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Abstract: Lipid vesicles, especially giant lipid vesicles (GLVs), are usually adopted as cell membrane
models and their preparation has been widely studied. However, the effects of some nonelectrolytes
on GLV formation have not been specifically studied so far. In this paper, the effects of the nonelec-
trolytes, including sucrose, glucose, sorbitol and ethanol, and their coexistence with sodium chloride,
on the lipid hydration and GLV formation were investigated. With the hydration method, it was
found that the sucrose, glucose and sorbitol showed almost the same effect. Their presence in the
medium enhanced the hydrodynamic force on the lipid membranes, promoting the GLV formation.
GLV formation was also promoted by the presence of ethanol with ethanol volume fraction in the
range of 0 to 20 percent, but higher ethanol content resulted in failure of GLV formation. However,
the participation of sodium chloride in sugar solution and ethanol solution stabilized the lipid mem-
branes, suppressing the GLV formation. In addition, the ethanol and the sodium chloride showed
the completely opposite effects on lipid hydration. These results could provide some suggestions for
the efficient preparation of GLVs.

Keywords: giant lipid vesicle; glucose; sucrose; sorbitol; ethanol

1. Introduction

Plasma membranes form dynamic and flexible barriers to separate cells from environ-
ments, defending the cells against intrusive extracellular molecules [1,2]. However, it is
difficult to study a simple functional process on the membranes both in vivo and in vitro
because of the complexity of the membranes. Fortunately, many artificial membranes with
precisely controlled composition, especially the lipid vesicles, can be used as models of
plasma membranes [3,4]. For example, it was found that the malfunction of natural Cl−

ion transport systems on the cell membranes may lead to some diseases, such as cystic
fibrosis, Barton’s syndrome and myotonia. Saha et al. developed a new selective Cl− ion
carrier (bis(iminourea)) and investigated its functions on the large lipid vesicles, providing
a valuable tool in investigating the role of ion transport in these diseases [5]. Jenkins et al.
established a model of immune cell by utilizing giant lipid vesicle (GLV) embedded with
some membrane proteins. They explored the interactions of T cells and mast cells with the
membrane model [6].

The lipid vesicles used in these studies were the oil-free vesicles generated by hydra-
tion methods (also called swelling methods), such as the gentle hydration method (also
called natural swelling method) or electroformation. When using the hydration methods,
the vesicle formation efficiency is known to be affected by the medium composition [1,7,8].
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In particular, it was found that the formation of lipid vesicles (especially GLVs) was sup-
pressed by the presence of salts [7,8]. Because a physiological amount of ions is essential for
the stability of proteins and membranes and the interaction between them [1], this problem
has bothered researchers for a long time.

In addition to salts, some nonelectrolytes were also involved in GLV formation. For
example, highly concentrated sucrose solutions were usually used as growth mediums
for GLV formation [9–11]. By diluting the solutions with an isoosmolar glucose solution
after GLV formation, the phase contrast imaging of GLVs was facilitated by the mismatch
in refraction index between the inside and outside of the GLVs [11]. Angelova and Dim-
itrov found that GLV formation was suppressed by the presence of high concentration of
sucrose [12], as well as dextran [13], which were attributed to the buildup of an external
osmotic pressure. However, the effects of these nonelectrolytes on GLV formation has not
been specifically studied so far.

In 2017, in order to figure out how the presence of salt suppressed GLV formation, we
designed and fabricated a miniaturized chip, and based on the miniaturized chip we inves-
tigated the effect of sodium chloride on the processes and results of lipid hydration [14].
We found that the presence of sodium chloride suppressed GLV formation mainly because
the swelling and detachment of the lipid membranes were suppressed under a stronger
hydrophobic repulsion. Based on this conclusion, in 2019 we treated the chip for GLV
preparation with oxygen plasma to make the chip hydrophilic, removing the hydrophobic
shelter of the lipids. This operation promoted the swelling and detachment of the lipid
membranes, thus promoting GLV formation [15].

In this work, using the same method as that in reference [14], we investigated how
the lipid hydration and GLV formation would be influenced by the presence of several
nonelectrolytes that commonly appeared in physiological conditions and laboratories,
including sucrose, glucose, sorbitol and ethanol. These molecules also play important
roles in life activities. For example, the sugars and sugar alcohols are found to be able to
stabilize the structure and functionality of biomembranes under extreme conditions such
as heat, cold, drought, or chemical stressors [16–20]. Accumulating high concentrations of
sugars in the cells was important for seeds and other anhydrous plant forms to survive the
withdrawal of water [21]. Since these molecules usually do not exist alone but coexist with
other molecules or ions whether in the vesicle preparation or in the living body [22], we
also investigated the effects of their coexistence with sodium chloride on GLV formation.
We expect that this work could also provide suggestions for the efficient formation of GLVs.

