biological pro-
cesses. In comparison to classical open loop asymptotic and interval observers, the method
provides information on the confidence level of the estimates rather than simple upper and
lower bounds. Moreover, unlike Kalman filters, probabilistic observers are not restricted to
Gaussian distributions for the uncertain parameters.

Methods based on estimators and observers of deterministic type: By definition, ob-
servers estimate state variables in deterministic linear systems based on knowledge of the
mathematical model of the process and available measurements. Most real systems often
involve uncertainties resulting from non-stationary parameters and noises. In addition,
linear observers with constant parameters do not lead to good characteristics for nonlinear
processes, such as BTP. Therefore, nonlinear and adaptive observers that are robust to un-
certainties and are adaptable to the process nonstationarity are more suitable for estimating
the parameters and variables of biotechnological processes.

Various approaches have been applied in the literature to estimate the kinetics of the
biomass growth, substrate consumption and production of BTP products. Most of them
apply or further develop the method proposed by Basten and Dochain, based on the theory
of linear time-varying systems. The method involves the synthesis of observer-based
estimators (OBE), which are part of the general theoretical methodology developed by the
two authors in [17]. This methodology is based on the General Dynamic Model (GDM) of
the process derived from the general reaction scheme, a qualitative description of the main
metabolic reactions. The essence of this methodology, as well as the main types of state
observers and kinetic estimators, developed on the basis of GDM, are given in the next
subsection, as they are one of the bases for its further development presented in the article.

The GDM approach has proven its successful applications for a wide variety of BTPs
in the food, pharmaceutical and environmental industries, more precisely in the monitoring
and control of these processes, some of which are presented in [48,56-61]. The stability of
the overall structure of OBE is successfully analyzed in [1]. The tuning of such estimators
requires special attention, as the parameters are non-stationary. This problem is investigated
in [60,62,63], where a tuning strategy independent of the values of the state variables is
proposed. In [62], an approach for tuning the general structure of OBE is presented.

Compared to other approaches (EKF, nonlinear methods), observer-based estimators
have the following advantages: they are characterized by a simple structure, there is no
need to introduce nonlinear modeling (or black box type) of unknown parameters, and
the stability analysis does not lead to rigid tuning rules (as with the Hoo method). In
cases where many reaction rates are included, the application of the approach requires
the tuning of many parameters. This problem is partly solved by using the method of
the nonlinear systems theory, High gain observer (HGO) [27,64-71], and by analyzing
the relationship between the stability of the OBE and its tuning parameters. In the HGO
method, the tuning expression includes only one parameter, regardless of the number of
components (state variables) and reactions. The first developments of the method were
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published in the late 1980s; later, further development of the method was proposed by
French researchers (Gauther, Hammori, Farza) [72]. The proposed estimation schemes have
another advantage: they are robust in terms of model perturbations, as they do not require
a kinetic model. In [71], a simple high gain continuous discrete time observer is proposed
to handle the estimation problem of reaction rates in bioreactors, using delayed sampled
measurements of the component concentrations in the context of multi-rate sampling of
the outputs, each one of which is affected by the constant delay. The adaptive version of
the high gain observer for the strictly triangular systems subjected to constant unknown
disturbances is proposed in [64] and has been applied to a continuous culture of Spirulina
maxima. One of the limitations of using the high tuning factor method is that it requires
measurements of state variables to estimate the respective reaction rates, which, in many
cases, cannot be realized in real conditions. In addition, the yield coefficients are considered
constants, which is acceptable only for continuous processes and for some batch-feeding
processes. Another problem present in these observers is that changes in their dynamics
(derivatives) are considered disturbances, i.e., the estimation error converges to a limited
area around zero. In exponential observers (EO) (the rate of convergence can be freely
selected in the synthesis by the tuning parameters), including the HGO, fast convergence
leads to high sensitivity to measurement noise or other disturbances.

A comparative review of multi-rate moving horizon estimation schemes for bioprocess
applications is given in [28]. It is emphasized that moving horizon schemes outperform
the constrained, extended Kalman filter in dealing with the challenges that are usually
encountered in bioprocess operations. Smoothing arrival cost update approaches are
superior in recovering from inaccurate initial conditions and covariances.