2. Materials and Methods
2.1. Materials

L-α-phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC, 14–23%) and
fluorescent dye (DiI,1,10-dihexadecyl-3,3,30,30-tetramethylindocarbocyanie perchlorate,
ex/em: 549/564 nm, ≥98%) were purchased from Sigma-Aldrich (Saint Louis, MO, USA).
The sucrose (≥99%), glucose (≥99%) and ethanol (AR) were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China); and D-Sorbitol (≥98%) was purchased
from Sigma-Aldrich (Saint Louis, MO, USA). Sodium chloride and ether (AR) were pur-
chased from Dongfang Huabo (Chongqing, China), and polydimethylsiloxane (PDMS)
was purchased from Dow Corning (Midland, TX, USA).

2.2. The Experimental Method

As shown in Figure 1, the chip consisted of six miniaturized cells which allowed six
groups of experiments to be carried out at the same time. The experimental processes are
schematically shown in Figure 1a. In short, 40 mg lipids were dissolved in ether, and 30 µL
fluorescent dye was added for labeling, resulting in the lipid concentration of 4 mg/mL and
lipid/fluorescent dye mass ratio of 99.5:0.5. Then, 40 µL of the organic solution was gently
dripped into the central regions of the cells, avoiding the organic solution spreading to the
side walls of the cells at the same time. In order to decrease the influence of the airflow,
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a lid was put on the chip to make the organic solvent gently evaporate. Then, the chip
was placed in vacuum for 4 h to remove the organic solvent completely, and dried lipid
films were formed on the substrates of the cells. After that, six glass slips were fixed on the
top of the cells, and the chip was transferred to the fluorescence microscope. The aqueous
solution dissolved with the specific nonelectrolyte was then gently added to the cells from
the inlets, and the contents of these nonelectrolytes were increased until significant changes
to the results were observed so that the clear trend of their effect can be obtained. Aided
by the microscope, the dynamic process of the lipid hydration and the GLV formation can
be observed.
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2.3. Calculation of the Relative Fluorescence Intensity and the Relative Membrane Continuity

After sufficiently hydrating the dried lipids for 4 h, the fluorescence images under the
same time of exposure were obtained and analyzed in MATLAB software (MathWorks,
MATLAB R2018b, Natick, MA, USA). Due to the “coffee ring” effect, the fluorescence im-
ages were selected from both the center area and the edge area of each group for calculating
the fluorescence intensity and the membrane continuity. The relative fluorescence intensity
and the relative membrane continuity were obtained by dividing the experimental values
by the values of the control group (in pure water) on the same chip. By repeating the
experiments and using the same calculating method, several sets of values of the relative
fluorescence intensity and relative membrane continuity were obtained for plotting. Both
the fluorescence intensity and membrane continuity were calculated based on the grayscale
value of the images. The process of getting the set of data of one chip is as follows.

First, choose a proper threshold value of the images from the same chip by the mat
file named “get_threshold.m” (see “Supplementary Material”), as shown in Figure 2.
Second, calculate the average fluorescence intensity and the average membrane continuity
of each chamber by the mat file named “get_fluorescence_intensity_continuity.m” (see
“Supplementary Material”). In the mat file, the fluorescence intensity i = ∑ g

sp
, where g are

the grayscale values that are greater than the threshold value and sp is the sum of the pixels
with grayscale values greater than the threshold value; the membrane continuity c = sp

s ,
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where s is the total pixels of the image. Third, collect these values (the average fluorescence
intensity and the average continuity) into an Excel file. Finally, divide the experimental
values by the values of the control group (in pure water) to obtain the relative fluorescence
intensities and the relative membrane continuities.
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(b) the distribution of the gray values on the line of image (a).