In sliding mode observers [73-77], the idea is to bring the system into sliding mode by
discontinuous action on a subspace for which the estimation error is zero. This leads to
their unique properties, as the ability to generate a sliding motion on the error between
the measured output and the observer output ensures that the observer in sliding mode
produces a set of state estimates that are exactly commensurate with the actual system
output [73]. These SS have better characteristics in terms of the rate of convergence and
robustness of disturbances compared to the exponential ones. Convergence is achieved
within a finite time, which is important because the processes are of limited duration [74].
Estimators in first and second order sliding mode have been discussed in the literature. The
first-order ones were developed in [77] for the purpose of estimating the specific growth
rate from real-time measurements of biomass concentration. They were based on the high
tuning method with the addition of a corrective, discontinuous member. The obtained
estimates were robust under typical model uncertainties, as a global convergence was
proven on the basis of the Lyapunov stability theory [36] and the concept of systems with
variable structure. In [73], a SS in a second-order sliding mode of the specific growth rate
was proposed. It was a modified version of a “moving in a spiral” algorithm. In addition
to the advantages of first-order sliding estimators, this SS gave smooth estimates. The
results of [73] are summarized in [76]. An algorithm in second-order sliding mode has
been proposed, estimating p specific kinetic rates of production or consumption, using p
related real-time measurements of state variables. Second-order sliding mode SS give more
accurate estimates than first-order ones, and their advantage is in the fact that there is no
error under limited changes in the evaluated variables.

The kinetics estimation methods proposed above assume that all state variables
necessary to estimate the respective reaction rates have been measured. In many practical
situations, only some of the state variables are available. Therefore, it is necessary to
develop SS for the immeasurable state variables. The asymptotic observers (AO) proposed
in [17] are the most commonly used method to solve this problem, as it does not require
knowledge of the kinetics of the process. As mentioned, a disadvantage of AO is that the
rate of convergence is limited by the experimental conditions and that these observers are
not applicable in batch cultivation.



Processes 2021, 9, 908

90f19

Hybrid software sensors as a combination of model- and data-based methods are
a promising direction in this area. It is in the initial stage [20] and therefore, not many
articles have been reviewed. Hybrid models emerge as a timely pragmatic solution for
synergistically combining available process data and mechanistic understanding. A new
application of the hybrid-EKF method is presented in [78], i.e., hybrid models combined
with an extended Kalman filter for real-time monitoring in mammalian cell culture pro-
cesses. It was demonstrated that for industrial use, the application of a hybrid EKF as a soft
sensor shows a 50% improvement in prediction accuracy, compared to the most modern
soft sensor tools. In the literature, there are hybrid SS, which combine the advantages of
exponential and asymptotic observers [79,80]. A parameter related to the confidence in
the quality of the kinetic model governs the combination of these two classes of observers,
i.e., an exponential observer with a high-quality model and an asymptotic observer for
an unknown kinetic model. Different approaches for defining and estimating this tuning
parameter have been proposed, and different exponential observers have been consid-
ered. In [80], a hybrid asymptotic extended Luenberger observer was proposed, which
was validated by simulations of a batch feeding bacterial culture. A novel hierarchical
EKF/MHE approach was presented in [81] for process monitoring in airlift bioreactors. The
complementary properties of the two widely used methods combined the fast estimation
of EKF and MHE’s optimal performance. In [82], an interval sliding mode observer design
method for uncertain systems is proposed. Uncertainty was assumed between known
minimum and maximum values. The observer was then constructed via convex weighted
sum of an upper estimator corresponding to the maximum value of the uncertainty and a
lower estimator corresponding to the minimum value of the uncertainty. The weighting
factor was calculated at each time point from the different measured outputs and the
bounds of the interval of the estimator. In [79], a new stable nonlinear observer for BTP
state variables was proposed, which combined a hybrid asymptotic extended Luenberger
observer (using a new definition of the confidence parameter of the kinetic model), tuned
on the basis of a stable Hoo approach and differential-algebraic representation.

The observability analysis of bioprocess models is a valuable tool for the development
of mechanistic soft sensors [83]. It can provide an indication of the possibility and reliability
of SS estimations by analyzing the structural properties of first-principle models. In the
paper, the applicability of the observability analysis is demonstrated for two classes of
upstream bioprocesses.

To solve the problem with the lack of measurements of state variables in the literature,
combinations of estimators of kinetic parameters and observers of state variables have
also been proposed. They are the so-called adaptive observers [6,17,24,53,65,84-91]. A
well-known approach is to consider the parameters as additional state variables without a
model for their dynamics and evaluate them with an extended Kalman filter, a Luenberger
observer or other type of observers. The extension of the condition was limited to such a
number of parameters at which the observability conditions were satisfied by the available
measurements. In these studies, all (or most) of the estimated parameters were considered
constants. In [84], a systematic approach is proposed for simultaneous estimation of the
state and non-stationary parameters of nonlinear systems. An adaptive observer was
synthesized by optimizing a linear matrix inequality. The approach was demonstrated on
the basis of a real model of the wastewater treatment process.

Some authors propose kinetics estimation approaches based on measurements of
available rates (rate of oxygen consumption, CO, release, concentrations of dissolved oxy-
gen in the culture medium, CO,, etc.) [92]. In [93], the SS of specific growth rates, substrate
consumption and product production are proposed, based on real-time measurements
of the oxygen consumption rate. They were an extension of the approach in [17], in the
specific case when only this rate was measured. In [94], a new structure of an adaptive
observer of biomass concentration and its growth rate in the presence of measurements of
oxygen consumption rate is proposed.
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The development of cascading structures by the SS is also a promising area in BTP
monitoring [58,95-97]. They are applied in cases when the processes are characterized
by several growth rates (multi-rate), with several microorganisms or when the estimates
from one SS are used as input for the subsequent ones. The proposed cascades of software
sensors for the rates of production and consumption of an intermediate metabolite with
input information on the concentrations of an external carbon source and the intermediate
metabolite in the culture medium deserve special attention. The new element in the synthe-
sis is that the difference between these estimated rates is accepted as a key parameter for
monitoring the physiological states of processes described by one model and characterized
by the growth of one or two microorganisms. The structures are applied for the processes of
the production of biopolymers from mixed cultures of L. delbrueckii and R. eutropha [96], and
the simultaneous saccharification and fermentation of starch to ethanol from a recombinant
S. cerevisiae strain YPB-G [58].

A similar approach is proposed for monitoring the current physiological state of
a class of biotechnological processes characterized by the production and consumption
of an intermediate metabolite, as well as two switching sub-models describing three
physiological states. It is based on the introduction of an adaptive key parameter (marker)
to recognize the current physiological state [98,99].

Table 3 provides a critical analysis of the most commonly used software sensors for
BTP, highlighting their main advantages and disadvantages.

Table 3. Comparison of commonly used methods in BTP monitoring.

Method A Priori Information Advantages Disadvantages
Balance Input-output Simple calculations based There are no reliable estimates
equations connections on approximate models in the presence of uncertainty
. d Its in stochasti A t dels; probl t
Extended Mathematical S arbancenand  inacourate it stimetes and.
Kalman Filter Model (MM) . . .
measurement noise covariance matrices.
. Exact estimates fi .
Hybrid observers MM che tgir:ir;laisiisc or Exact model of the exponential
(EO+AO) observer; limited AO convergence rate.

nonlinear processes

Observer-based

MM; On-line measurements

Simple linear structure;
robustness; possibility for

A large number of tuning parameters;
estimates depend on changes in rates,

estimator related to the estimated rate optimal tuning constant yield coefficients
. The estimates depend on changes in
. One tuning parameter; . .
. . MM; On-line measurements . . . rates; constant yield coefficients; the
High gain SS . effective work with nonlinear . 1
related to the estimated rate exponential stability depends on the
processes; robustness . . .
Lipschitz condition.
Smooth estimates for First-order methods-effect of rapid
Sliding mode SS MM; On-line measurements second-order systems, change of estimates until entering the

related to the estimated rate

without errors at limited
changes in estimated variables

sliding plane; constant
yield coefficients.