3. Results
3.1. The Effects of Sucrose, Glucose and Sorbitol

Figure 3 shows the fluorescence results of lipid hydration in solutions with different
concentrations of sucrose and those when the sucrose coexisted with 50 mM sodium
chloride (the NaCl/water molar ratio is 0.09%). As shown in Figure 3a, the presence of
sucrose promoted the swelling and detachment of the lipid membranes, thus promoting
the GLV formation, which was opposite to the effect of sodium chloride [14]. At high
sucrose concentrations, the supported lipid membranes and GLVs were dragged by the
water flow generated by adding aqueous solution and moved with it (indicated by the
arrows in Figure 3a), and they were even detached from the substrate and dispersed in the
solutions, which made the GLVs difficult to count. Moreover, glucose and sorbitol showed
almost the same effects as sucrose on lipid hydration and GLV formation, similar to the
results of Nagle et al. [23]. Therefore, the fluorescence results of glucose and sorbitol were
not specified here.

The presence of these three nonelectrolytes increased the viscosity of the system, and
this was the most noticeable characteristic that has never been observed when salts were
used. In order to explain this phenomenon, we proposed a possible interaction that might
occur at the solution/lipid interface as shown in Figure 3c and described in detail in the
discussion. We suggested that the sugars could bridge the phases of lipids and solution
tightly (we categorize sorbitol as sugar temporarily). As a result, the hydrodynamic force
on the lipid phase was enhanced, and the enhanced force dragged the lipid membrane to
move with the fluid flow.

Addition of a small amount of sodium chloride to the solutions rapidly suppressed
the swelling and detachment of the lipid membranes, thus suppressing GLV formation. As
shown in Figure 3b, in mixed solutions containing both 50 mM NaCl (NaCl/water molar
ratio is 0.09%) and different concentrations of sucrose, the membranes became stable and
attached to the substrate firmly from beginning to end. No GLVs were formed under such
conditions. These results suggested that the effect of sodium chloride on lipid hydration



Processes 2021, 9, 945 5 of 13

and GLV formation was much stronger than that of sugars. Although the effects of the
sugars were severely covered by the presence of sodium chloride, their specific effect on
lipid hydration was still apparent at high concentrations. Namely, the supported lipid
membranes were dragged by the water flow and moved with it (indicated by the arrows in
Figure 3b).
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Figure 3. The hydration results of lipids in solutions with different content of sucrose (a); and
that mixed solution containing both 50 mM NaCl and different concentrations of sucrose (b). The
scale bars are 100 µm. The arrows represent the directions of the water flow. To compare with the
results of ethanol, the sugar contents were expressed by sugar/water molar ratios, and the molar
concentrations of sucrose were placed in the brackets. (c) The schematic diagram of the characteristic
phenomenon caused by the presence of sugars.

In addition, in order to gain an insight into how the sugars affect GLV formation at
molecular level, we calculated the relative fluorescence intensity of the swelled membranes,
that is, the ratio of the average fluorescence intensity of the membranes formed in sugar
solution and that formed in pure water on the same chip and in the same experiment.
Figure 4 shows the dependence of fluorescence intensity of the swelled membranes on
the contents of sodium chloride and sugars. It was found that the fluorescence intensity
of the swelled membranes increased with increasing sodium chloride concentration with
NaCl/water molar ratio in the range of 0 to 0.4% (NaCl molar concentration within
0–200 mM). Because Na+ ions were the well-known kosmotropic ions, their presence
compressed the water structure in the hydration shells similar to exerting a pressure on
the water, increasing the local density of the water [24–27]. Therefore, the binding of Na+

ions with the phosphate groups and carbonyl groups of lipid molecules [28,29] may also
increase the local density of lipid molecules compared with the binding of water molecules,
resulting in an enhanced hydrophobic association among the lipid tails because of small
interspaces among the tails and resulting in a higher local density of the hydrophobic
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fluorescence probes because they were just embedded among the lipid chains. This may
be the reason that the fluorescence intensity of the swelled membranes increased with
increasing sodium chloride concentration.
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proceeded on the data from our previous study [14].

Although the sugars exhibited the effects on lipid hydration opposite to that of sodium
chloride (i.e., promoting the membrane swelling and detachment), their presence did not
influence the fluorescence intensity of the lipid membranes (Figure 4b). This was consistent
with the previous studies by other researchers in which the packing of the lipid chains was
shown to be not influenced by the presence of sugars [30–33]. Same as what we observed,
the sucrose, glucose, and sorbitol showed no obvious different effects on the fluorescence
intensity of the swelled membranes (Figure 4b).