The following subsection presents the basic concepts and essence of the General
Dynamic Model (GDM) method for the purposes of SS synthesis. This is, on the one hand,
a widely used and modified method used in the literature. On the other hand, the GDM
approach is the basis for the further development of the theory, presented below.
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6. General Dynamical Model Approach and its Further Development for SS Synthesis

The approach is based on deriving a general dynamic model of BTP in an ideal-mixing
reactor based on reaction schemes [17]. The model is presented in a vector-matix form with
the following differential equation:

% Ky -DE+F-Q &
¢—vector of concentrations of components dissolved in the nutrient medium;
K—a matrix of yield coefficients;
¢@—a reaction rate vector;
D—djilution rate;
F—a vector of feed rates;
Q—flow rates of gaseous components from the reactor.

Idea for minimal modeling of reaction rates

It consists in representing the vector of reaction rates ¢(¢, t) as a product of a matrix
H(¢) of known functions of the state variables & (t) and a vector p (t) including completely
unknown nonstationary parameters as follows:

@(g,t) = H(Z)p(t) @

This allows different types of process uncertainties to be taken into account and a
wide range of practical situations to be covered.

Another problem with BTP monitoring and control is the lack of reliable sensors
for real-time measurements of state variables. For this reason, software sensors for these
variables are being developed.

Tables 4 and 5 give a brief description of the different types of state observers and
parameter estimators developed in [17], depending on the available a priori process infor-
mation. The presented SS are diverse both in terms of the methods used and the a priori
information used.

GDM is described by a system of ordinary differential equations in which parameters
and variables depend on the sole time variable since it has been developed for stirred tanks
bioreactors. Its extension in terms of the spatial change of the state variables has not been
thoroughly studied in the general case yet. In [100,101], an extension related to biochemical
tubular reactors is presented. An observer of state variables based on GDM, using partial—-
differential equations is derived. It is applied to gluconic acid production process.

Table 4. State observers.

%=K¢(§It) —DZ+F—Q A Priori Information

Software sensors @& t) Matrix K

Exponential and asymptotic observers

Limitation: Nonlinear models Known Known

Asymptotic observers with auxiliary variables
Advantages: Simple structure in comparison with
EKF and ELO and independence from ¢(¢, t); Unknown Known
Limitations: Limited rate of convergence; conditions
for matrix inversion.

Adaptive observers
Extended Observers of Kalman and Luenberger
Limitations: Nonlinear structure Unknown Unknown
Asymptotic observers
Constraints: Structural identifiability
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Table 5. Parameter estimators.

Kinetics ¢(&,t)=KH(t)p (&) Estimators of p(¢,t)and K
Observer-based estimator of p(¢, t)
Limitations: The disturbance vector includes quite a few Estimation of p(,t)
members resulting from considering the kinetics a product with known K
of three members
Conditions:

(1) Need for z transformation, in which the dynamics is

independent of economic coefficients; Estimation of p(, t)

(2) Reformulation of kinetics independently from K

@(&,t) =KH(E, t)p(E,t) = (&, Z), so that (&, Z) be
independent of yield coefficients

Case 1: Complete measurements of state variables
Reformulation of kinetics ¢(&,t) = KH(Z, t)p (&, t) = ®(£)0
The estimation of © = f(a, k) and f to be invertible, i.e.,

« ‘ — 1) Simultaneous estimation of p (¢, t)
k and K
Case 2: Incomplete measurements of state variables
Constraints: Condition for invertibility of matrix and
constantly stimulating ®(¢) at unknown yield coefficients
Limitations: Structural identifiability of yield coefficients Estimation of K independently
from function fi.e., 0 = f(k) from (¢, t)

Usually, the software sensors are designed using operational models with constant
yield coefficients. For many industrial biotechnological processes, such as wastewater
treatment and processes in inhomogeneous mediums, reproducibility is poor [50]. Hence,
the assumption of a constant yield coefficient leads to inexact results because of considerable
changes in these parameters during a process or within different production batches. This
change is due to adaptations of the metabolic pathways, protein expression pattern, and
random mutations of organisms, as well as the occurrence and dynamics of population
heterogeneities in single species, especially in multispecies bioprocesses [102,103]. For
cases in which the process kinetics is completely unknown, or the yield coefficients are not
constant, two generalized approaches for SS synthesis are proposed [96,104]. They can be
considered supplementary to the theory of Bastin and Dochain and are based on two new
formulations of BTP kinetics presented in Table 6.

Table 6. New formalizations of kinetics ¢(t).

Process Kinetics Formalization

Pm(®) = YD)
¢m(t)—vector of known kinetics;
¢(t) fully unknown @(t)—key kinetic parameter, which describes the dynamics of
time-varying parameter the main state variables;
Y (t)—vector of yield coefficients comprising remaining parts
of the state variables’ kinetics.

The two general structures of SS are briefly described in Table 7.

In the first generalized SS, the input is the state variable whose kinetics ¢(t) is esti-
mated. The originality in the first SS is (i) considering kinetics as a vector of completely
unknown time-varying parameters, thus avoiding estimation errors arising from constant
values of yield coefficients or other kinetic parameters; and (ii) the linear structure of this SS
makes it possible to propose an optimal tuning of the parameters based on an analytically
derived asymptotic upper limit of the error in the estimation.
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Table 7. General SS based on the new formalizations from Table 7.

General SS

General SS of Y(t) and ¢(t)

A linear structure of a generalized software sensor of
4th/5th order is derived. The input is the measurable
kinetics and a simultaneous estimation of both
parameters at the output is achieved. An analysis of
the stability of the obtained structures is performed
and original tuning procedures for processes taking
place in an inhomogeneous/homogeneous
environment are proposed.

Advantage: The tuning is reduced to selecting two
parameters for processes that are realized in an
inhomogeneous environment, while for the same
processes in a homogeneous environment only one
parameter is needed.

Disadvantage: Only local asymptotic stability can
be proven.

Applications: [107-109].

General SS of ¢(t)

The asymptotic upper limit of the
estimation error is derived, which is the
basis of the proposed optimal tuning.
The advantage of the new software
sensor is that it provides reliable kinetic
information when the kinetics models
are unknown or inexact ones.
Disadvantage:

The effect of measuring noise cannot be
completely ruled out.
Applications: [58,104-106].

The new formalization of the kinetics was used in the synthesis of discrete versions of
SS based on the stability analysis of the following processes: continuous fermentation with
immobilized Saccharomyces cerevisiae strain [106] and production of «-amylase by Bacillus
subtilis [105]. The method has been used in the synthesis of SS in the following processes:
production of gluconic acid by A. niger strain [104]; and the synthesis of biopolymers by
mixed cultures of L. delbrueckii and R. eutropha and the simultaneous saccharification and
fermentation of starch to ethanol by a recombinant S. cerevisiae strain YPB-G [58].

The second structure is characterized by a ratio ¢m(t) =Y(t). ¢(t) between measured
and estimated parameters, which provides the synthesis of asymptotically stable SS. The
originality of this approach consists in its (i) presentation of the process kinetics with
two unknown time-varying parameters with physical meaning, (ii) derivation of a linear
structure of the SS using logarithmic transformations of the parameters that facilitate
stability analysis, and (iii) derivation of stable fourth- and fifth-order structures of the SS,
satisfying conditions for asymptotical stability. The proposed tuning procedures lead to a
reduction in the number of SS parameters in a different number of measurements available
in industrial practice. The method was applied for monitoring the kinetics of classes of
processes realized in an inhomogeneous [103,109] /homogeneous [107] environment. The
results were used to study the kinetics of batch fermentation with strains of B. subtilis and E.
coli, as well as to monitor the denitrification phase in the process of wastewater treatment
with activated sludge [108].

7. Discussion

The model-based SS discussed above have their advantages and disadvantages, which
were considered in the previous sections. It should be noted that the choice of SS method
for a specific process and in particular BTP is not an easy task and requires an analysis of
the following a priori information:

Complexity of the specific process;

Full/partial knowledge of the model structure;

Available process information (quality and quantity of available offline and online
measurements), the types of noises and uncertainties, etc.