3.2. The Effect of Ethanol

Figure 5 shows the hydration results in ethanol solutions and those in NaCl/ethanol
mixed solutions. It was found that the presence of ethanol promoted the membrane
swelling both in pure water (Figure 5a) and 50 mM NaCl solution (Figure 5b). In addition,
the fusion among the membranes was suppressed, resulting in promotion of GLV formation
in solutions with ethanol/water molar ratio in the range of 0 to 5% (ethanol volume
fraction within 0–20%). However, when the ethanol/water molar ratio was larger than 5%
(ethanol volume fraction at 20%), the GLV yield decreased and the lipids were present as
sparse and disordered membranes. When the ethanol/water molar ratio increased to 12%
(ethanol volume fraction at 40%), the lipids were present as completely separated clustered
complexes in the case of pure water (Figure 5a) and granular complexes in the case of
50 mM NaCl solution. This suggested that the lipids packed more tightly when sodium
chloride was present in the solution. The lipid membranes had no sign of disturbance
dragged by the water flow. Figure 5c shows the GLV yield as a function of the ethanol
content after 4 h. It can be found that the addition of sodium chloride decreased the GLV
yield but did not influence the effect of ethanol on GLV formation.
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Figure 6 shows the hydration processes of lipids in salt solution (50 mM sodium
chloride) and ethanol solution (ethanol volume fraction at 40%). They exhibited the
opposite processes. In NaCl solution, separated lipid membranes were formed first, which
continually fused later and finally resulted in a huge membrane (Figure 6a). However, in
ethanol solution, the lipid film were sharply split, resulting in many clusters (Figure 6b),
which was the direct evidence that the hydrophobic association among the lipid chains was
destroyed by the presence of ethanol [34]. The lipids are able to self-assemble into ordered
structures (monolayer and bilayer) because of their specific amphiphilicity. Therefore, we
may speculate that the amphiphilicity of the lipid molecules has been changed by the
presence of ethanol, causing the failure of GLV formation in solution with high content of
ethanol (Figure 5).

Figure 7 shows the relative fluorescence intensity and relative continuity of the swelled
lipid membranes as a function of ethanol content. As shown in Figure 7a, the relative
fluorescence intensity decreased with the increase of ethanol content. Apart from the
relative fluorescence intensity, we also calculated the membrane continuity, as shown in
Figure 7b. The membrane continuity first increased, which was due to the promotion
of membrane swelling within this region. However, when the ethanol molar ratio was
larger than 6% (ethanol volume fraction at 20%), the membrane continuity decreased
rapidly, suggesting that the hydrophobic association among the lipid tails may be severely
disrupted. In addition, one can see that although the sodium chloride and the ethanol
affected the lipid hydration in the opposite way (Figure 6), the presence of sodium chloride
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did not influence the effect of ethanol on lipid hydration (Figure 7) and also GLV formation
(Figure 5c).
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In addition, by comparing the results of the sugars and ethanol, it was found that a
larger amount of ethanol than sugars was needed to induce recognizable change of the lipid
membranes (0.36% for sucrose and 3.08% for ethanol as shown in Figures 3 and 5), and
the sugars were more efficient in promoting GLV formation than ethanol. Therefore, the
sodium chloride, sugars and ethanol affected lipid hydration and GLV formation following
the order of sodium chloride > sugars > ethanol. GLV formation was suppressed by the
presence of sodium chloride but promoted by the presence of sugars and ethanol with
ethanol volume fraction in the range of 0–20%.
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4. Discussion

Although the effects of sugar and ethanol on GLV formation have not been specifically
investigated so far, studies on sugar-membrane interaction [17,19,20,35–43] and alcohol-
membrane interaction [2,44–49] have been widely reported which could provide us a lot of
valuable information. After extensively reading the literature, we attempt to analyze our
results at molecular level to provide some possible explanations.

Both experiments and computer simulations showed that sugar can preferentially
form hydrogen bonds with the lipid molecule [30–33]. It was usually believed that the
preferential interaction occurred between the hydroxyl hydrogens of sugar and the phos-
phate group and carbonyl groups of lipid [31,34,50,51]. However, the results of Leekumjorn
and Sum showed that strong interaction also existed between the sugar hydroxyl and the
NH3 group of DPPE [32]. Sugar also formed hydrogen bonds with the methyl groups
from the choline moiety, since the methyl groups were substantially acidified by the
electron-withdrawing effect of quaternary nitrogen [49]. Based on this, we could spec-
ulate that the electron-withdrawing ability of hydroxyl oxygen also resulted in increase
of the nucleophilicity of the hydroxyl oxygen in the same way. The electronegativity be-
tween the hydroxyl oxygen and hydroxyl hydrogen decreased, resulting in decrease of the
electrophilicity of the hydroxyl hydrogen compared with that of water molecule.