On this basis, it is necessary to assess which model and model-based SS will be most
adequate. It should be borne in mind that the model should describe the dynamics of the
process as accurately as possible and on the other hand should not be too complex to allow
the application of the specific SS.

Below are some guidelines for selecting SS-based data that do not claim to be exhaustive.
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It is not difficult to conclude that in a nonlinear system containing Gaussian noise,
UKF and CKF would give better results than EKF, as they do not require a large number of
calculations. EKF is a good solution if the nonlinearity of the system is not strong, and the
process model is accurate [20].

Regarding the uncertainties in the model (especially in the modeling of process kinet-
ics), a common problem for BTP, a number of methods have been proposed in the literature
that successfully solve it. The OBE method as part of the GDM approach is very often
successfully applied for monitoring BTP processes, as the unknown part of the kinetics is
estimated as an unknown time-varying parameter. Although not a statistical method, it
has the ability to filter measurement noise to some extent [17]. The asymptotic observers
that exclude unknown kinetics when estimating unmeasured variables are a good solution
when the dilution rate, determining convergence rate, does not have very low values.

The observer-based estimators mentioned above are characterized by simplicity of
design, good convergence and stable properties. In some cases, when many reactions
are involved, it is necessary to calibrate many parameters. To overcome this problem,
high-gain observers that include one tuning parameter may be recommended [44]. The
HGO in general has the advantages of OBE, but the amplification of noise through its own
phenomenon of amplification and peak of the observer are its disadvantages [110]. Usually,
when tuning the parameters of much of the deterministic SS-based model, a trade-off
between the convergence rate and the sensitivity to noise measurement has to be made.

Sliding mode SSs have robustness to disturbances, insensitivity to unknown inputs
and a finite time convergence. Their disadvantage is the chattering effect, increasing the
systems relative degree and, in some cases, destabilizing the closed loop system [110]. The
chattering phenomenon is still present even in the currently developed higher-order sliding
mode (HOSM) observers.

In cases where the whole dynamics is unknown and the noise from the measurements
is not great, the software sensors proposed in [104], which consider and estimate the
kinetics as completely unknown parameters, are recommended. They have the properties
of OBE, but avoid estimation errors resulting from constant values of yield coefficients,
other kinetic parameters and some measured variables.

For cases where the kinetics of the process are completely unknown and the yield
coefficients are time-varying, it is recommended to apply the approach proposed in [96].
Its advantages and disadvantages are described detail in Section 7.

For software sensors design, different software packages (numerical schemes) are used.
They are different depending on the used method and software environment. However,
there are some modules that are common to all cases:

A process database creation module.
Module containing programs that solve the differential equations of SS and/or
model used.

e  Module containing programs for tuning of SS parameters and/or model identification.

One promising direction in the field, commented in recent years in a number of
articles, is the development of hybrid SS [20]. The idea is to combine the strengths of both
data-based [20,39,40] and model-based methods for software sensors design. The authors
recommend publications [14,20], where this issue is discussed in more detail.

8. Conclusions

Model-based software sensors are a common contemporary monitoring method in
the biotechnology industry. The models used in SS synthesis must be (i) as accurate as
possible to mimic the basic characteristics and dynamics of the process, and (ii) simple
enough to monitor and control. The approaches based on the General Dynamic Model
approach are widely applied simultaneously with those for nonlinear systems, such as
extended Kalman and Luenberger filters, moving horizon, high-gain approach, sliding
mode observers, interval SS, cascade structures, joint estimation of state variables and
parameters, etc. The proposed SS structures depend on the available input information and
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the expert’s requirements for the observed parameters and variables for each case under
consideration. The analysis and comparison of the most commonly used methods show that
nonlinear and/or adaptive methods, which are robust to uncertainty and non-repeatability
of experiments under the same conditions and are adaptable to the non-stationarity of
the process, are more promising and reliable in terms of the inherent complex nature of
biotechnological processes. We believe that the development of hybrid SS, as a future
direction in the field, will be able to synergistically combine the advantages of model-based
and data-based methods.
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