Therefore, the preferential interaction between the sugar hydroxyl and lipid molecule
should occur at the positively charged sites (choline moiety of PC molecule or NH3 group
of PE molecule), as shown in Figure 8. In fact, the results of Cacela et al. have confirmed
this point. They found that parts of the sugar hydroxyls established weaker interactions
with the C=O and P=O groups than that of water, but had similar interaction with the
choline groups to that of water (we think it may be stronger) [49]. In addition, the rest of the
sugar hydroxyls strongly interacted with the water molecules (Figure 8), leading to increase
of the interfacial viscosity (η) between the aqueous solution and the lipid membranes, thus
increasing the hydrodynamic force on the membrane (FHD), as seen from the following
equation. FHD was the sum of the pressure (p) and the viscous forces on the lipid phase
exerted by the hydrodynamic flows [50].

FHD = −n·(−pI + η(∇u)) (1)

where n is the normal vector to the membrane surface, I and u are the unit vector and the
velocity, respectively. The enhanced FHD promoted the swelling of the lipid membranes,
and even drove the membranes moving with the water flow, as shown in Figure 3. Since
the water molecules had stronger interactions with the C=O and P=O groups which were
adjacent to the lipid chain than the sugar molecules, it was the water molecules, rather than
the sugar molecules, which interacted with the C=O and P=O groups in sugar solution.
Therefore, the packing of the lipid chains was not influenced by the presence of sugar
(Figure 4).

With regard to the effect of sodium chloride, as stated above, Na+ ion was the well-
known kosmotropic ion and its presence compressed the water structure in the hydration
shells similar to exerting a pressure on the water, increasing the local density [24–27].
The same situation may also apply to the interaction between the Na+ ions and the lipid
molecules [25,26,51]. The Na+ ions bridge the lipid molecules more closely than water
molecules because of the larger charge density of Na+ ions [43,51]. The interspaces among
the lipid tails thus decreased and the van der Waals attractions among them increased,
resulting in tighter packing of the lipid tails and higher fluorescence intensity of the swelled
lipid membranes in the experiments.

With regard to the effect of ethanol, the hydrophobic association between the lipid
chains was found to be disrupted by the presence of ethanol, which was also observed
in other studies and should be attributed to the effect of the ethyl groups of ethanol
molecules [34]. As shown in Figure 8, they may interact with the nonpolar chains of the
lipid molecules under hydrophobic force and VDW force [52], resulting in an increase of
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the hydrophilicity of the lipid molecules. The hydration of the lipids was thus facilitated,
as well as the membrane swelling.
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In summary, the sodium chloride affected the lipid hydration and GLV formation
mainly through the interaction between Na+ ion and the negatively charged site of lipid
molecule, whereas ethanol molecule affected the lipid hydration and GLV formation mainly
through the interaction between the ethyl group and the lipid chain. Their binding sites
on the lipid molecules were different. This may be the reason that the presence of sodium
chloride in ethanol solution did not influence the effect of ethanol on lipid hydration
(Figure 7). The sugars affected the lipid hydration and GLV formation mainly through the
interaction between the sugar hydroxyls and the positively charged site of lipid molecule.
In addition, no remarkable difference was observed among the effects of sucrose, glucose
and sorbitol on lipid hydration, which may suggest that these three molecules interact with
the lipid molecules in a linear way.

5. Conclusions

This work investigated the effect of several nonelectrolytes (sucrose, glucose, sorbitol
and ethanol) on GLV formation, as well as the cases when they were coexisting with sodium
chloride. The presence of sugars (sucrose, glucose and sorbitol) was found to increase
the hydrodynamic force on the lipid membranes, thus promoting GLV formation. The
participation of sodium chloride in sugar solution stabilized the lipid membranes and
made the membranes able to bear the enhanced hydrodynamic force. A small amount of
ethanol in the medium also promoted GLV formation, while a large amount of ethanol
caused the hydrophobic association among the lipids to be disrupted severely, causing the
failure of GLV formation. The sodium chloride and the ethanol showed totally opposite
effects on lipid hydration, but the presence of sodium chloride in ethanol solution did not
change the effect of ethanol on lipid hydration and GLV formation. This was attributed to
their different binding sites on the lipid molecules.

These results may provide some suggestions for the efficient preparation of GLVs.
However, how the interaction between the ethanol hydroxyl and the lipid molecule in-
fluenced the GLV formation was not recognized in this work and may be investigated in
the future.
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